covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Se...
Información de la revista
Vol. 14. Núm. 2.
Páginas 184-192 (abril - junio 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2482
Vol. 14. Núm. 2.
Páginas 184-192 (abril - junio 2017)
Open Access
Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad
Decoding of Grasp and Individuated Finger Movements Based on Low-Density Myoelectric Signals
Visitas
2482
John J. Villarejo Mayora,
Autor para correspondencia
jvimayor@gmail.com

Autor para correspondencia.
, Regina Mamede Costab, Anselmo Frizera-Netoa, Teodiano Freire Bastosa,b
a Departamento de Ingeniería Eléctrica, Programa de Doctorado en Ingeniería Eléctrica, Universidad Federal de Espírito Santo, Vitória, Brasil
b Departamento de Biotecnología, Red del Nordeste en Biotecnología (RENORBIO), Universidad Federal de Espírito Santo, Vitória, Brasil
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Uno de los principales retos en el diseño de prótesis de mano es poder establecer un control intuitivo que reduzca el esfuerzo del usuario durante su entrenamiento. Este trabajo presenta un esquema para identificar tareas de motricidad fina de la mano, agrupadas en movimientos de los dedos individuales y gestos para el agarre de objetos el cual se ha validado con sujetos amputados. Se han comparado diferentes métodos de selección de características y clasificadores para el reconocimiento de patrones mioeléctricos, utilizando cuatro electrodos superficiales. Las características de las señales en el dominio del tiempo y la frecuencia se han combinado con métodos no lineales basados en análisis de fractales, mostrando una diferencia significativa en comparación con los métodos expuestos en la literatura para clasificar tareas de fuerza. Los resultados con amputados mostraron una exactitud de hasta 99,4% en los movimientos individuales de los dedos, superior a la obtenida con los gestos de agarre, de hasta 93,3%. El sistema ha obtenido una tasa de acierto promedio de 86,3% utilizando máquinas de soporte vectorial (SVM), seguido muy de cerca por K-vecinos más cercanos (KNN) con 83,4%. Sin embargo, KNN ha obtenido un mejor rendimiento global, debido a que es más rápido que SVM, lo que representa una ventaja para aplicaciones en tiempo real. El método aquí propuesto ofrece una mayor funcionalidad en el control de prótesis de mano, lo que mejoraría su aceptación por parte de los amputados.

Palabras clave:
Señales electromiográficas
prótesis de miembro superior
reconocimiento de patrones
tareas de destreza de la mano
Abstract

Intuitive prosthesis control is one of the most important challenges in order to reduce the user effort in learning to use an artificial hand. This work presents the development of a myoelectric pattern recognition system for myoelectric weak signals able to discriminate dexterous hand movements using a reduced number of electrodes. The system was evaluated in six forearm amputees and the results were compared with the performance of able-bodied subjects. Different methods were analyzed to classify individual fingers flexion, hand gestures and different grasps using four electrodes and considering the low level of muscle contraction in these tasks. Multiple features of sEMG signals were also analyzed considering traditional magnitude-based features and fractal analysis. Statistical significance was computed for all the methods using different set of features, for both groups of subjects (able-bodied and amputees). For amputees, results showed accuracy up to 99.4% for individual finger movements, higher than the achieved by grasp movements, up to 93.3%. Best performance was achieved using support vector machine (SVM), followed very closely by K-nearest neighbors (KNN). However, KNN produces a better global performance because it is faster than SVM, which implies an advantage for real-time applications. The results show that the method here proposed is suitable for accurately controlling dexterous prosthetic hands, providing more functionality and better acceptance for amputees.

Keywords:
Myoelectric signals
upper-limb prosthesis
superficial electromyography low density
dexterous hand gestures
pattern recognition
Referencias
[Al-Timemy et al., 2013]
A. Al-Timemy, G. Bugmann, J. Escudero, N. Outram.
Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
IEEE Journal of Biomedical and Health Informatics, 17 (2013), pp. 608-618
[Arjunan and Kumar, 2010]
S. Arjunan, D. Kumar.
Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.
Journal of Neuroengineering and Rehabilitation, 7 (2010), pp. 53
[Burck et al., 2011]
J. Burck, J. Bigelow, S. Harshbarger.
Revolutionizing prosthetics: systems engineering challenges and opportunities.
Johns Hopkins APL Tech Dig, 30 (2011), pp. 186-197
[Castro et al., 2015]
M. Castro, S. Arjunan, D. Kumar.
Selection of suitable hand gestures for reliable myoelectric human computer interface.
BioMedical Engineering OnLine, 14 (2015), pp. 1-11
[Ceres et al., 2008]
R. Ceres, J. Pons, L. Calderón, J. Moreno.
La robótica en la discapacidad. Desarrollo de la prótesis diestra de extremidad inferior manus-hand.
Revista Iberoamericana de Automática E Informática Industrial RIAI, 5 (2008), pp. 60-68
[Chowdhury et al., 2013]
R. Chowdhury, M. Reaz, M. Ali, A. Bakar, K. Chellappan, T. Chang.
Surface electromyography signal processing and classification techniques.
12431-66
[Cipriani et al., 2011]
C. Cipriani, C. Antfolk, M. Controzzi, G. Lundborg, B. Rosen, M. Carrozza, F. Sebelius.
Online myoelectric control of a dexterous hand prosthesis by transradial amputees.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19 (2011), pp. 260-270
[Englehart et al., 2001]
K. Englehart, B. Hudgins, P. Parker.
A wavelet-based continuous classification scheme for multifunction myoelectric control.
IEEE Transactions on Biomedical Engineering, 48 (2001), pp. 302-311
[Guo et al., 2015]
S. Guo, M. Pang, B. Gao, H. Hirata, H. Ishihara.
Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement.
9022-38
[Hermens et al., 2000]
H.J. Hermens, B. Freriks, C. Disselhorst-Klug, G. Rau.
Development of recommendations for SEMG sensors and sensor placement procedures.
Journal of Electromyography and Kinesiology, 10 (2000), pp. 361-374
[Hu et al., 2001]
K. Hu, P. Ivanov, Z. Chen, P. Carpena, H. Stanley.
Effect of trends on detrended fluctuation analysis.
Physical Review. E, 64 (2001), pp. 11114
[Hudgins et al., 1993]
B. Hudgins, P. Parker, R. Scott.
A new strategy for multifunction myoelectric control.
IEEE Transactions on Biomedical Engineering, 40 (1993), pp. 82-94
[Japkowicz and Shah, 2014]
N. Japkowicz, M. Shah.
Evaluation learning algorithms: a classification perspective.
Cambridge University Press, (2014),
[Kanitz et al., 2011]
G. Kanitz, C. Antfolk, C. Cipriani, F. Sebelius, M. Carrozza.
Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm.
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 33 (2011),
1608-11
[Khushaba et al., 2012]
R. Khushaba, S. Kodagoda, M. Takruri, G. Dissanayake.
Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals.
Expert Systems with Applications, 39 (2012), pp. 10731-10738
[Kumar et al., 2013]
D. Kumar, S. Arjunan, V. Singh.
Towards identification of finger flexions using single channel surface electromyography - able bodied and amputee subjects.
Journal of Neuroengineering and Rehabilitation, 10 (2013), pp. 50
[Light et al., 2002]
C. Light, P. Chappell, B. Hudgins, K. Engelhart.
Intelligent multifunction myoelectric control of hand prostheses.
Journal of Medical Engineering & Technology, 26 (2002), pp. 139-146
[Losier et al., 2011]
Losier, Y., Clawson, A., Wilson, A., Scheme, E., Englehart, K., Kyberd, P., Hudgins, B., 2011. An overview of the UNB hand system. Proceedings of the 2011 MyoElectric Controls/Powered Prosthetics Symposium Fredericton, 2-5.
[Matrone et al., 2012]
G. Matrone, C. Cipriani, M. Carrozza, G. Magenes.
Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
Journal of NeuroEngineering and Rehabilitation, 9 (2012), pp. 40
[Naik et al., 2010]
G. Naik, D. Kumar, S. Arjunan.
Pattern classification of myo-electrical signal during different maximum voluntary contractions: a study using BSS techniques.
Measurement Science Review, 10 (2010), pp. 1-6
[Oskoei and Hu, 2008]
M. Oskoei, H. Hu.
Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb.
IEEE Transactions on Biomedical Engineering, 55 (2008), pp. 1956-1965
[Peerdeman et al., 2011]
B. Peerdeman, D. Boere, H. Witteveen, R. Huis, H. Hermens, S. Stramigioli, S. Misra.
Myoelectric forearm prostheses: state of the art from a user-centered perspective.
The Journal of Rehabilitation Research and Development, 48 (2011), pp. 719
[Peleg et al., 2002]
D. Peleg, E. Braiman, E. Yom-Tov, G. Inbar.
Classification of finger activation for use in a robotic prosthesis arm.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), pp. 290-293
[Phinyomark et al., 2012a]
A. Phinyomark, P. Phukpattaranont, C. Limsakul.
Fractal analysis features for weak and single-channel upper-limb EMG signals.
Expert Systems with Applications, 39 (2012), pp. 11156-11163
[Phinyomark et al., 2012b]
A. Phinyomark, P. Phukpattaranont, C. Limsakul.
Feature reduction and selection for EMG signal classification.
Expert Systems with Applications, 39 (2012), pp. 7420-7431
[Pons et al., 2005]
J. Pons, R. Ceres, E. Rocon, S. Levin, I. Markovitz, B. Saro, L. Bueno.
Virtual reality training and EMG control of the MANUS hand prosthesis.
Robotica, 23 (2005), pp. 311-317
[Sensinger et al., 2009]
J. Sensinger, B. Lock, T. Kuiken.
Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17 (2009), pp. 270-278
[Tenore et al., 2009]
F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, N. Thakor.
Decoding of individuated finger movements using surface electromyography.
IEEE Transactions on Biomedical Engineering, 56 (2009), pp. 1427-1434
[Theodoridis and Koutroumbas, 2008]
S. Theodoridis, K. Koutroumbas.
Pattern Recognition.
Academic press, (2008),
[Tsenov et al., 2006]
Tsenov, G., Zeghbib, A., Palis, F., Shoylev, N., Mladenov, V., 2006. Neural networks for online classification of hand and finger movements using surface EMG signals. 8th Seminar on Neural Network Applications in Electrical Engineering (NEUREL), 167-171. DOI: 10.1109/NEUREL.2006.341203.
[Villarejo et al., 2014a]
J. Villarejo, R. Costa, T. Bastos, A. Frizera.
Identification of low level semg signals for individual finger prosthesis. Biosignals and Biorobotics Conference.
Biosignals and Robotics for Better and Safer Living (BRC), 5th ISSNIP-IEEE, (2014), http://dx.doi.org/10.1109/BRC.2014.6880991
[Villarejo et al., 2013]
J. Villarejo, A. Frizera, T. Bastos, J. Sarmiento.
Pattern recognition of hand movements with low density sEMG for prosthesis control purposes.
IEEE International Conference on Rehabilitation Robotics 1-6, (2013),
[Villarejo et al., 2014b]
Villarejo, J., Mamede, R., Bastos, T., 2014. Movement Identification using weak sEMG signals of low density for upper limb control. En: Andrade, A., Barbosa, A., Cardoso, A., Lamounier, E. Tecnologias, técnicas e tendências em engenharia biomédica. Canal6 Edi, p. 280-300.
[Yang et al., 2009]
D. Yang, J. Zhao, Y. Gu, X. Wang, N. Li, L. Jiang, D. Zhao.
An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals.
Journal of Bionic Engineering, 6 (2009), pp. 255-263
[Zecca et al., 2002]
M. Zecca, S. Micera, M. Carrozza, P. Dario.
Control of multifunctional prosthetic hands by processing the electromyographic signal.
Critical Reviews in Biomedical Engineering, 30 (2002), pp. 459-485
Descargar PDF
Opciones de artículo