[Armingol et al., 2007]J. Armingol, A. de la Escalera, C. Hilario, J. Collado, J. Carrasco, M. Flores, J. Pastor, F. Rodriguez.
Ivvi: Intelligent vehicle based on visual information.
Robotics and Autonomous Systems, 55 (2007), pp. 904-916
[Bertozzi et al., 2003]M. Bertozzi, A. Broggi, P. Grisleri, T. Graf, M. Meinecke.
Pedestrian detection in infrared images.
In: Intelligent Vehicles Symposium, 2003. Pro- ceedings. IEEE. IEEE, (2003), pp. 662-667
[Broggi et al., 2008]Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghidoni, S., Grisleri, P., Porta, P., Posterli, M., Zani, P., Beck, J., 2008. The passive sensing suite of the terramax autonomous vehicle. In: Intelligent Vehicles Symposium, 2008 IEEE. IEEE, pp. 769-774.
[Broggi et al., 2005]Broggi, A., Caraffi, C., Fedriga, R., Grisleri, P., 2005. Obstacle detection with stereo vision for off-road vehicle navigation. In: Computer Vision and Pat- tern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer So- ciety Conference on. IEEE, pp. 65-65.
[Brown et al., 2003]M. Brown, D. Burschka, G. Hager.
Advances in computational stereo.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25 (2003), pp. 993-1008
[Cabani et al., 2006]Cabani, I., Toulminet, G., Bensrhair, A., 2006. A color stereo vision system for extraction of 3d edges of obstacle. In: Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE. IEEE, pp. 307-312.
[Dalal and Triggs, 2005]N. Dalal, B. Triggs.
Histograms of oriented gradients for human detection In: Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on., 1 (2005), pp. 886-893
[Enzweiler and Gavrila, 2009]M. Enzweiler, D. Gavrila.
Monocular pedestrian detection: Survey and experiments.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31 (2009), pp. 2179-2195
[Faugeras et al., 1993]Faugeras, O., Viéville, T., Theron, E., Vuillemin, J., Hotz, B., Zhang, Z., Moll, L., Bertin, P., Mathieu, H., Fua, P., et al., 1993. Real-time correlation-based stereo: algorithm, implementations and applications.
[Flores et al., 2011]M. Flores, J. Armingol, A. de la Escalera.
Sistema avanzado de asisten- cia a la conducción para la detección de la somnolencia.
Revista Iberoame- ricana de Automática e Informática Industrial RIAI, 8 (2011), pp. 216-228
[Fusiello et al., 2000]A. Fusiello, E. Trucco, A. Verri.
A compact algorithm for rectification of stereo pairs.
Machine Vision and Applications, 12 (2000), pp. 16-22
[Gong et al., 2007]M. Gong, R. Yang, L. Wang, M. Gong.
A performance study on diffe- rent cost aggregation approaches used in real-time stereo matching.
Interna- tional Journal of Computer Vision, 75 (2007), pp. 283-296
[Guo et al., 2009]Guo, C., Mita, S., McAllester, D., 2009. Drivable road region detection using homography estimation and efficient belief propagation with coordinate des- cent optimization. In: Intelligent Vehicles Symposium, 2009 IEEE. IEEE, pp. 317-323.
[Hautiére et al., 2006]Hautiére, N., Labayrade, R., Perrollaz, M., Aubert, D., 2006. Road scene analy- sis by stereovision: a robust and quasi-dense approach. In: Control, Automa- tion, Robotics and Vision, 2006. ICARCV’06. 9th International Conference on. IEEE, pp. 1-6.
[Hirschmu¿ ller et al., 2002]H. Hirschmu¿ ller, P. Innocent, J. Garibaldi.
Real-time correlation-based stereo vision with reduced border errors.
International Journal of Computer Vision, 47 (2002), pp. 229-246
[Hirschmuller and Scharstein, 2007]Hirschmuller, H., Scharstein, D., 2007. Evaluation of cost functions for stereo matching. In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, pp. 1-8.
[Hu et al., 2005]Hu, Z., Lamosa, F., Uchimura, K., 2005. A complete uv-disparity study for stereovision based 3d driving environment analysis. In: 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on. IEEE, pp. 204-211.
[Hu and Uchimura, 2005]Hu, Z., Uchimura, K., 2005. Uv-disparity: an efficient algorithm for stereovi- sion based scene analysis. In: Intelligent Vehicles Symposium, 2005. Pro- ceedings. IEEE. IEEE, pp. 48-54.
[Kim et al., 2009]Kim, J., Hwangbo, M., Kanade, T., 2009. Parallel algorithms to a parallel hard- ware: Designing vision algorithms for a gpu. In: Computer Vision Works- hops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, pp. 862-869.
[Labayrade and Aubert, 2003a]Labayrade, R., Aubert, D., 2003a. In-vehicle obstacles detection and characteri- zation by stereovision. Proc. IEEE In-Vehicle Cognitive Comput. Vis. Syst, 1-3.
[Labayrade and Aubert, 2003b]Labayrade, R., Aubert, D., 2003b. A single framework for vehicle roll, pitch, yaw estimation and obstacles detection by stereovision. In: Intelligent Vehi- cles Symposium, 2003. Proceedings. IEEE. IEEE, pp. 31-36.
[Labayrade et al., 2002]Labayrade, R., Aubert, D., Tarel, J., 2002. Real time obstacle detection in ste- reovision on non flat road geometry through v-disparity representation. In: Intelligent Vehicle Symposium, 2002. IEEE. Vol. 2. IEEE, pp. 646-651.
[Lee et al., 2008]Lee, C., Lim, Y., Kwon, S., Lee, J., 2008. Obstacle localization with a binarized v-disparity map using local maximum frequency values in stereo vision. In: Signals, Circuits and Systems, 2008. SCS 2008. 2nd International Conferen- ce on. IEEE, pp. 1-4.
[Lemonde and Devy, 2004]V. Lemonde, M. Devy.
Obstacle detection with stereovision.
Mechatro- nics & Robotics (MECHROBa¿04, 3 (2004), pp. 919-924
[Ling et al., 2007]Ling, B., Zeifman, M., Gibson, D., 2007. Multiple pedestrian detection using ir led stereo camera. In: Proceedings of SPIE. Vol. 6764. p. 67640A.
[Musleh et al., 2010]B. Musleh, F. García, J. Otamendi, J. Armingol, A. De la Escalera.
Identifying and tracking pedestrians based on sensor fusion and motion sta- bility predictions.
Sensors, 10 (2010), pp. 8028-8053
[NVIDIA, 2009]NVIDIA, C., 2009. C programming best practices guide. Cuda Toolkit 2.
[Olmeda et al., 2011]D. Olmeda, A. de la Escalera, J. Armingol.
Far infrared pedestrian detection and tracking for night driving.
Robotica, 29 (2011), pp. 495-505
[Pérez et al., 2010]J. Pérez, V. Milanés, J. Alonso, E. Onieva, T. De Pedro.
Adelantamien- to con vehiculos autónomos en carreteras de doble sentido.
Revista Iberoa- mericana de Automática e Informática Industrial RIAI, 7 (2010), pp. 25-33
[Petrovskaya and Thrun, 2009]A. Petrovskaya, S. Thrun.
Model based vehicle detection and tracking for autonomous urban driving.
Autonomous Robots, 26 (2009), pp. 123-139
[Premebida et al., 2009]Premebida, C., Ludwig, O., Nunes, U., 2009. Exploiting lidar-based features on pedestrian detection in urban scenarios. In: Intelligent Transportation Sys- tems, 2009. ITSC’09. 12th International IEEE Conference on. IEEE, pp. 1-6.
[Scharstein and Szeliski, 2002]D. Scharstein, R. Szeliski.
A taxonomy and evaluation of dense two- frame stereo correspondence algorithms.
International journal of computer vision, 47 (2002), pp. 7-42
[Soquet et al., 2007]Soquet, N., Aubert, D., Perrollaz, M., et al., 2007. Free space estimation for autonomous navigation.
[Stam, 2008]Stam, J., 2008. Stereo imaging with cuda. OpenVIDIA, january.
[Sun et al., 2006]Z. Sun, G. Bebis, R. Miller.
Monocular precrash vehicle detection: fea- tures and classifiers.
Image Processing, IEEE Transactions on, 15 (2006), pp. 2019-2034
[Taylor et al., 2004]Taylor, T., Geva, S., Boles, W., 2004. Monocular vision as a range sensor. Inter- national Conference on Computational Intelligence for Modelling, Control and Automation.
[Thrun, 2003]S. Thrun.
Learning occupancy grid maps with forward sensor models.
Autonomous robots, 15 (2003), pp. 111-127
[Urmson et al., 2008]C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al.
Autonomous driving in urban environments: Boss and the urban challenge.
Journal of Field Robotics., 25 (2008), pp. 425-466
[Wang et al., 2006]Wang, L., Gong, M., Gong, M., Yang, R., 2006. How far can we go with local optimization in real-time stereo matching. In: 3D Data Processing, Visua- lization, and Transmission, Third International Symposium on. IEEE, pp.129-136.
[Xu et al., 2009]Xu, Y., Zhao, M., Wang, X., Zhang, Y., Peng, Y., Yuan, Y., Liu, H., 2009. A method of stereo obstacle detection based on image symmetrical move. In: Intelligent Vehicles Symposium, 2009 IEEE. IEEE, pp. 36-41.
[Zhao et al., 2009]Zhao, J., Whitty, M., Katupitiya, J., 2009. Detection of non flat ground surfaces using v disparity images. In: Intelligent Robots and Systems, 2009. IROS. [2009] IEEE/RSJ International Conference on. IEEE, pp. 4584-4589.