[Amato et al., 2011]F. Amato, F. Calabrese, C. Cosentino, A. Merola.
Stability analysis of nonlinear quadratic systems via polyhedral Lyapunov functions.
Automatica, 47 (2011), pp. 614-617
[Boyd and Stephen., 1994]Boyd, Stephen.
Linear matrix inequalities in system and control theory.
Society for Industrial and Applied Mathematics, (1994),
[Chesi et al, 2007]Chesi and Graziano., Chesi, Graziano., 2007.«On the Gap Between Positive Polynomials, SOS of Polynomials». IEEE Transactions on Automatic Control 52 (6) (Junio): 1066-1072. doi: 10.1109/T2007.
[Guerra, 2004]Guerra, T. 2004. «LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form». Automatica 40 (5) (Mayo): 823-829. doi:10.1016/j.automatica.2003.12.014.
[Jarvis-Wloszek et al., 2005]Jarvis-Wloszek, Z., R. Feeley, W. Tan, K. Sun, y A. Packard. 2005. «Control applications of sum of squares programming». Positive Polynomials in Control. Lecture Notes in Control and Information Sciences. Springer Berlin /Heidelberg.
[Khalil, 2002]Hassan. Khalil.
Nonlinear systems 3o ed. Upper Saddle River.
[Lofberg, 2009]Lofberg, J. 2009. «Pre- and Post-Processing Sum-of-Squares Programs in Practice». IEEE Transactions on Automatic Control 54 (Mayo): 1007-1011.doi:10.1109/TAC.2009.2017144.
[Neerhoff et al., 2001]Neerhoff, F.L., y P. van der Kloet. 2001. The characteristic equation for time-varying models of nonlinear dynamic systems. EnProc. ECCTD, 28-31.
[Papachristodoulou, 2002]Papachristodoulou, A., y S. Prajna. 2002. On the construction of Lyapunov functions using the sum of squares decomposition. En Decision and Con-trol, 2002, Proceedings of the 41st IEEE Conference on, 3:3482-3487.
[Prajna et al., 2004a]Prajna, S., A. Papachristodoulou, P. Seiler, y P. A Parrilo. 2004a. SOSTOOLS: Control applications and new developments. En Computer Aided Control Systems Design, 2004 IEEE International Symposium on, 315-320.
[Prajna et al., 2004b]Prajna, S., A. Papachristodoulou, P. Seiler, y P. A Parrilo. 2004b. Sum of Squares Optimization Toolbox for MATLAB User's guide. Citeseer.
[Prajna et al., 2004]Prajna, S., A. Papachristodoulou, y F. Wu. 2004. Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. En Control Conference, 2004. 5thAsian, 1:157-165.
[Reznick, 2000]Reznick, B. 2000. «“Some concrete aspects of hilbert's 17th problem». Real algebraic geometry and ordered structures: AMS Special Session on Real Algebraic Geometry and Ordered Algebraic Structures held at Louisiana State University, Baton Rouge, LA, April 17-21, 1996: Special Semester on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University, Baton Rouge, LA, January-May 1996 253: 251.
[Sala, 2008]Sala, A. 2008. Introducing shape-dependent relaxed conditions in fuzzy control of nonlinear systems in Takagi-Sugeno form. En Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational Intelligence). IEEE International Conference on, 512-517.----2009. «On the conservativeness of fuzzy and fuzzy-polynomial con-trol of nonlinear systems». Annual Reviews in Control 33 (1): 48-58.
[Sala and Ariño, 2009]Sala, A., y C. Ariño. 2009. «Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach». IEEE Transactions on Fuzzy Systems 17 (6) (Diciembre): 1284-1295. doi:10.1109/TFUZZ. 2009.2029235.
[Sala et al., 2006]Sala, A., y C. V. Ariño. 2006. Local stability of open-and closed-loop fuzzy systems. En Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006IEEE, 2384-2389.
[Sala and Guerra, 2008]Sala, A., y T.M. Guerra. 2008. Stability analysis of fuzzy systems: membership-shape and polynomial approaches. En Proc. IFAC World Congress, 5605-5610. Seoul, Korea.
[Takagi and Sugeno, 1985]Takagi, T., y M. Sugeno. 1985. «Fuzzy identification of systems and its applications to modeling and control». IEEE transactions on systems, man, and cybernetics 15(1) (Febrero): 116-132.
[Tanaka et al., 2009]Tanaka K., H. Ohtake, y H.O. Wang. 2009. «Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach». IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (2) (Abril): 561-567. doi:10.1109/TSMCB. 2008.2006639.
[Tanaka et al., 2007a]Tanaka, K., H. Yoshida, H. Ohtake, y H. O Wang. 2007a. A sum of squares approach to stability analysis of polynomial fuzzy systems. En American Control Conference, 2007. ACC’07, 4071-4076.
[Tanaka et al., 2007b]Tanaka, K., H. Yoshida, H. Ohtake, y H. O Wang. 2007b. Stabilization of polynomial fuzzy systems via a sum of squares approach. En Intelligent Control, 2007. ISIC 2007. IEEE 22nd International Symposium on, 160-165.
[Tanaka et al., 2001]Tanaka, Kazuo, y Hua O. Wang. 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach. New York: Wiley.
[Toh et al., 1999]Toh, K. C, M. J Todd, y R. H Tutuncu. 1999. «SDPT3–a Matlab software package for semidefinite programming». Optimization Methods and Software 11 (12): 545-581.
[Wang et al., 1996]Wang, H. O, K. Tanaka, y M. F Griffin. 1996. «An approach to fuzzy control of nonlinear systems: Stability and design issues». Fuzzy Systems, IEEE Transactions on 4 (1): 14-23.