covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Estimaación del dominio de atracción de sistemas no lineales mediante modelos ...
Información de la revista
Vol. 9. Núm. 2.
Páginas 152-161 (abril - junio 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4545
Vol. 9. Núm. 2.
Páginas 152-161 (abril - junio 2012)
Open Access
Estimaación del dominio de atracción de sistemas no lineales mediante modelos borrosos polinomiales
Domain of attraction estimation for nonlinear systems with fuzzy polynomial models
Visitas
4545
J.L. Pitarcha,
Autor para correspondencia
jopipe1@upvnet.upv.es

Autor para correspondencia.
, A. Salaa, C.V. Ariñob, F. Bedateb
a Departamento deIngeniería de Sistemas y Automática, UniversidadPolitécnica de Valencia, Camino de Vera, n°14, 46022, Valencia, España
b Departamento de Ingeniería de Sistemas y Diseño, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n 12071, Castellón de la Plana, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

La mayor parte de referencias de la literatura en control borroso plantean condiciones LMI para un modelo Takagi-Sugeno y dan por terminado el problema una vez se obtienen resultados factibles. No obstante, dejan sin estudiar la región de atracción obtenida. Este tra-baajo propone probar que una zona, de forma prefijada, lo más grande posible, peertenece al dominio de atracción del origen de un sistema no lineal. Para ello, se usan modelos borrosos polinomiales cuyo análisis puede ser llevado a cabo mediante optimización convexa (su-mas de cuadrados). Asimismo, se utiliza información de la forma de las funciones de pertenencia para realizar iteraciones con la región de modelado borroso, maximizando la región de atracción probada, lo cual reduce el conservadurismo sobre otras propuestas.

Palabras clave:
Función de Lyapunov
dominio de atracción
sistemas borrosos
Takagi-Sugeno
sistemas polinomiales
estabilidad local
sumas de cuadrados
conservadurismo
Abstract

Many approaches in fuzzy systems literature express LMI conditions for a Takagi-Sugeno model and finish the problem once those conditions are feasible. However, studying the obtained region of attraction and its relationship with the original nonlinear problem is forgotten. This paper proposes to obtain a predefined-shape zone, as large as possible, belonging to the local domain of attraction of the origin of a nonlinear system. In order to do this, local fuzzy polynomial models are used whose analysis can be carried out by convex optimization (sum of squares). Moreover membership information is used in order to do iterations with the fuzzy modeling region, maximizing the size of the proven domain of attraction, which reduces conservatism over existing results.

Keywords:
Lyapunov function
domain of attracion
fuzzy systems
Takagi-Sugeno
polinomial systems
local stabilty
sum of squares
conservatism
Referencias
[Amato et al., 2011]
F. Amato, F. Calabrese, C. Cosentino, A. Merola.
Stability analysis of nonlinear quadratic systems via polyhedral Lyapunov functions.
Automatica, 47 (2011), pp. 614-617
[Boyd and Stephen., 1994]
Boyd, Stephen.
Linear matrix inequalities in system and control theory.
Society for Industrial and Applied Mathematics, (1994),
[Chesi et al, 2007]
Chesi and Graziano., Chesi, Graziano., 2007.«On the Gap Between Positive Polynomials, SOS of Polynomials». IEEE Transactions on Automatic Control 52 (6) (Junio): 1066-1072. doi: 10.1109/T2007.
[Guerra, 2004]
Guerra, T. 2004. «LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form». Automatica 40 (5) (Mayo): 823-829. doi:10.1016/j.automatica.2003.12.014.
[Ichihara, 2008]
Ichihara, Hiroyuki. 2008. State feedback synthesis for polynomial systems with bounded disturbances. En 2008 47th IEEE Conference on Decision and Control, 2520-2525. Cancun, Mexico. doi: 10.1109/CDC. 2008.4738610. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4738610.
[Jarvis-Wloszek et al., 2005]
Jarvis-Wloszek, Z., R. Feeley, W. Tan, K. Sun, y A. Packard. 2005. «Control applications of sum of squares programming». Positive Polynomials in Control. Lecture Notes in Control and Information Sciences. Springer Berlin /Heidelberg.
[Khalil, 2002]
Hassan. Khalil.
Nonlinear systems 3o ed. Upper Saddle River.
Prentice Hall, (2002),
[Lofberg, 2009]
Lofberg, J. 2009. «Pre- and Post-Processing Sum-of-Squares Programs in Practice». IEEE Transactions on Automatic Control 54 (Mayo): 1007-1011.doi:10.1109/TAC.2009.2017144.
[Luenberger and David., 2008]
Luenberger, David. 2008. Linear and nonlinear programming. New York: Springer
[Neerhoff et al., 2001]
Neerhoff, F.L., y P. van der Kloet. 2001. The characteristic equation for time-varying models of nonlinear dynamic systems. EnProc. ECCTD, 28-31.
[Papachristodoulou, 2002]
Papachristodoulou, A., y S. Prajna. 2002. On the construction of Lyapunov functions using the sum of squares decomposition. En Decision and Con-trol, 2002, Proceedings of the 41st IEEE Conference on, 3:3482-3487.
[Pitarch et al., 2010]
Pitarch, J.L., C.V. Ariño, F. Bedate, y A. Sala. 2010. Local fuzzy modeling: Maximising the basin of attraction. En International Conference on Fuzzy Systems, 1-7. Barcelona, Spain. doi:10.1109/FUZZY. 2010.5584617. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5584617.
[Pitarch et al, 2011]
Pitarch, Jose Luis, Carlos Ariño, y Antonio Sala. 2011. Estimating domains of attraction of fuzzy polynomial systems. En, 680-685. Advances in Intelligent Systems Research. Aix-les-Bains: Atlantis Press. doi:10.2991/eusflat.2011.35. http://www.atlantis-press.com/php/paper-details.php?id=2220.
[Prajna et al., 2004a]
Prajna, S., A. Papachristodoulou, P. Seiler, y P. A Parrilo. 2004a. SOSTOOLS: Control applications and new developments. En Computer Aided Control Systems Design, 2004 IEEE International Symposium on, 315-320.
[Prajna et al., 2004b]
Prajna, S., A. Papachristodoulou, P. Seiler, y P. A Parrilo. 2004b. Sum of Squares Optimization Toolbox for MATLAB User's guide. Citeseer.
[Prajna et al, 2002]
Prajna, S., A. Papachristodoulou, y P.A. Parrilo. 2002. Introducing SOSTOOLS: a general purpose sum of squares programming solver. En Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 741-746. Las Vegas, NV, USA. doi: 10.1109/CDC. 2002.1184594. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1 184594.
[Prajna et al., 2004]
Prajna, S., A. Papachristodoulou, y F. Wu. 2004. Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. En Control Conference, 2004. 5thAsian, 1:157-165.
[Reznick, 2000]
Reznick, B. 2000. «“Some concrete aspects of hilbert's 17th problem». Real algebraic geometry and ordered structures: AMS Special Session on Real Algebraic Geometry and Ordered Algebraic Structures held at Louisiana State University, Baton Rouge, LA, April 17-21, 1996: Special Semester on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University, Baton Rouge, LA, January-May 1996 253: 251.
[Sala, 2007]
Sala, A. 2007. Reducing the gap between fuzzyand nonlinear control (invited talk). En, 1-6. Valenciennes, France. http://personales.upv.es/asala/publics/papers/C81AFNC07PLEN.pdf.
[Sala, 2008]
Sala, A. 2008. Introducing shape-dependent relaxed conditions in fuzzy control of nonlinear systems in Takagi-Sugeno form. En Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational Intelligence). IEEE International Conference on, 512-517.----2009. «On the conservativeness of fuzzy and fuzzy-polynomial con-trol of nonlinear systems». Annual Reviews in Control 33 (1): 48-58.
[Sala and Ariño, 2009]
Sala, A., y C. Ariño. 2009. «Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach». IEEE Transactions on Fuzzy Systems 17 (6) (Diciembre): 1284-1295. doi:10.1109/TFUZZ. 2009.2029235.
[Sala et al., 2006]
Sala, A., y C. V. Ariño. 2006. Local stability of open-and closed-loop fuzzy systems. En Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006IEEE, 2384-2389.
[Sala and Guerra, 2008]
Sala, A., y T.M. Guerra. 2008. Stability analysis of fuzzy systems: membership-shape and polynomial approaches. En Proc. IFAC World Congress, 5605-5610. Seoul, Korea.
[Takagi and Sugeno, 1985]
Takagi, T., y M. Sugeno. 1985. «Fuzzy identification of systems and its applications to modeling and control». IEEE transactions on systems, man, and cybernetics 15(1) (Febrero): 116-132.
[Tanaka et al., 2009]
Tanaka K., H. Ohtake, y H.O. Wang. 2009. «Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach». IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (2) (Abril): 561-567. doi:10.1109/TSMCB. 2008.2006639.
[Tanaka et al., 2007a]
Tanaka, K., H. Yoshida, H. Ohtake, y H. O Wang. 2007a. A sum of squares approach to stability analysis of polynomial fuzzy systems. En American Control Conference, 2007. ACC’07, 4071-4076.
[Tanaka et al., 2007b]
Tanaka, K., H. Yoshida, H. Ohtake, y H. O Wang. 2007b. Stabilization of polynomial fuzzy systems via a sum of squares approach. En Intelligent Control, 2007. ISIC 2007. IEEE 22nd International Symposium on, 160-165.
[Tanaka et al., 2001]
Tanaka, Kazuo, y Hua O. Wang. 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach. New York: Wiley.
[Toh et al., 1999]
Toh, K. C, M. J Todd, y R. H Tutuncu. 1999. «SDPT3–a Matlab software package for semidefinite programming». Optimization Methods and Software 11 (12): 545-581.
[Wang et al., 1996]
Wang, H. O, K. Tanaka, y M. F Griffin. 1996. «An approach to fuzzy control of nonlinear systems: Stability and design issues». Fuzzy Systems, IEEE Transactions on 4 (1): 14-23.
Copyright © 2011. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo