Este art¿ıculo presenta un nuevo sistema de rehabilitacio¿n capaz de adaptarse al estado psicofisiolo¿gico del paciente durante tareas de rehabilitacio¿n robo¿tica. Con este tipo de terapia se puede maximizar la motivacio¿n y participacio¿n del paciente durante la actividad de rehabilitacio¿n. En este trabajo se extienden los resultados del estudio presentado en (Badesa et al., 2014b), realizado con sujetos sanos, a su utilizacio¿n con pacientes que hayan sufrido un accidente cerebrovascular. En una primera parte del art¿ıculo se presentan los distintos componentes del sistema adaptativo, y se realiza una comparativa de distintas te¿cnicas de aprendizaje automa¿tico para clasificar el estado psicofisiolo¿gico del paciente entre tres estados posibles: estresado, nivel de excitacio¿n media y relajado. Finalmente, se muestran los resultados del sistema autoadaptativo con un paciente con ictus en fase cro¿nica, que modifica el comportamiento del robot de rehabilitacio¿n y de la tarea virtual en funcio¿n de las medidas de las sen¿ales fisiolo¿gicas.
This paper presents a new rehabilitation system that is able to adapt its performance to patient's psychophysiological state during the execution of robotic rehabilitation tasks. Using this approach, the motivation and participation of the patient during rehabilitation activity can be maximized. In this paper, the results of the study with healthy subjects presented in (Badesa et al., 2014b) have been extended for using them with patients who have suffered a stroke. In the first part of the article, the different components of the adaptive system are exposed, as well as a comparison of different machine learning techniques to classify the patient's psychophysiological state between three possible states: stressed, average excitation level and relaxed are presented. Finally, the results of the auto-adaptive system which modifies the behavior of the rehabilitation robot and virtual task in function of measured physiological signals are shown for a patient in the chronic phase of stroke.
Aisen et al., 1997, Badesa, 2014, Badesa et al., 2014a, Badesa et al., 2012, Bradley and Lang, 1994a, Bradley and Lang, 1994b, Byrne and Parasuraman, 1996, Castellanos-Pinedo et al., 2012, Fasoli et al., 2003, Koenig et al., 2011, Krebs et al., 2003, Krebs et al., 1998, Bayón, 2010, Miller et al., 2010, Nakayama et al., 1994, Novak et al., 2012, Novak et al., 2010, Quezada, 2011 and Volpe et al., 1999.