covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Evaluación en un paciente con ictus en fase crónica de un sistema autoadaptati...
Información de la revista
Vol. 12. Núm. 1.
Páginas 92-98 (enero - marzo 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3655
Vol. 12. Núm. 1.
Páginas 92-98 (enero - marzo 2015)
Open Access
Evaluación en un paciente con ictus en fase crónica de un sistema autoadaptativo de neurorehabilitación robótica
Autoadaptive neurorehabilitation robotic system assessment with a post-stroke patient.
Visitas
3655
Ricardo Moralesa,
Autor para correspondencia
rmorales@umh.es

Autor para correspondencia.
, Francisco J. Badesaa, Nicolas Garcia-Aracila, Joan Arandab, Alicia Casalsb
a Virtual Reality and Robotics Lab, Biomedical Neuroengineering Universidad Miguel Hernandez de Elche, 03202, Elche, Alicante, Spain
b Institute for Bioengineering of Catalonia and Universitat Polite‘cnica de Catalunya. BarcelonaTech
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Este art¿ıculo presenta un nuevo sistema de rehabilitacio¿n capaz de adaptarse al estado psicofisiolo¿gico del paciente durante tareas de rehabilitacio¿n robo¿tica. Con este tipo de terapia se puede maximizar la motivacio¿n y participacio¿n del paciente durante la actividad de rehabilitacio¿n. En este trabajo se extienden los resultados del estudio presentado en (Badesa et al., 2014b), realizado con sujetos sanos, a su utilizacio¿n con pacientes que hayan sufrido un accidente cerebrovascular. En una primera parte del art¿ıculo se presentan los distintos componentes del sistema adaptativo, y se realiza una comparativa de distintas te¿cnicas de aprendizaje automa¿tico para clasificar el estado psicofisiolo¿gico del paciente entre tres estados posibles: estresado, nivel de excitacio¿n media y relajado. Finalmente, se muestran los resultados del sistema autoadaptativo con un paciente con ictus en fase cro¿nica, que modifica el comportamiento del robot de rehabilitacio¿n y de la tarea virtual en funcio¿n de las medidas de las sen¿ales fisiolo¿gicas.

Palabras clave:
Estado fisiológico
interfaces multimodales
robótica de rehabilitación
control.
Abstract

This paper presents a new rehabilitation system that is able to adapt its performance to patient's psychophysiological state during the execution of robotic rehabilitation tasks. Using this approach, the motivation and participation of the patient during rehabilitation activity can be maximized. In this paper, the results of the study with healthy subjects presented in (Badesa et al., 2014b) have been extended for using them with patients who have suffered a stroke. In the first part of the article, the different components of the adaptive system are exposed, as well as a comparison of different machine learning techniques to classify the patient's psychophysiological state between three possible states: stressed, average excitation level and relaxed are presented. Finally, the results of the auto-adaptive system which modifies the behavior of the rehabilitation robot and virtual task in function of measured physiological signals are shown for a patient in the chronic phase of stroke.

Keywords:
Physiological state multimodal interfaces rehabilitation robotics control.
Referencias
[Aisen et al., 1997]
M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, B.T. Volpe.
The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke.
Archives of Neurology, 54 (1997), pp. 443-446
[Badesa, 2014]
Badesa, F. J., Enero 2014. Interfaz multimodal y control biocooperativo para sistemas de neuro-rehabilitación asistida por robots. Tesis Doctoral.
[Badesa et al., 2014a]
Badesa, F.J., Llinares, A., Morales, R., Garc¿ıa-Aracil, N., Sabater, J.M., Pe¿rez- Vidal, C., 2014a. Pneumatic planar rehabilitation robot for post-stroke patients. Journal of Biomedical Engineering: Applications, Basis and Communications 26 (02), 1450025.
[Badesa et al., 2012]
F.J. Badesa, R. Morales, N.G. Aracil, J.M. Sabater, C. Pe¿rez-Vidal, E. Ferna¿ndez.
Multimodal interfaces to improve therapeutic outcomes in robot-assisted rehabilitation.
IEEE Transactions on Systems, Man, and Cybernetics, Part C, 6 (2012), pp. 1152-1158
[Badesa et al., 2014b]
Badesa, F.J., Morales, R., Garcia-Aracil, N., Sabater, J., Casals, A., Zollo, L., 2014b. Auto-adaptive robot-aided therapy using machine learning techniques. Computer Methods and Programs in Biomedicine 116 (2), 123-130.
[Bradley and Lang, 1994a]
M.M. Bradley, P.J. Lang.
Measuring emotion: The self-assessment manikin and the semantic differential, (1994),
[Bradley and Lang, 1994b]
M.M. Bradley, P.J. Lang.
Measuring emotion: The self-assessment manikin and the semantic differential, (1994),
[Byrne and Parasuraman, 1996]
E. Byrne, R. Parasuraman.
Effects of robotic therapy on motor impairment and recovery in chronic stroke.
Biological Psychology, 42 (1996), pp. 249-268
[Castellanos-Pinedo et al., 2012]
F. Castellanos-Pinedo, M. Cid-Gala, P. Duque, J. Ram¿ırez-Moreno, J. Zurdo-Herna¿ndez.
Dan¿o cerebral sobrevenido: propuesta de definicio¿n, criterios diagno¿sticos y clasificacio¿n.
Rev Neurol, 54 (2012), pp. 357-366
[Fasoli et al., 2003]
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, N. Hogan.
Effects of robotic therapy on motor impairment and recovery in chronic stroke.
Tech. Rep. 4, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, (2003),
[Koenig et al., 2011]
A. Koenig, D. Novak, X. Omlin, M. Pulfer, E. Perreault, L. Zimmerli, M. Mihelj, R. Riener.
Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19 (2011), pp. 453-464
[Krebs et al., 2003]
H. Krebs, J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. Vol- pe, N. Hogan.
Rehabilitation robotics: performance-based progressive robot- assisted therapy.
Autonomous Robots, 15 (2003), pp. 7-20
[Krebs et al., 1998]
H.I. Krebs, N. Hogan, M.L. Aisen, B.T. Volpe.
Robot-aided neuro-rehabilitation.
IEEE Trans Rehabil Eng, 6 (1998), pp. 75-87
[Bayón, 2010]
M. Bayón, J. M., 2010. Rehabilitación del ictus mediante realidad virtual. Rehabilitación 44 (3), 256-260.
[Miller et al., 2010]
E. Miller, L. Murray, L. Richards, R. Zorowitz, T. Bakas, P. Clark, S. Billinger.
Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: A scientific statement from the american heart association.
Stroke, 10 (2010), pp. 2402-2448
[Nakayama et al., 1994]
H. Nakayama, H. Jørgensen, H. Raaschou, T. Olsen.
Recovery of upper extremity function in stroke patients: the copenhagen stroke study.
Archives of Physical Medicine and Rehabilitation, 4 (1994), pp. 394-398
[Novak et al., 2012]
D. Novak, M. Mihelj, M. Munih.
A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing.
Interacting with Computers, 24 (2012), pp. 154-172
[Novak et al., 2010]
D. Novak, J. Ziherl, A. Olensek, M. Milavec, J. Podobnik, M. Mihelj, M. Munih.
Psychophysiological responses to robotic rehabilitation tasks in stroke.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18 (2010), pp. 351-361
[Quezada, 2011]
M. Quezada.
El dan¿o cerebral adquirido (dca) en espan¿a: principales resultados a partir de la encuesta edad-2008.
Bolet¿ın del Observatorio Estatal de la Discapacidad, 3 (2011), pp. 39-59
[Volpe et al., 1999]
Volpe, B.T., Krebs, H.I., Hogan, N., Edelsteinn, L., Diels, C.M., Aisen, M.L., 1999. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Tech. Rep. 8, Cornell University Medical College, Department of Neurology and Neuroscience, Burke Medical Research Institute, White Plains, NY 10605, USA.
Copyright © 2013. EA
Descargar PDF
Opciones de artículo