covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de ima¿ge...
Información de la revista
Vol. 11. Núm. 3.
Páginas 327-336 (julio - septiembre 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4833
Vol. 11. Núm. 3.
Páginas 327-336 (julio - septiembre 2014)
Open Access
Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de ima¿genes con precisión sub-píxel: un caso de estudio
Visual interface for a Nikon 6D autocollimator through sub-pixel image processing: a case study
Visitas
4833
C. Schurrera, A.G. Flesiac,
Autor para correspondencia
flesia@famaf.unc.edu.ar

Autor para correspondencia.
, G. Berguesb, G. Amesb, L. Canalib
a CEMETRO, Universidad Tecnolo¿gica Nacional Regional Co¿rdoba, Armada Argentina 4050, Campus UTN, Co¿rdoba, Argentina y FaMAF, Universidad Nacional de Co¿rdoba, Medina Allende s/n, Ciudad Universitaria, Co¿rdoba, Argentina
b CIII, Universidad Tecnolo¿gica Nacional Regional Co¿rdoba, Maestro M. Lopez esq. Cruz Roja Argentina, Ciudad Universitaria, Co¿rdoba, Argentina
c CIEM-Conicet y FaMAF, Universidad Nacional de Co¿rdoba, Medina Allende s/n, Ciudad Universitaria, Co¿rdoba, Argentina
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Este documento tiene el objetivo de describir el potencial de una interfaz visual ba'sica en un Autocolimador del tipo Nikon 6B/6D, para reemplazar al operario en una medicio¿n de calidad metrolo¿gica. La interfaz visual implementada consta de una ca¿mara con sensor CMOS adosada al ocular del autocolimador, partes posicionales, y un sistema de procesamiento digital de ima¿genes propio, escrito en lenguaje Matlab OR, que analiza la imagen de la ret¿ıcula para detectar la escala y la cruz de medicio¿n a nivel sub-p¿ıxel. Mediante un experimento controlado, realizado con un nivel electro¿nico trazable internacionalmente, se obtuvieron, con este sistema, a¿ngulos de cabeceo (αy) con una resolucio¿n tres veces mejor que la del instrumento sin interfaz. Este ejemplo sugiere que el valor de 0.06 p¿ıxeles para la incertidumbre asociada con la posicio¿n sub-p¿ıxel de las diferentes l¿ıneas que conforman la ret¿ıcula de medicio¿n es realista, y permite seguir trabajando en una interfaz robusta para todos los para¿metros angulares posibles de ser medidos por el autocolimador.

Palabras clave:
Autocolimador
sensor CMOS
Interfaz visual
precisio¿n subpixel.
Abstract

The goal of this paper is to describe the potential of a ba- sic visual interfase applied to a Nikon 6B/6D autocollimator in order to replace human operator within a “laboratory grade” measurement. The implemented optical interface consists of a CMOS sensor-based camera attached to the autocollimator ocu- lar, camera positioning devices and a proprietary digital image processing package, built around Matlab OR environment, used to analyze the reticle's image to detect both the scale and the measuring cross at sub-pixel level. In a controlled experiment the system performance was compared against an electronic le- vel with internationally traceable certification. Pitch angles we- re obtained with a resolution three times better than the original of the instrument. This example shows that the value of 0,06 pixels for the uncertainty associated with sub-pixel position of the reticle lines is realistic, allowing to continue working on a robust interface for all angle parameters that can be measured using an autocollimator.

Keywords:
Autocollimator
CMOS sensor
image processing
subpixel accuracy
Referencias
[Aggarwal and Karl, 2006]
N. Aggarwal, W.C. Karl.
Line detection in images through regularized Hough transform.
IEEE Transactions on Image Processing, 15 (2006), pp. 582-591
[Alcock et al., 2010]
S.G. Alcock, K.J.S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, T. Noll, H. Lammert.
The Diamond-NOM: A noncontact profiler capable of characterizing optical figure error with sub-nm repeatability.
Nuclear Instruments Methods A, 616 (2010), pp. 224-228
[Goldsmith, 2011]
N.T. Goldsmith.
Deep Focus; A digital image processing technigue to produce improve focal depth in light microscopy.
Image Analysis and Stereology, [S.l.], 19 (may 2011), pp. 163-167
[Born and Wolf, 1998]
Born, M., Wolf, W. 1998. Principles of optics, 6th edition. Cambridge Univer- sity Press. Chapter IV, Image forming instrument, 233-255.
[Brucas and Giniotis, 2009]
D. Brucas, V. Giniotis.
Creation of a multi-reference-angle compara- tor.
Optical Engineering, 48 (2009), pp. 0336020-0336024
[Canabal et al., 2001]
H. Canabal, J. Alonso, E. Bernabeu.
Laser beam deflectometry based on a subpixel resolution algorithm.
Optical Engineering, 40 (2001), pp. 2517-2523
[Fabijanska and Sankowski, 2009a]
A. Fabijanska, D. Sankowski.
Computer vision system for high tempera- ture measurements of surface properties.
Machine Vision and Applications, 20 (2009), pp. 411-421
[Fabijanska and Sankowski, 2009b]
A. Fabijanska, D. Sankowski.
Improvement of the image quality of a high-temperature vision system.
Measurement Science and Technology, 20 (2009), pp. 1-9
[Fernandes et al., 2006]
L. Fernandes, M. Oliveira, R. Silva, G.J. Crespo.
A fast and accurate approach for computing the dimensions of boxes from single perspective images.
Journal of the Brazilian Computer Society, 12 (2006), pp. 19-30
[Hagara and Kulla, 2011]
M. Hagara, P. Kulla.
Edge detection with sub-pixel accuracy based on aproximation of with ERF function.
Radioengeneering, 20 (2011), pp. 516-524
[Hermosilla et al., 2008]
T. Hermosilla, E. Bermejo, A. Balaguer, L.A. Ruiz.
Non-linear fourth- order image interpolation for subpixel edge detection and localization.
Ima- ge and Vision Computing, 26 (2008), pp. 1240-1248
[Hu et al., 2008]
Z. Hu, H. Dang, X.A. Li.
Novel Fast Subpixel Edge Location Method Based on Sobel-OFMM.
Proceedings of the IEEE International Conference on Automation and Logistics Qingdao China, (2008),
[Ma et al., 2012]
L. Ma, S. Zhou, H. Ouyang, Z. He, W. Rong, L. Sun.
Image Sub-pixel Recognition Method for Optical Precise Adjustment.
Proceedings of 2012 IEEE International Conference on Mechatronics and Automation August 5-8, Chengdu China, (2012), pp. 1439-1444
[Maronna et al., 2006]
R. Maronna, R. Douglas Martin, V. Yohai.
Robust Statistics: Theory and Methods. Book Series: Wiley Series in Probability and Statistics..
John Wiley & Sons Ltd, (2006),
[Martinelli et al., 1994]
P. Martinelli, S. Musazzi, U. Perin.
An autocollimator based optical sys- tem for precise angular alignment control over large exploring areas.
Review of Scientific Instruments, 65 (1994), pp. 1012-1014
[Nguyen et al., 2012]
N. Nguyen, K. Hoang, P. Jedrzejowicz.
Detection of Tennis Court Li- nes for Sport Video Categorization Computational Collective Intelligence. Technologies and Applications.
Lecture Notes in Computer Science, 7654 (2012), pp. 304-314
[Park et al., 2011]
J.B. Park, J.G. Lee, M.K. Lee, S.E. Lee.
A glass thickness measuring system using the machine vision method.
International Journal of Precision Engineering and Manufacturing, 12 (2011), pp. 769-774
[Zhao et al., 2012]
P. Zhao, W. Zhao, Z. Duan, W. Zhao.
Subpixel precise Edge Extraction Algorithm Based on Facet Model. Proceedings of the Fourth International Conference on Computational and Information Sciences (ICCIS), (2012), pp. 86-89
[Qu et al., 2005]
Y. Qu, C. Cui, S. Chen, J. Li.
A fast subpixel edge detection method using SobelZernike moments operator.
Image and Vision Computing, 23 (2005), pp. 11-17
[Reid and Zissermann, 1996]
I. Reid, A. Zissermann.
Goal-directed video metrology.
Proceedings of European Conference on Computer Vision, (1996), pp. 647-658
[Schafer, 2011]
R. Schafer.
What Is a Savitzky-Golay Filter?. IEEE Signal Processing Magazine, (July 2011),
[Siewert et al., 2011]
F. Siewert, J. Buchheim, T. Hoft, S. Fiedler, G. Bourenkov, M. Cianci, R. Signorato.
High resolution slope measuring deflectometry for the characterization of ultra-precise reflective X-ray optics.
Proceedings of 56th International Scientific Colloquium, Ilmenau University of Technology, (12-16 September 2011), pp. 1-9
[Siewert et al., 2004]
F. Siewert, T. Noll, T. Schlegel, T. Zeschle, H. Lammert.
The Nano- meter Optical Component Measuring Machine: a new Sub-nm Topography Measuring Device for X-Ray Optics at BESSY, AIP Conference Procee- dings, Mellville, NY, 705 (2004), pp. 847-850
[Soufli et al., 2012]
Soufli, R., Fernandez-Perea, M., Baker S. L., Robinson, J. C., Gullikson, E. M., Heimann, P., Yashchuk, V.V., McKinney, W.R., Schlotter, W.F., Rowen, M. 2012. Development and calibration of mirrors and gratings for the soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser. Applied Optics, 20:51(12), 2118-2128.
[Sui and Sheng, 2009]
L. Sui, W. Sheng.
Edge Detection Algorithm Based on Facet Model.
Computer Engineering, 35 (2009), pp. 187-189
[Tabatabai and Mitchel, 1989]
A.J. Tabatabai, O.R. Mitchel.
Edge location to subpixel values in digital imagery.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), pp. 1293-1309
[Tan et al., 2007]
J. Tan, L. Ao, J. Cui, W. Kang.
Further improvement of edge location accuracy of charge-coupled-device laser autocollimators using orthogonal Fourier-Mellin moments.
Optical Engineering, 46 (May 2007),
Copyright © 2013. EA
Opciones de artículo