Este artículo presenta una arquitectura de control modular que permite realizar tareas de manipulación en entornos cotidianos a un robot diseñado para ello. Dicho robot integra una plataforma móvil, un brazo redundante articulado, y diferentes tipos de sensores incluyendo visión. Un control de impedancia velocidad/fuerza, que permite la ejecución de una gran variedad de tareas mediante el formalismo denominado TFF (i.e. Task Frame Formalism) ha sido implementado de modo satisfactorio. Las distintas tareas son representadas como una red de habilidades básicas que son ejecutadas por el robot usando el control de impedancia. Diferentes mecanismos para la transición entre habilidades de acuerdo al estado perceptual del robot han sido definidos. La validez experimental de nuestro enfoque es demostrada mediante el Robot de Servicios de la UJI, Jaume-2, realizando una tarea cotidiana como es abrir una puerta. Finalmente, este nuevo marco es aplicado para progresar en la nueva versión del Robot Bibliotecario de la UJI, demostrando una gran habilidad en el modo en que el robot manipula libros.
Información de la revista
Vol. 5. Núm. 2.
Páginas 25-37 (abril 2008)
Vol. 5. Núm. 2.
Páginas 25-37 (abril 2008)
Open Access
Manipulación autónoma multipropósito en el robot de servicios jaume-2
Visitas
3519
Mario Prats
, Pedro J. Sanz
, Ester Martínez, Raúl Marín
, Angel P. del Pobil
Autor para correspondencia
Autor para correspondencia
Autor para correspondencia
Autor para correspondencia
Departamento de Ingeniería y Ciencia de los Computadores, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, España
Este artículo ha recibido
Información del artículo
Resumen
Palabras Clave:
manipulación
arquitecturas de control
robótica de servicios
El Texto completo está disponible en PDF
Referencias
[Arkin, 1998]
R.C. Arkin.
Behavior-Based Robotics.
(MIT Press), (1998),
[Baeten et al., 2003]
J. Baeten, H. Bruyninckx, J. De Schutter.
Integrated vision/force robotic servoing in the task frame formalism.
International Journal of Robotics Research, 22 (2003), pp. 941-954
[Bekey, 2005]
G.A. Bekey.
Autonomous Robots.
(MIT Press), (2005),
[Bicchi and Kumar, 2000]
A. Bicchi, V. Kumar.
Robotic grasping and contact: A review.
Proc. IEEE Int. Conf. on Robotics and Automation, pp. 348-353
[Borst et al., 1999]
C. Borst, M. Fischer, B. Hirzinger.
A fast and robust grasp planner for arbitrary 3d objects.
En IEEE International Conference on Robotics and Automation, (1999),
[Bruyninckx and De Schutter, 1996]
J. Bruyninckx, De Schutter.
Specification of force-controlled actions in the ‘task frame formalism’ : A synthesis.
IEEE Trans. On Robotics and Automation, 12 (1996), pp. 581-589
[De Schutter and Brussels, 1988a]
J. De Schutter, H. Brussels.
Compliant robot motion i. a formalism for specifying compliant motion tasks.
International Journal of Robotics Research, 7 (1988), pp. 3-17
[De Schutter and Brussels, 1988b]
J. De Schutter, H. Brussels.
Compliant robot motion ii. a control approach based on external control loops.
International Journal of RoboticsResearch, 7 (1988), pp. 18-33
[Ferrari and Canny, 1992]
Ferrari, C., and J. Canny, (1992). Planning optimal grasps. En IEEE International Conference on Robotics and Automation, 3, pp. 2290-2295, Nice, France.
[Hasegawa et al., 1992]
T. Hasegawa, T. Suehiro, K. Takase.
Model-based manipulation system with skill-based execution.
IEEE Trans. on Robotics and Automation, 18 (1992), pp. 535-544
[Hogan, 2004]
N. Hogan.
Impedance control of industrial robots.
Robotics and Computer-Integrated Manufacturing, 1 (1984), pp. 97-113
[Kroger et al., 2004]
Kröger, T., B. Finkemeyer, U. Thomas, and F. M. Wahl (2004). Compliant motion programming: The task frame formalism revisited. En Mechatronics & Robotics, Aachen, Germany.
[Marrone and Raimondi, 2002]
Marrone, F., F. Raimondi, and M. Strobel (2002). Compliant interaction of a domestic service robot with a human and the environment. En Proc.of 33rd Int. Symposium on Robotics, Stockholm.
[Martinez et al., 2005]
E. Martinez, M. Prats, A.P. del Pobil, Pedro F Sanz.
Robots behave in the real world: Looking for books in a library.
The 9th IASTED International Conference on Artificial Intelligence and Soft Computing,
[Mason, 1981]
M. Mason.
Compliance and force control for computer-controlled manipulators.
IEEE Trans on Systems, Man, and Cybernetics, 11 (1981), pp. 418-432
[Miller et al., 2003]
A.T. Miller, S. Knoop, H.I. Christensen, P.K. Allen.
Automatic grasp planning using shape primitives.
IEEE International Conference on Robotics and Automation, (2003), pp. 1824-1829
[Okamura et al., 2000]
A.M. Okamura, N. Smaby, M.R. Cutkosky.
An overview of dexterous manipulation.
IEEE International Conference on Robotics and Automation, (2000), pp. 255-262
[Oreback and Christensen, 2003]
A. Orebäck, H.I. Christensen.
Evaluation of architectures for mobile robotics.
Autonomous robots, 14 (2003), pp. 33-49
[Petersson et al., 1999]
Petersson, L. M. Egerstedt, and H. Christensen, (1999). A Irbid control architecture for mobile manipulation.
[Petersson et al., 2000]
L. Petersson, D. Austin, D. Kragic.
Highlevel control of a mobile manipulator for door opening.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
[Prats et al., 2005]
Prats, M., P.J. Sanz, and A. P. del Pobil, (2005). Model-based tracking and Hybrid force/vision control for the UJI librarian robot. En Proc.of International Conference on Intelligent Robots and Systems, pp. 3308-3313. Edmonton, Canada.
[Raibert and Craig, 1981]
M.H. Raibert, J.J. Craig.
Hybrid position/force control of manipulators.
ASME Journal of Dynamic Systems, Measurement and Control, 102 (1981), pp. pp.126-pp.133
[Ramos-Garijo et al., 2003]
Ramos-Garijo R., M. Prats, P.J. Sanz, and A. P. del Pobil, (2003). An autonomous assistant robot for book manipulation in a library. En Proc. of IEEE Int. Conference on Systems, Man & Cybernetics, Washington D.C., USA.
[Sciavicco and Siciliano, 2000]
Sciavicco, L. and B. Siciliano, (2000). Modelling and Control of Robot Manipulators (Springer(Advanced Text books in Control and Signal Processing))
[Simmons and Demiris, 2004]
Simmons, G. and Y. Demiris, (2004). Imitation of human demonstration using a biologically inspired modular optimal control scheme. En IEEE-RAS/RSJ International Conference on Humanoid Robots, pp 215-234, Los Angeles, USA.
[Suthakorn et al., 2002]
Suthakorn, J., S. Lee, Y. Zhou, R. Thomas, and S. Choudhury (2002). A robotic library system for an off-site shelving facility. En IEEE International Conference on Robotics and Automation, pp 3589-3594.
[Thomas et al., 2003]
Thomas, U., B. Finkemeyer, T. Kroger, and F. M. Wahl, (2003). Error-tolerant execution of complex robot tasks based on skill primitives. En Proc. of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan.
[Tomizawa et al., 2003]
Tomizawa, T., A. Ohya, and S. Yuta, (2003). Remote book browsing system using a mobile manipulator. En IEEE International Conference on Robotics and Automation, pp. 256-261, Taipei, Taiwan.
Copyright © 2008. Elsevier España, S.L.. Todos los derechos reservados