covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Modelización de la Estimulación Eléctrica Neuromuscular mediante un enfoque f...
Información de la revista
Vol. 13. Núm. 3.
Páginas 330-337 (julio - septiembre 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
2597
Vol. 13. Núm. 3.
Páginas 330-337 (julio - septiembre 2016)
Open Access
Modelización de la Estimulación Eléctrica Neuromuscular mediante un enfoque fisiológico y de caja negra
Neuromuscular Electrical Stimulation modelling by physiological and black-box approach
Visitas
2597
Elisa Piñuela-Martína,
Autor para correspondencia
epinuela@externas.sescam.jccm.es

Autor para correspondencia.
, Antonio J. del-Amaa, Juan C. Fraile-Marinerob, Ángel Gil-Agudoa
a Unidad de Biomecánica. Hospital Nacional de Parapléjicos (SESCAM). Finca la Peraleda S/N, 45071 Toledo, España
b Escuela de Ingenierías Industriales (UVA). Paseo del Cauce 59, 47011, Valladolid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En el presente artículo se expone el diseño y validación de dos modelos de Estimulación Eléctrica Neuromuscular (E.E.N.M.) para la relación entre parámetros de estimulación y características biomecánicas, siendo cada uno de ellos representativo de dos enfoques diferentes. Uno de ellos fisiológico simplificado, mientras que el otro es un modelo de caja negra basado en red neuronal, por lo que no incluye información sobre las características internas del sistema. En este artículo se exponen las características de cada uno, se describe el equipamiento utilizado y los experimentos para su identificación. Ambos modelos han sido identificados y validados en cinco sujetos sanos. El modelo fisiológico, a pesar de numerosas limitaciones encontradas, ha permitido el estudio en profundidad de los procesos internos y de la multitud de factores que involucran la activación muscular. El modelo en red neuronal, en cambio, presenta una buena precisión pero no proporciona conocimiento sobre los aspectos internos del sistema. Por ello, para una aplicación de control en la que sólo interesen las entradas y salidas del sistema, el modelo de caja negra es la mejor opción. Por otro lado, si se desea tener acceso a las variables internas del sistema neuromuscular bajo E.EN.M., es necesario realizar un análisis exhaustivo para la posterior mejora de las prestaciones del modelo fisiológico aquí presentado.

Palabras clave:
modelos
identificación
estimulación
electrodos
control.
Abstract

In this paper, a comparison and validation of two models of Neuromuscular Electrical Stimulation (NMES) for the relationship between stimulation parameters and biomechanical characteristics is presented. Each model is representative of two opposite approaches: the first one is a physiological simplified model, while the second is a black-box model based on neural network, without information about the internal processes of muscle contraction under NMES. The features of each model, equipment used and the experiments are discussed. Five healthy volunteers were enrolled for identification and validation of both models. The physiological model, despite the numerous limitations found, allowed to characterize the internal processes and the variety of factors that involve NMES. The neural network model showed good precision but does not provide knowledge about the system. For a control purposes in which only the input-output relationship are of interest, a black box model can be considered as a good choice, whereas for gaining insight on the internal process involved in NMES, the physiological approach should be improved considerably to improve accuracy and performance.

Keywords:
Models
identification
stimulation
electrodes
control.
Referencias
[Bai et al., 2002]
E. Bai, S. Member, M. Fu.
A Blind Approach to Hammerstein Model Identification, 50 (2002), pp. 1610-1619
[Creasey et al., 2004]
G.H. Creasey, C.H. Ho, R.J. Triolo, D.R. Gater, A.F. DiMarco, K.M. Bogie, M.W. Keith.
Clinical applications of electrical stimulation after spinal cord injury.
The Journal of Spinal Cord Medicine, 27 (2004), pp. 365-375
[De et al., 1995]
N. De, N. Donaldson, H. Gollee, K.J. Hunt, J.C. Jarvis, M.K.N. Kwende.
A radial basis function model of muscle stimulated with irregular inter-pulse intervals.
Medical Engineering & Physics, 17 (1995), pp. 431-441
[Del-Ama, 2013]
A. Del-Ama.
A comparison of customized strategies to manage muscle fatigue in isometric artificially elicited muscle contractions for incomplete SCI subjects.
Journal of Automatic, 21 (2013), pp. 19-25
[Doucet et al., 2012]
B.M. Doucet, A. Lam, L. Griffin.
Neuromuscular electrical stimulation for skeletal muscle function.
The Yale Journal of Biology and Medicine, 85 (2012), pp. 201-215
[Durfee and MacLean, 1989]
W.K. Durfee, K.E. MacLean.
Methods for estimating isometric recruitment curves of electrically stimulated muscle.
IEEE Transactions on Bio-Medical Engineering, 36 (1989), pp. 654-667
[Ferrarin et al., 2001]
M. Ferrarin, F. Palazzo, R. Riener, J. Quintern.
Model-based control of FES-induced single joint movements.
IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society, 9 (2001), pp. 245-257
[Ferrarin and Pedotti, 2000]
M. Ferrarin, A. Pedotti.
The relationship between electrical stimulus and joint torque: a dynamic model.
IEEE Transactions on Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society, 8 (2000), pp. 342-352
[Franken et al., 1995]
H.M. Franken, P.H. Veltink, G. Baardman, R.A. Redmeyer, H.B. Boom.
Cycle-to-cycle control of swing phase of paraplegic gait induced by surface electrical stimulation.
Medical & Biological Engineering & Computing, 33 (1995), pp. 440-451
[Franken et al., 1993]
Franken, H.M., Veltink, P.H., Tijsmans, R., Member, S., Boom, H.B. K., & Member, A. (1993). Identification of Passive Knee Joint and Shank Dynamics in Paraplegics Using Quadriceps Stimulation, I.(3).
[Gollee, 1998]
H. Gollee.
A non-linear approach to modelling and control of electrically stimulated skeletal muscle, (1998),
[Hatwell et al., 1991]
M.S. Hatwell, B.J. Oderkerk, C.A. Sacher, G.F. Inbar.
The development of a model reference adaptive controller to control the knee joint of paraplegics.
IEEE Transactions on Automatic Control, 36 (1991), pp. 683-691
[Hatze, 1981]
H. Hatze.
A comprehensive model for human motion simulation and its application to the take-off phase of the long jump.
Journal of Biomechanics, 14 (1981), pp. 135-142
[Hill, 1938]
A.V. Hill.
The Heat of Shortening and the Dynamic Constants of Muscle.
Proceedings of the Royal Society B: Biological Sciences, 126 (1938), pp. 136-195
[Hunt et al., 1998]
K.J. Hunt, M. Munih, N.N. Donaldson, F.M. Barr.
Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle.
IEEE Transactions on Bio-Medical Engineering, 45 (1998), pp. 998-1009
[Huxley, 1957]
A. Huxley.
Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem, 7 (1957), pp. 255-318
[Mansour and Audu, 1986]
J.M. Mansour, M.L. Audu.
The passive elastic moment at the knee and its influence on human gait.
Journal of Biomechanics, 19 (1986), pp. 369-373
[Nightingale et al., 2007]
E.J. Nightingale, J. Raymond, J.W. Middleton, J. Crosbie, G.M. Davis.
Benefits of FES gait in a spinal cord injured population.
Spinal Cord, 45 (2007), pp. 646-657
[Perumal et al., 2010]
R. Perumal, A.S. Wexler, T.M. Kesar, A. Jancosko, Y. Laufer, S.A. Binder-macleod.
A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions, (2010), pp. 1595-1604
[Previdi, 2002]
F. Previdi.
Identification of black-box nonlinear models for lower limb movement control using functional electrical stimulation.
Control Engineering Practice, 10 (2002), pp. 91-99
[Riener et al., 1999]
Riener, R., Bioingegneria, C., Projuventute, F., Gnocchi, D., Milano, P., & Capecelatro, V. (1999). Model-based development of neuroprostheses for paraplegic patients.
[Riener et al., 1996]
R. Riener, J. Quintern, G. Schmidt.
Biomechanical model of the human knee evaluated by neuromuscular stimulation.
Journal of Biomechanics, 29 (1996), pp. 1157-1167
[Schauer and Hunt, 2000]
T. Schauer, K.J. Hunt.
Linear controller design for the single limb movement of paraplegics.
In Proceedings of IFAC Symposium on Modelling and Control in Biomedical Systems (MCBS), pp. 7-12
[Winter, 2009]
D. Winter.
Biomechanics and motor control of human movement., (2009),
[Winters, 1995]
J.M. Winters.
An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models.
Annals of Biomedical Engineering, 23 (1995), pp. 359-374
[Zahalak, 1992]
G.I. Zahalak.
An overview of muscle modeling.
Neural Prostheses: Replacing Motor Function After Disease or Disability, Oxford Univ. Press, (1992),
[Zajac, 1989]
F.E. Zajac.
Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.
Critical Reviews in Biomedical Engineering, 17 (1989), pp. 359-411
[Zajac et al., 2003]
F.E. Zajac, R.R. Neptune, S.A. Kautz.
Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications.
Gait & Posture, 17 (2003), pp. 1-17
Descargar PDF
Opciones de artículo