[Abtahi et al., 2014]Abtahi, S., Omidyeganeh, M., Shirmohammadi, S., Hariri, B., 2014. Yawdd: a yawning detection dataset. In: Proceedings of the 5th ACM Multimedia Systems Conference. ACM, pp. 24-28.
[Ahlstrom and Dukic, 2010]Ahlstrom, C., Dukic, T., 2010. Comparison of eye tracking systems with one and three cameras. In: Proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research. ACM, p. 3.
[Ahonen et al., 2006]T. Ahonen, A. Hadid, M. Pietikainen.
Face description with local binary patterns: Application to face recognition.
IEEE transactions on pattern analysis and machine intelligence, 28 (2006), pp. 2037-2041
[Asthana et al., 2011]Asthana, A., Marks, T.K., Jones, M.J., Tieu, K.H., Rohith, M., 2011. Fully automatic pose-invariant face recognition via 3d pose normalization. In: 2011 International Conference on Computer Vision. IEEE, pp. 937-944.
[Berri et al., 2014]Berri, R.A., Silva, A.G., Parpinelli, R.S., Girardi, E., Arthur, R., 2014. A pattern recognition system for detecting use of mobile phones while driving. In: Computer Vision Theory and Applications (VISAPP), 2014 International Conference on. Vol. 2. IEEE, pp. 411-418.
[Bolme et al., 2009]Bolme, D.S., Draper, B.A., Beveridge, J.R., 2009. Average of synthetic exact filters. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, pp. 2105-2112.
[Boyraz et al., 2012]Boyraz, P., Yang, X., Hansen, J.H., 2012. Computer vision systems for context-aware active vehicle safety and driver assistance. In: Digital Signal Processing for In-Vehicle Systems and Safety. Springer, pp. 217-227.
[Chang and Lin, 2011]C.-C. Chang, C.-J. Lin.
Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2 (2011), pp. 27
[Dalal and Triggs, 2005]Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1. IEEE, pp. 886-893.
[Daniluk et al., 2014]Daniluk, M., Rezaei, M., Nicolescu, R., Klette, R., 2014. Eye status based on eyelid detection: A driver assistance system. In: International Conference on Computer Vision and Graphics. Springer, pp. 171-178.
[Dasgupta et al., 2013]A. Dasgupta, A. George, S. Happy, A. Routray, T. Shanker.
An onboard vision based system for drowsiness detection in automotive drivers.
International Journal of Advances in Engineering Sciences and Applied Mathematics, 5 (2013), pp. 94-103
[Devi and Bajaj, 2008]Devi, M.S., Bajaj, P.R., 2008. Driver fatigue detection based on eye tracking. In: 2008 First International Conference on Emerging Trends in Engineering and Technology. IEEE, pp. 649-652.
[Dinges and Grace, 1998]Dinges, D.F., Grace, R., 1998. Perclos: A valid psychophysiological measure of alertness as assessed by psychomotor vigilance. US Department of Transportation, Federal Highway Administration, Publication Number FHWA-MCRT-98-006.
[Dong et al., 2011]Y. Dong, Z. Hu, K. Uchimura, N. Murayama.
Driver inattention monitoring system for intelligent vehicles: A review.
IEEE transactions on intelligent transportation systems, 12 (2011), pp. 596-614
[Fernandez et al., 2017]A. Fernandez, J. Carus, R. Usamentiaga, E. Alvarez, R. Casado.
Wearable and ambient sensors to health monitoring using computer vision and signal processing techniques.
Journal of Networks, (2017),
In press
[Fernández et al., 2015a]Fernández, A., Carús, J.L., Usamentiaga, R., Alvarez, E., Casado, R., 2015a. Unobtrusive health monitoring system using video-based physiological information and activity measurements. In: Computer, Information and Telecommunication Systems (CITS), 2015 International Conference on. IEEE, pp. 1-5.
[Fernández et al., 2015b]Fernández, A., Casado, R., Usamentiaga, R., 2015b. A real-time big data architecture for glasses detection using computer vision techniques. In: Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on. IEEE, pp. 591-596.
[Fernández et al., 2015c]A. Fernández, R. García, R. Usamentiaga, R. Casado.
Glasses detection on real images based on robust alignment.
Machine Vision and Applications, 26 (2015), pp. 519-531
[Fernández et al., 2016]A. Fernández, R. Usamentiaga, J.L. Carús, R. Casado.
Driver distraction using visual-based sensors and algorithms.
Sensors, 16 (2016), pp. 1805
[Flores et al., 2010]M.J. Flores, J.M. Armingol, A. de la Escalera.
Real-time warning system for driver drowsiness detection using visual information.
Journal of Intelligent & Robotic Systems, 59 (2010), pp. 103-125
[Flores et al., 2011]M.J. Flores, A. de la Escalera, et al.
Sistema avanzado de asistencia a la conducción para la detección de la somnolencia.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 8 (2011), pp. 216-228
[Forsman et al., 2013]P.M. Forsman, B.J. Vila, R.A. Short, C.G. Mott, H.P. Van Dongen.
Efficient driver drowsiness detection at moderate levels of drowsiness.
Accident Analysis & Prevention, 50 (2013), pp. 341-350
[Hadid and Pietikäinen, 2013]A. Hadid, M. Pietikäinen.
Demographic classification from face videos using manifold learning.
Neurocomputing, 100 (2013), pp. 197-205
[Hammoud et al., 2005]Hammoud, R.I., Wilhelm, A., Malawey, P., Witt, G.J., 2005. Eficient real-time algorithms for eye state and head pose tracking in advanced driver support systems. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 2. IEEE, pp. 1181–vol.
[Hansen and Ji, 2010]D.W. Hansen, Q. Ji.
In the eye of the beholder: A survey of models for eyes and gaze.
IEEE Transactions on pattern analysis and machine intelligence, 32 (2010), pp. 478-500
[Hattori et al., 2006]Hattori, A., Tokoro, S., Miyashita, M., Tanaka, I., Ohue, K., Uozumi, S., 2006. Development of forward collision warning system using the driver behavioral information. Tech. rep., SAE Technical Paper.
[Heikkilä et al., 2009]M. Heikkilä, M. Pietikäinen, C. Schmid.
Description of interest regions with local binary patterns.
Pattern recognition, 42 (2009), pp. 425-436
[Hong and Qin, 2007]Hong, T., Qin, H., 2007. Drivers drowsiness detection in embedded system. In: Vehicular Electronics and Safety, 2007. ICVES. IEEE International Conference on. IEEE, pp. 1-5.
[Hsu et al., 2003]Hsu, C.-W., Chang, C.-C., Lin, C.-J. et al., 2003. A practical guide to support vector classification.
[Jain and Learned-Miller, 2010]Jain, V., Learned-Miller, E.G., 2010. Fddb: A benchmark for face detection in unconstrained settings. UMass Amherst Technical Report.
[Jo et al., 2014]J. Jo, S.J. Lee, K.R. Park, I.-J. Kim, J. Kim.
Detecting driver drowsiness using feature-level fusion and user-specific classification.
Expert Systems with Applications, 41 (2014), pp. 1139-1152
[Jung et al., 2016]J.-Y. Jung, S.-W. Kim, C.-H. Yoo, W.-J. Park, S.-J. Ko.
Lbp-ferns-based feature extraction for robust facial recognition.
IEEE Transactions on Consumer Electronics, 62 (2016), pp. 446-453
[Lee et al., 2011]S.J. Lee, J. Jo, H.G. Jung, K.R. Park, J. Kim.
Real-time gaze estimator based on driver's head orientation for forward collision warning system.
IEEE Transactions on Intelligent Transportation Systems, 12 (2011), pp. 254-267
[Li et al., 2015]Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G., 2015. A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5325-5334.
[Liu et al., 2009]C.C. Liu, S.G. Hosking, M.G. Lenné.
Predicting driver drowsiness using vehicle measures: Recent insights and future challenges.
Journal of safety research, 40 (2009), pp. 239-245
[López Romero, 2016]López Romero, W.L., 2016. Sistema de control del estado de somnolencia en conductores de vehículos.
[Losada et al., 2013]Losada, D.G., López, G.A. R., Acevedo, R.G., Villán, A.F., 2013. Aviueartificial vision to improve the user experience. In: New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), 2013 International Conference on. IEEE, pp. 1-6.
[Lu et al., 2011]Lu, L., Ning, X., Qian, M., Zhao, Y., 2011. Close eye detected based on synthesized gray projection. In: Advances in Multimedia, Software Engineering and Computing Vol. 2. Springer, pp. 345-351.
[Markuš et al., 2014]Markuš, N., Frljak, M., Pandžić, I.S., Ahlberg, J., Forchheimer, R., 2014. Object detection with pixel intensity comparisons organized in decision trees. arXi**v preprint arXi***v:1305.4537.
[Martin, 2006]E. Martin.
Breakthrough research on real-world driver behavior released.
National Highway Traffic Safety Administration, (2006),
[Mbouna et al., 2013]R.O. Mbouna, S.G. Kong, M.-G. Chun.
Visual analysis of eye state and head pose for driver alertness monitoring.
IEEE transactions on intelligent transportation systems, 14 (2013), pp. 1462-1469
[Murphy-Chutorian and Trivedi, 2010]E. Murphy-Chutorian, M.M. Trivedi.
Head pose estimation and augmented reality tracking: An integrated system and evaluation for monitoring driver awareness.
IEEE Transactions on intelligent transportation systems, 11 (2010), pp. 300-311
[Noori and Mikaeili, 2016]S.M.R. Noori, M. Mikaeili.
Driving drowsiness detection using fusion of electroencephalography, electrooculography, and driving quality signals.
Journal of medical signals and sensors, 6 (2016), pp. 39
[Nuevo et al., 2010]J. Nuevo, L.M. Bergasa, P. Jiménez.
Rsmat: Robust simultaneous modeling and tracking.
Pattern Recognition Letters, 31 (2010), pp. 2455-2463
of Transportation, D., 2016. Pennsylvania driver's manual. https://goo.gl/XCER8C, accessed: 2016-09-018
[Ojala et al., 1996]T. Ojala, M. Pietikäinen, D. Harwood.
A comparative study of texture measures with classification based on featured distributions.
Pattern recognition, 29 (1996), pp. 51-59
[Ojala et al., 2002]T. Ojala, M. Pietikainen, T. Maenpaa.
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.
IEEE Transactions on pattern analysis and machine intelligence, 24 (2002), pp. 971-987
[Pan et al., 2007]Pan, G., Sun, L., Wu, Z., Lao, S., 2007. Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, pp. 1-8.
[Peden et al., 2016]M. Peden, T. Toroyan, E. Krug, K. Iaych, et al.
The status of global road safety: The agenda for sustainable development encourages urgent action.
Journal of the Australasian College of Road Safety, 27 (2016), pp. 37
[Phillips et al., 2000]P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss.
The feret evaluation methodology for face-recognition algorithms.
IEEE Transactions on pattern analysis and machine intelligence, 22 (2000), pp. 1090-1104
[Regan et al., 2011]M.A. Regan, C. Hallett, C.P. Gordon.
Driver distraction and driver inattention: Definition, relationship and taxonomy.
Accident Analysis & Prevention, 43 (2011), pp. 1771-1781
[Sahayadhas et al., 2012]A. Sahayadhas, K. Sundaraj, M. Murugappan.
Detecting driver drowsiness based on sensors: a review.
Sensors, 12 (2012), pp. 16937-16953
[Selvakumar et al., 2015]K. Selvakumar, J. Jerome, K. Rajamani, N. Shankar.
Real-time vision based driver drowsiness detection using partial least squares analysis.
Journal of Signal Processing Systems, (2015), pp. 1-12
[Shan, 2012]C. Shan.
Learning local binary patterns for gender classification on real-world face images.
Pattern Recognition Letters, 33 (2012), pp. 431-437
[Shan et al., 2009]C. Shan, S. Gong, P.W. McOwan.
Facial expression recognition based on local binary patterns: A comprehensive study.
Image and Vision Compuing, 27 (2009), pp. 803-816
[Sigari, 2009]Sigari, M.H., 2009. Driver hypo-vigilance detection based on eyelid behavior. In: Advances in Pattern Recognition, 2009. ICAPR’09. Seventh International Conference on. IEEE, pp. 426-429.
[Slawiñski et al., 2015]E. Slawiñski, V. Mut, F. Penizzotto.
Sistema de alerta al conductor basado en realimentación vibro-táctil.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 12 (2015), pp. 36-48
[Song et al., 2013]F. Song, X. Tan, S. Chen, Z.-H. Zhou.
A literature survey on robust and efficient eye localization in real-life scenarios.
Pattern Recognition, 46 (2013), pp. 3157-3173
[Song et al., 2014]F. Song, X. Tan, X. Liu, S. Chen.
Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients.
Pattern Recognition, 47 (2014), pp. 2825-2838
[Talbot et al., 2013]R. Talbot, H. Fagerlind, A. Morris.
Exploring inattention and distraction in the safetynet accident causation database.
Accident Analysis & Prevention, 60 (2013), pp. 445-455
[Tan and Triggs, 2010]X. Tan, B. Triggs.
Enhanced local texture feature sets for face recognition under difficult lighting conditions.
IEEE transactions on image processing, 19 (2010), pp. 1635-1650
[Timm and Barth, 2011]F. Timm, E. Barth.
Accurate eye centre localisation by means of gradients.
VISAPP, 11 (2011), pp. 125-130
[Uřičář et al., 2012]M. Uřičář, V. Franc, V. Hlaváč.
Detector of facial landmarks learned by the structured output svm.
VIsAPP, 12 (2012), pp. 547-556
[Vapnik, 1998]Vapnik, V., 1998. Statistical learning theory wiley new york google scholar.
[Vicente et al., 2015]F. Vicente, Z. Huang, X. Xiong, F. De la Torre, W. Zhang, D. Levi.
Driver gaze tracking and eyes off the road detection system.
IEEE Transactions on Intelligent Transportation Systems, 16 (2015), pp. 2014-2027
[Villan et al., 2016]A.F. Villan, J.L.C. Candas, R.U. Fernandez, R.C. Tejedor.
Face recognition and spoofing detection system adapted to visually-impaired people.
IEEE Latin America Transactions, 14 (2016), pp. 913-921
[Viola and Jones, 2004]P. Viola, M.J. Jones.
Robust real-time face detection.
International journal of computer vision, 57 (2004), pp. 137-154
[Vural et al., 2007]Vural, E., Cetin, M., Ercil, A., Littlewort, G., Bartlett, M., Movellan, J., 2007. Drowsy driver detection through facial movement analysis. In: International Workshop on Human-Computer Interaction. Springer, pp. 6-18.
[You et al., 2013]You, C.-W., Lane, N.D., Chen, F., Wang, R., Chen, Z., Bao, T.J., Montes-de Oca, M., Cheng, Y., Lin, M., Torresani, L. et al., 2013. Carsafe app: alerting drowsy and distracted drivers using dual cameras on smartphones. In: Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM, pp. 13-26.
[Zhang and Zhang, 2006]Zhang, Z., Zhang, J.-s., 2006. Driver fatigue detection based intelligent vehicle control. In: 18th International Conference on Pattern Recognition (ICPR’06). Vol. 2. IEEE, pp. 1262-1265.