covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Sistemas de Control basados en Reset
Información de la revista
Vol. 9. Núm. 4.
Páginas 329-346 (octubre - diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
8701
Vol. 9. Núm. 4.
Páginas 329-346 (octubre - diciembre 2012)
Open Access
Sistemas de Control basados en Reset
Reset Control Systems
Visitas
8701
Antonio Barreiroa,
Autor para correspondencia
abarreiro@uvigo.es

Autor para correspondencia.
, Alfonso Bañosb
a Escuela de Ingeniería Industrial, Universidad de Vigo, Campus de Lagoas-Marcosende, 36310 Vigo, España
b Facultad de Informática, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Un sistema de control basado en reset consta de un controlador lineal al que se ha incorporado un mecanismo de reseteo o reinicio a cero del estado. La puesta a cero del estado del controlador (o de alguna de sus coordenadas) se aplica sólo cuando se cumple cierta condición. La condición que activa o dispara el reseteo es normalmente el cruce por cero del error de seguimiento. La idea de control reseteado es antigua, se remonta al controlador de J.C. Clegg de 1958 y fue refundada en la década de los 70 por I. Horowitz, quien hizo hincapié en la capacidad de los sistemas reseteados para superar las limitaciones fundamentales que afectan a sistemas lineales con retardos o con polos o ceros en el semiplano derecho. Abandonada temporalmente, la idea fue retomada en la última década, recibiendo un nuevo impulso por parte de diferentes grupos de investigación que aportan avances en el análisis, diseño y aplicación experimental de sistemas reseteados. Este interés se enmarca en el resurgimiento actual de los sistemas híbridos: un sistema reseteado puede interpretarse como un caso particular de sistema híbrido que, a pesar de su simplicidad, permite aliviar las limitaciones fundamentales lineales. El objetivo de este trabajo es exponer, en forma de tutorial, el panorama actual en este campo. Primero se presenta una reseña histórica sobre las tres principales escuelas: la clásica, que condiciona el reseteo al cruce por cero del error; la ligada a sistemas impulsivos, donde el reseteo es de base temporal; y la enmarcada en sistemas híbridos, que usa una condición sectorial. A continuación se presenta un resumen de resultados sobre análisis (relación con limitaciones fundamentales, estabilidad) para concluir con una serie de propuestas de diseño orientadas al compensador reseteado PI+CI.

Palabras clave:
control basado en reset
sistemas impulsivos
sistemas híbridos
limitaciones fundamentales
integrador reseteado o integrador de Clegg (CI)
controlador PI+CI
sistema reseteado de primer orden (FORE)
Abstract

A reset control system is formed by a linear controller endowed with certain resetting mechanism, that sets to zero the state. This zeroing of some of the state coordinates is applied when certain condition holds. The condition that triggers resetting is usually the zero crossing of the tracking error. The idea of re-set control dates back to Clegg Integrator (CI) in 1958, and was adopted in the 70's by I. Horowitz, who emphasized the ability of reset systems to overcome fundamental limitations of linear systems with delays or with poles or zeros in the right half-plane. Left aside for some time, the idea was recovered in the last decade and was given a new impulse by several research teams that contribute with advances in analysis, design and application of reset control systems. This interest appears in the context of the present boom of hybrid systems: a reset system is a particular case of hybrid system that, in spite of its simplicity, enables the possibility of overcoming linear limitations. The objetive of this work is to present, in the form of a tutorial, the current panorama in the field. First, a historical review is introduced, on the three main approaches to reset control: the classical approach (based on zero-crossing of the tracking error), the impulsive approach (where reset is applied on a temporal basis) and the hybrid approach (where some sector reset condition is defined). Next, a summary of results is presented on analysis topics (relation to fundamental limitations, stability) and finally several design proposals are discussed, focused to the tuning of PI+CI compensators.

Keywords:
Hybrid systems
Reset control systems
Fundamental limitations
Clegg Integrator
PI+CI compensator
Referencias
[Aangenent et al., 2009]
Aangenent, W.H.T.M., G. Witvoet, W.P.M.H. Heemels, M.J.G. van de Molen-graft, M. Steinbuch (2009), “Performance analysis of reset control systems”, Int. Journal of Robust and Nonlinear Control, 20 (11), pp. 1213-1233.
[Astrom, 2000]
K.J. Astrom.
Limitations on Control System Performace.
European Journal of Control, 6 (2000), pp. 2-20
[Astrom and Hagglund, 2001]
K.J. Astrom, T. Hagglund.
The future of PID control.
Control Engi-neering Practice, 9 (2001), pp. 1163-1175
[Astrom and Murray, 2008]
K.J. Astrom, R.M. Murray.
Feedback systems. An introduction for scientists and engineers.
Princeton University Press, (2008),
[Bainov, 1989]
Bainov, D.D., Simeonov (1989), Systems with impulse effect: stability, theory and applications, Ellis Horwood, Chichester.
[Bakkeheim et al., 2008]
J. Bakkeheim, T.A. Johansen, O.N. Smogeli, A.J. Sorensen.
Lyapunov-based integrator resetting with application to marine thruster control.
IEEE Trans. on Control Systems Technology, 16 (2008), pp. 908-917
[Baños and Barreiro, 2006]
Baños A., A. Barreiro. (2006), “Delay-independent stability of reset control systems”, 32nd Annual Conference of IEEE Industrial Electronics Society, Paris, France.
[Baños, 2007a]
Baños, A., A. Barreiro (2007), “Delay dependent stability of reset control systems”, American Control Conference, New York, EE.UU.
[Baños and Barreiro, 2009]
A. Baños, A. Barreiro.
Delay-independent stability of reset systems.
IEEE Transactions on Automatic Control, 54 (2009), pp. 341-346
[Baños and Barreiro, 2012]
A. Baños, A. Barreiro.
Reset control systems.
Springer, (2012),
[Baños et al., 2007]
Baños A., J. Carrasco, A. Barreiro. (2007), Reset times-dependent stability of reset control system, European Control Conference, Kos, Grecia.
[Baños and Carrasco, 2007]
Baños, A., J. Carrasco, A. Barreiro (2007), Reset times-dependent stability of reset control with unstable base systems, IEEE International Symposium on Industrial Electronics, Vigo, España.
[Baños and Carrasco, 2011]
Baños, A., J, Carrasco, A. Barreiro (2011), Reset times-dependent stability of reset control systems, IEEE Transactions on Automatic Control, 56(1), pp. 217-223.
[Baños and Dormido, 2009]
Baños, A., S. Dormido, A. Barreiro (2009), “Stability analysis of reset control systems with reset band”, 3rd IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza, España.
[Baños and Barreiro, 2010]
Baños, A., A. Barreiro, S. Dormido (2010), “Limit cycles analysis in reset systems with reset band”, Nonlinear analysis:hybrid systems, doi:10.1016/j.nahs.2010.07.004.
[Baños and Mulero, 2012]
A. Baños, J.I. Mulero.
On the well-posedness of reset control systems.
Abstract and Applied Analysis, (2012),
[Baños and Vidal, 2007]
Baños A., A. Vidal. (2007), “Definition and tuning of PI+CI reset controller”, European Control Conference, Kos, Grecia.
[Baños, 2007b]
Baños, A., A. Vidal (2007), “Design of PC+CI reset compensators for second order plants”, IEEE International Symposium on Industrial Electronics, Vigo, España.
[Barreiro and Baños, 2010]
A. Barreiro, A. Baños.
“Delay-dependent stability of reset systems”.
Automatica, 46 (2010), pp. 216-221
[Barreiro and Baños, 2011]
Barreiro, A., A. Baños, S. Dormido(2011), Reset control systems with reset band: well-posedness and limit cycle analysis, 19th Mediterranean Control Conference, 20-23 June 2011, Corfu, Greece.
[Beker, 2001]
Beker, O., (2001), Analysis of reset control systems, Ph. D. Thesis, University of Massachusetts Amherst.
[Beker et al., 2001]
Beker, O, C.V. Hollot, Y. Chait and H. Han, (2001). “Plant with integrator: an example of reset control overcoming limitations of linear systems”. IEEE Trans. on Autom. Control, 46(11), pp. 1797-1799.
[Beker et al., 2004]
O. Beker, C.V. Hollot, Y. Chait, H. Han.
“Fundamental properties of reset control systems”.
Automatica, 40 (2004), pp. 905-915
[Carrasco et al., 2010]
Carrasco, J., A. Baños A. and A.J. van der Schaft, (2010) A passivity-based approach to reset control systems stabillity Systems and Control Letters, Vol. 59(1), pp.18-24.
[Chait and Hollot, 2002]
Y. Chait, C. Hollot.
On Horowitz's contributions to reset control International Journal of Robust and Nonlinear Control, 12 (2002), pp. 335-355
[Clegg, 1958]
Clegg J.C. (1958), A nonlinear integrator for servomechanism, Transactions A.I.E.E.m, Part II, 77, pp. 41-42.
[Villaverde and Barreiro, 2012]
Fernández-Villaverde,A., A. Barreiro, J. Carrasco y A. Baños, Reset control for passive bilateral teleoperation, IEEE Transactions on Industrial Electronics, 58(7), pp. 3037-3045.
[Goebel et al., 2009]
R. Goebel, R. Sanfelice, A.R. Teel.
“Hybrid dynamical systems”.
IEEE Control Systems Magazine, (2009),
[Guo et al., 2009a]
Y. Guo, Y. Wang, L. Xie.
“Frequency-domain properties of reset systems with application in hard-disk-drive systems”.
IEEE Trans. on Control Systems Technology, 17 (2009), pp. 1446-1453
[Guo et al., 2009b]
Y. Guo, Y. Wang, L. Xie, J. Zheng.
“Stability analysis and design of reset systems: Theory and an application”.
Automatica, 45 (2009), pp. 492-497
[Guo et al., 2010]
Y. Guo, W. Gui, Ch. Yang, L. Xie.
“Stability analysis and design of reset control systems with discrete-time triggering conditions”.
Automatica, 48 (2010), pp. 528-535
[Guo and Wang, 2010]
Guo Y., Y. Wang y L. Xie (2010), Robust stability of reset control systems with uncertain output matrix“, doi:10.1016/j.automatica.2012.05.62.
[Haddad, 2006]
Haddad, W.M., VS Chellaboina and S.G. Nersesov (2006), Impulsive and hybrid dynamical systems. Stability, dissipativity and control, Princeton University Press, Princeton NJ.
[Horowitz, 1975]
Horowitz, I.M. and P. Rosenbaum (1975), “Nonlinear design for cost of feedback reduction in systems with large parameter uncertainty”, Int. Journal of Control, 24 (6), pp. 977-1001.
[Krishnan and Horowitz, 1974]
K.R. Krishnan, I.M. Horowitz.
“Synthesis of a nonlinear feedback system with significant plant-ignorance for prescribed system tolerances”.
International Journal of Control, 19 (1974), pp. 689-706
[Lakshmikantham et al., 1989]
V. Lakshmikantham, D.D. Bainov, P.S. Simeonov.
Theory of impulsive differential equations.
World Scientific, (1989),
[Loquen et al., 2008]
Loquen T., S. Tarbouriech, Ch. Prieur. (2008), “Stability of reset control systems with nonzero reference“, Proceedings of the 47th IEEE Conf. on Decision and Control, Cancun, Mexico.
[Nešić and Zaccarian, 2008]
D. Nešić, L. Zaccarian, A.R. Teel.
“Stability properties of reset systems”.
Automatica, 44 (2008), pp. 2019-2026
[Nešić and Teel, 2011]
D. Nešić, A.R. Teel, L. Zaccarian.
“Stability and performance of SISO control system with FORE”.
IEEE TAC, 56 (2011), pp. 2567-2582
[Paesa et al., 2011]
D. Paesa, A. Baños, C. Sagues.
‘Optimal reset adaptive observer design’.
Systems and Control Letters, 60 (2011), pp. 877-883
[Paesa et al., 2012]
D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas, C. Sagues.
Reset adaptive observer for a class of nonlinear systems“.
IEEE Trans. on Autom. Control, 57 (2012), pp. 506-511
[Skogestad, 2003]
S. Skogestad.
“Simple analytic rules for model reduction and PID controller tuning”.
Journal of Process Control, 13 (2003), pp. 291-309
[Smith et al., 1975]
C.L. Smith, A.B. Corripio, J. Martin.
Çontroller tuning from simple process models.
Instrumentation Technology, 22 (1975), pp. 39-44
[Tarbouriech et al., 2011]
S. Tarbouriech, T. Loquen, C. Prieur.
Anti-windup strategy for reset control systems.
Int. J. of Robust and Nonlinear Control, 21 (2011), pp. 1159-1177
[Vidal et al., 2008]
Vidal, A., Baños, A., Moreno, J.C., Berenguel, M. (2008), “PI+CI compensation with variable reset: application on solar collector fields“, 34th Annual Conf. of the IEEE Industrial Electronics Society, Orlando, Florida, EE.UU.
[Vidal and Baños, 2008]
Vidal, A., Baños, A. (2008) “QFT-based design fo PI+CI reset compensator: applications in process control“, 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, Francia.
[Vidal and Baños, 2009a]
Vidal, A., Baños, A. (2009), “Stability of reset control systems with variable reset: application to PI+CI compensation“, European Control Conference, Budapest, Hungary.
[Vidal and Baños, 2009b]
Vidal, A., Baños, A. (2009), Reset compensation applied on industrial heat exchangers“, 14th IEEE International Conference on Emerging Technologies and Factory Automation, Mallorca, España.
[Vidal, 2010]
A. Vidal, V. Baños.
Reset compensation for temperature control: experimental applications on heat exchangers.
Chemical Engineering Journal, 159 (2010), pp. 170-181
[Wu et al., 2007]
D. Wu, G. Guo, Y. Wang.
Reset Integral-Derivative Control for HDD servo systems.
IEEE Transactions on Control Systems Technology, 15 (2007), pp. 161-167
[Yang, 2001]
Yang, T., (2001), Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer, Berlin.
[Zaccarian, 2005]
Zaccarian, L., D. Nešić, and A. R. Teel (2005), First order reset elements and the Clegg integrator revisited Proc. American Control Conference, 1, 563-568.
[Zheng et al., 2000]
Y. Zheng, Y. Chait, C.V. Hollot, M. Steinbuch, M. Norg.
‘Experimental demonstration of reset control design’.
Control Eng. Practice, 8 (2000), pp. 113-120
[Zheng et al., 2007]
Zheng J., Y. Guo, M. Fu, Y. Wang, L. Xie. (2007), Improved reset control design for a PZT positioning stage, Proceedings of the 16th IEEE Int. Conf. on Control Applications, Singapore.
[Zheng et al., 2008]
J. Zheng, Y. Guo, M. Fu, Y. Wang, L. Xie.
Development of an extended reset controller and its experimental demonstration.
IET Control Theory and Applications, 2 (2008), pp. 866-874
[Zheng and Fu, 2010]
Zheng, J. Fu, M., (2010), A reset state estimator using an accelerometer for enhanced motion control with sensor quantization IEEE Trans. on Control Systems Technology, 18(1) 79-90.
Copyright © 2012. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo