covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Sistemas Integrados de Potencia en Buques Offshore: Control, tendencias y retos
Información de la revista
Vol. 13. Núm. 1.
Páginas 3-14 (enero - marzo 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4331
Vol. 13. Núm. 1.
Páginas 3-14 (enero - marzo 2016)
Open Access
Sistemas Integrados de Potencia en Buques Offshore: Control, tendencias y retos
Integrated Power Systems for Offshore Vessels. Control, trends and challenges
Visitas
4331
Juan José Valera-García
Autor para correspondencia
juanjose.valera@ingeteam.com

Autor para correspondencia.
, Iñigo Atutxa-Lekue
Departamento de ‘Industry and Marine Drives’, Ingeteam Power Technology, Parque Tecnológico de Vizcaya, Edificio 110, 48170 Zamudio, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los buques destinados a realizar operaciones especiales lejos de la costa requieren un control de velocidad y de posicionamiento de alta precisión y respuesta dinámica. Condiciones adversas de oleaje y/o meteorológicas provocan fuertes perturbaciones que el sistema de control debe rechazar para garantizar un posicionamiento preciso (sobre un punto de referencia establecido) mientras el buque realiza la operación. Obviamente, otros requisitos relacionados con la fiabilidad y seguridad también deben ser garantizados. Desde hace más de una década estos buques incorporan sistemas de potencia en los cuales las unidades de propulsión están gobernadas y controladas por accionamientos eléctricos. En estos sistemas, la energía/potencia eléctrica necesaria es producida mediante grupos formados por máquinas de combustión interna y generadores eléctricos, y distribuida, tanto a los accionamientos eléctricos de propulsión como a otras cargas auxiliares del buque, por medio de una red de distribución eléctrica. En la primera parte de este artículo se introduce la topología de Sistema de Potencia más utilizada en este tipo de buques identificando las funciones de control y sus interdependencias. En la segunda parte se presentan las tendencias y soluciones para la reducción del consumo de combustible y las emisiones, destacando las nuevas funciones de control que entran en juego. La reciente irrupción de las topologías basadas en la distribución de potencia mediante red DC facilita la posibilidad de generación de energía a velocidad variable y/o de integración de sistemas de almacenamiento de energía eléctrica. Sin embargo, aparecen nuevos riesgos (mejor retos) técnicos y de control que necesitan un análisis profundo de cara a garantizar un sistema estable y robusto por diseño. Uno de ellos está relacionado con el análisis de la estabilidad del sistema de potencia cuando múltiples cargas no lineales y de impedancia incremental negativa interactúan en un único bus DC.

Palabras clave:
Buques
sistema de potencia
red de distribución
eficiencia energética
control
estabilidad
red de distribución DC.
Abstract

The offshore vessels require a high precision speed control and dynamic positioning. Adverse weather conditions and/or rough waves give rise to high disturbances that must be rejected by the control system to keep the vessel position in the area or station where the vessel operation is being executed. Other requirements related to the safety, reliability and robustness must be obviously ensured. Since more than a decade the power system of this kind of vessels is based on a diesel-electric power plant where the propellers and thruster units are controlled by electrical drives. In this power system the required electrical energy/power is generated through diesel gensets, and distributed to the propulsion drives (and to the rest of vessel utility loads) through a power grid. In this work the most commonly used integrated power system architecture is first introduced thus identifying the control functions and their interdependencies. Some trends and new power system topologies to improve the energy efficiency are then also presented and described. The emergence of new solutions based on DC grids allows the diesel gensets to operate at variable speed and makes the integration of the energy storage systems or even some renewable energy systems easier. However, they present some technical and design challenges in order to ensure a stable and robust solution by design. One of them is related to the stability analysis of the DC grid when multiple nonlinear constant power loads (negative impedance) are connected and thus interacting on the same DC bus.

Keywords:
Vessel
power system
power distribution
control
energy efficiency
DC grid
stability analysis
Referencias
[Abeysekara, 2012]
S. Abeysekara.
Effectiveness and shortcomings of proposed IMO CHG Emission control measures.
MSc thesis in Maritime Operations and Management, School of Engineering and Mathematical Sciences, City University, (2012),
[Adnanes, 2003]
A.K. Adnanes.
Maritime electrical installations and diesel electric propulsion..
ABB AS, Tech. Rep., (2003),
[Boldea, 2006]
I. Boldea.
Synchronous generators (The electrical generators handbook).
CRC press, (2006),
[Breivik, 2010]
M. Breivik.
Topics in guided motion control of marine vehicles.
Norwegian Univ. Sci. Technol, (2010),
[Cairoli et al., 2013]
P. Cairoli, I. Kondratiev, R.A. Dougal.
Coordinated control of the bus tie switches and power supply converters for fault protection in dc microgrids.
IEEE Trans. Power Electronics, 28 (2013), pp. 2037-2047
[De Brabandere et al., 2007]
K. De Brabandere, K. Vanthournout, J. Driesen, G. Deconinck, R. Belmans.
Control of microgrids.
Proc. IEEE Power Eng. Soc. General Meet, pp. 1-7 http://dx.doi.org/10.1109/PES.2007.386042
[DNV, 2015]
In focus – The future is hybrid – A guide to use of batteries is shipping,
[Doerry, 2007]
N. Doerry.
Next Generation Integrated Power Systems, NGIPS Master Plan.
Naval Sea Systems Command, (2007),
[Emadi et al., 2006]
A. Emadi, A. Khaligh, C.H. Rivetta, G.A. Williamson.
Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives.
IEEE Trans. Veh. Technol., 55 (2006), pp. 1112-1125
[Emadi and Ehsani, 2001]
A. Emadi, A. Ehsani.
Dynamics and control of multi-converter DC power electronic systems.
Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, vol. 1, pp. 248-253 http://dx.doi.org/10.1109/PESC. 2001.954028
[Gilbert et al., 2014]
P. Gilbert, A. Bows-Larkin, S. Mander, C. Walsh.
Technologies for the high seas: meeting the climate challenge.
Carbon Management, 5 (2014), pp. 447-461
[Guerrero et al., 2009]
J.M. Guerrero, J.V. Vásquez, R. Teodorescu.
Hierarchical Control of Droop-Controlled DC and AC Microgrids - A General Approach Towards Standardization.
Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society., pp. 4341-4346 http://dx.doi.org/10.1109/TIE.2010.2066534
[Giddings, 2013]
I.C. Giddings.
IMO Guidelines for vessels with dynamic positioning systems.
Proceedings of the Dynamic Positioning Conference,
[Hansen et al., 2011a]
J.F. Hansen, J.O. Lindtjørn, K. Vanska.
Onboard DC grid for enhanced DP operation in ships.
MTS Dynamic Positioning Conference,
[Hansen et al., 2011b]
J.F. Hansen, J.O. Lindtjorn, U.U. Odegaard, T.A. Myklebust.
Increased operational performance of OSVs by onboard dc Grid.
Proc. of 4th Int. Conf. Technol. Oper. Offshore Support Vessels,
[Hassani et al., 2012]
V. Hassani, A.J. Sørensen, A.M. Pascoal.
Robust dynamic positioning of offshore vessels using mixed-u synthesis, part I: Designing process.
Proc. ACOOG 2012-IFAC Workshop on Automatic Control in Offshore Oil and Gas Production,
[He et al., 2013]
J. He, Y.W. Li, J.M. Guerrero, F. Blaabjerg, J.C. Vasquez.
An islanding microgrid power sharing approach using enhanced virtual impedance control scheme.
IEEE Trans. Power Electron., 28 (2013), pp. 5272-5282
[Hiti and Boroyevich, 1996]
S. Hiti, D. Boroyevich.
Small-signal modeling of three phase PWM modulators.
Power Electronics Specialists Conf., vol. 1, pp. 550-555 http://dx.doi.org/10.1109/PESC.1996.548634
[Holtz and Quan, 2002]
J. Holtz, H. Quan.
Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification.
IEEE Trans. Ind. Appl., 38 (2002), pp. 1087-1095
[IEEE, 2010]
IEEE Std., 2010. IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships. IEEE Std 1709-2010, pp.1-54.
[Joseph, 2006]
A. Joseph, M. Shahidehpour.
Battery storage systems in electric power systems.
Proc. IEEE Power Energy Soc. Gen. Meet., http://dx.doi.org/10.1109/PES.2006.1709235
[Liu et al., 2008]
X. Liu, N.N. Fournier, A.J.A.J. Forsyth.
Active stabilization of a HVDC distribution system with multiple constant power loads.
Proc. IEEE Vehicle Power Propulsion Conf., pp. 1-6 http://dx.doi.org/10.1109/VPPC.2008.4677567
[Luo et al., 1999]
S. Luo, Z. Ye, R.-L. Lin, R.L.F.C. Lee.
A classification and evaluation of paralleling methods for power supply modules.
Proc. 30th Annu. IEEE Power Electron. Spec. Conf., pp. 901-908 http://dx.doi.org/10.1109/PESC.1999.785618
[Meyer, 2006]
J.M. Meyer, A. Rufer.
A dc hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (igcts).
IEEE Trans. Power Del., 21 (2006), pp. 646-651
[Opdahl, 2013]
A. Opdahl.
Fuel Savings Obtained by Replacing Traditional AC- distribution Systems onboard Vessels with DC-distribution Systems.
Norwegian Univ. Sci. Technol, (2013),
[Park et al., 2015]
H. Park, J. Sun, S. Pekarek, P. Stone, D.F. Opila, R. Meyer, I. Kolmanovsky, R. DeCarlo.
Real-Time Model Predictive Control for Shipboard Power Management Using the IPA-SQP Approach.
IEEE Transactions on Control Systems Technology Preprint, 23 (2015), pp. 2129-2143
[Riccobono and Santi, 2012]
A. Riccobono, E. Santi.
A novel Passivity-Based Stability Criterion (PBSC) for switching converter DC distribution systems.
Applied Power Electronics Conference and Exposition (APEC), Twenty-Seventh Annual IEEE, vol., no.,, pp. 2560-2567 http://dx.doi.org/10.1109/APEC 2012.6166184
[Riccobono and Santi, 2014]
A. Riccobono, E. Santi.
Comprehensive Review of Stability Criteria for DC Power Distribution Systems.
IEEE Transactions on Ind. Appl., 50 (2014), pp. 3525-3535
[Rodríguez et al., 2005]
J. Rodríguez, J. Dixon, J. Espinoza, J. Pontt, P. Lezana.
PWM regenerative rectifiers: State of the art.
IEEE Trans. Ind. Electron., 52 (2005), pp. 5-22
[Smogeli et al., 2013]
Ø. Smogeli, N.D. Trong, B. Børhaug, L. Pivano.
The next level dp capability analysis.
Proceedings of the Dynamic Positioning Conference, Marine Technology Society.,
[Sørensen, 2012]
A.J. Sørensen.
Marine Control Systems: Propulsion and Motion Control of Ships and Ocean Structures.
Department of Marine Technology, NTNU, (2012),
[Sørensen et al., 1996]
A.J. Sørensen, S.I. Sagatun, T.I. Fossen.
Design of a dynamic positioning system using model-based control.
Control Engineering Practice, 4 (1996), pp. 359-368
[Sørensen, 2011]
A.J. Sørensen.
A survey of dynamic positioning control systems.
Annual Reviews in Control, 35 (2011), pp. 123-136
[Sørfonn, 2007]
I. Sørfonn.
Power Management Control of Electrical Propulsion Systems.
MTS Dynamic Positioning Conference,
[Sudhoff et al., 2003]
Sudhoff, S.D., Glover, S.F., Zak, S.H., Pekarek, S.D., Zivi, E.J., Delisle, D.E., 2003. Stability Analysis Methodologies for DC Power Distribution Systems,” 13th International Ship Control Systems Symposium.
[Vas, 1990]
P. Vas.
Vector Control of AC Machines.
Claredon Press, (1990),
[Vas, 1998]
P. Vas.
Sensorless Vector and Direct Torque Control.
Oxford, (1998),
[Wu and Dah-Chuan, 2014]
M. Wu, D. Dah-Chuan.
Active stabilization methods of electric power systems with constant power loads: a review.
Journal of Modern Power Systems and Clean Energy, 2 (2014), pp. 66
[Zhang et al., 2013]
X. Zhang, J.W. Spencer, J.M. Guerrero.
Small-signal modeling of digitally controlled grid-connected inverters with LCL filters.
IEEE Trans. Ind. Electron., 60 (2013), pp. 3752-3765
[Zhong and Weiss, 2011]
Q.C. Zhong, G. Weiss.
Synchronverters: Inverters that mimic synchronous generators.
IEEE Trans. Ind. Electron., 58 (2011), pp. 1259-1267
Descargar PDF
Opciones de artículo