covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Solución analítica de un filtro de Kalman estacionario para la observación de...
Información de la revista
Vol. 12. Núm. 2.
Páginas 230-238 (abril - junio 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4157
Vol. 12. Núm. 2.
Páginas 230-238 (abril - junio 2015)
Open Access
Solución analítica de un filtro de Kalman estacionario para la observación de deriva en modelos de emisiones de NOx en motores diesel de automoción
Analytical solution of the steady-state Kalman filter for observing drift on NOx models with application to turbocharged diesel engines
Visitas
4157
C. Guardiola, S. Hoyas, B. Pla, D. Blanco-Rodriguez
Autor para correspondencia
dablarod@gmail.com

Autor para correspondencia.
CMT Motores Térmicos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En los algoritmos de control y diagnóstico de los motores diesel la precisión en la estimación de las variables resulta crítica. En el caso de las emisiones de óxidos de nitrógeno (NOx) recientemente se han desarrollado sensores con una buena precisión de medida estacionaria pero que, debido a su lentitud y a la existencia de un retraso significativo, presentan unas características dinámicas insuficientes para el control. Por otro lado, existen diferentes tipos de modelos capaces de reproducir con mayor o menor precisión la respuesta dinámica de los NOx; sin embargo, ninguno de ellos está exento de deriva asociada al envejecimiento del motor y de los diferentes sensores que suministran las entradas al modelo. La combinación de un modelo de emisiones con un sensor de NOx permite proporcionar una estimación que combina las características dinámicas del modelo con la precisión del sensor. En este trabajo se combina la información a través de un modelo en espacio de estados que permite la observación y corrección de la deriva del modelo de NOx. El vector de estado que describe la salida objetivo se aumenta con un estado extra que define la deriva o error estacionario entre el modelo derivado y la referencia de medida del sensor. El vector de estado es observado mediante un filtro de Kalman. Dicho modelo es lineal invariante en el tiempo y las covarianzas de los ruidos que afectan a los estados son consideradas como constantes. Bajo estas hipótesis, el filtro es estacionario, es decir, la ecuación de Riccati que estima la ganancia del filtro converge tras un número determinado de iteraciones. El presente artículo resuelve la ecuación iterativa de Riccati para dichas condiciones y deriva la solución analítica del filtro. Asimismo, dicho algoritmo es usado para la estimación de NOx en un motor diesel y en el nuevo ciclo Europeo de conducción (NEDC).

Palabras clave:
Filtro de Kalman
fusión de datos
corrección de derivas
automoción
NOx
diesel
Abstract

An augmented state-space model for drift correction is proposed adding an extra-state for cancelling drift on a given model or sensor output. A Kalman filter is used for drift observation. The model is Linear Time Invariant and noise covariances are considered constant. Under these assumptions, filter is steady-state and an analytical solution to the Riccati equation can be derived. Current paper gives the analytical solution to the Kalman gain and covariance matrix from using the iterative filter equations.

Keywords:
Kalman filter
data fusion
drift correction
powertrains
NOx
diesel
Referencias
[Alberer and del Re, 2009]
Alberer, D., del Re, L., 2009. Fast oxygen based transient diesel engine operation. SAE Technical Paper 2009-01-0622.
[Andersson et al., 2006]
M. Andersson, A. Hultqvist, B. Johansson, C. Nöhre.
Fast physical NOx prediction in diesel engines.
In: The Diesel Engine: The Low CO2 and Emissions Reduction Challenge (Conference Proceedings), Lyon, (2006),
[Arsie et al., 2010]
I. Arsie, C. Pianese, M. Sorrentino.
Development of recurrent neural networks for virtual sensing of NOx emissions in internal combustion engines.
SAE International Journal of Fuels and Lubricants, 2 (2010), pp. 354-361
[Benaicha et al., 2011]
F. Benaicha, K. Bencherif, M. Sorine, J. Vivalda.
Model based mass soot observer of diesel particle filter.
In: IFAC Proceedings Volumes (IFAC-PapersOnline)., 18 (2011), pp. 10647-10652
[Chauvin et al., 2006]
J. Chauvin, P. Moulin, G. Corde, N. Petit, P. Rouchon.
Kalman filtering for real-time individual cylinder air fuel ratio observer on a diesel engine test bench.
In: Proceedings of the American Control Conference., 2006 (2006), pp. 1886-1891
[Desantes et al., 2012]
J. Desantes, J. López, P. Redón, J. Arre‘gle.
Evaluation of the thermal no formation mechanism under low-temperature diesel combustion conditions.
International Journal of Engine Research, 13 (2012), pp. 531-539
[Ekstrand, 1983]
B. Ekstrand.
Analytical steady state solution for a kalman tracking filter.
IEEE Transactions On Aerospace and Electronic Systems AES-19, (1983), pp. 6
[Eu, 2009]
Eu, 2009. Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 setting emission performance standards for new passenger cars as part of the Community's integrated approach to reduce CO2 emissions from light-duty vehicles. Offcial Journal of the European Union.
[Faouzi et al., 2011]
N.-E. Faouzi, H. Leung, A. Kurian.
Data fusion in intelligent transportation systems: Progress and challenges a survey.
Information Fusion, 12 (2011), pp. 4-10
[Galindo et al., 2007]
Galindo, J., Luján, J., Climent, H., Guardiola, C., 2007. Turbocharging system design of a sequentially turbocharged diesel engine by means of a wave action model. SAE Technical Paper 2007-01-1564.
[Galindo et al., 2011]
J. Galindo, J. Serrano, C. Guardiola, D. Blanco-Rodriguez, I. Cuadrado.
An on-engine method for dynamic characterisation of NOx concentration sensors.
Experimental Thermal and Fluid Science, 35 (2011), pp. 470-476
[Gao and Harris, 2002]
J. Gao, C. Harris.
Some remarks on kalman filters for the multisensor fusion.
Information Fusion, 3 (2002), pp. 191-201
[Geupel et al., 2011]
A. Geupel, D. Kubinski, S. Mulla, T. Ballinger, H. Chen, J. Visser, R. Moos.
Integrating NOx sensor for automotive exhausts a novel concept.
Sensor Letters, 9 (2011), pp. 311-315
[Grünbacher et al., 2005]
E. Grünbacher, P. Kefer, L. del Re.
Estimation of the mean value engine torque using an extended kalman filter.
SAE Technical Paper 2005-01-0063., (2005),
[Guardiola et al., 2014a]
C. Guardiola, H. Climent, B. Pla, D. Blanco-Rodriguez.
Ecu oriented. models for NOx prediction. part 2: adaptive estimation by using an nox sensor. Proceedings of the Institution of Mechanical Engineers.
Part D: Journal of Automobile Engineering Online., (2014),
[Guardiola et al., 2014b]
C. Guardiola, B. Pla, D. Blanco-Rodriguez, P. Calendini.
Ecu oriented models for NOx prediction. part 1: A mean value engine model for NOx prediction.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Online., (2014),
[Guardiola et al., 2013a]
C. Guardiola, B. Pla, D. Blanco-Rodriguez, L. Eriksson.
A computationally efficient kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines.
Control Engineering Practice, 21 (2013), pp. 1455-1468
[Guardiola et al., 2013b]
C. Guardiola, B. Pla, D. Blanco-Rodriguez, A. Mazer, O. Hayat.
A bias correction method for fast fuel-to-air ratio estimation in diesel engines.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227 (2013), pp. 1099-1111
[Hewer, 1973]
G. Hewer.
Analysis of a discrete matrix riccati equation of linear control and kalman filtering.
Journal of Mathematical Analysis and Applications, 42 (1973), pp. 226-236
[Höckerdal et al., 2009]
E. Höckerdal, E. Frisk, L. Eriksson.
Observer design and model augmentation for bias compensation with a truck engine application.
Control Engineering Practice, 17 (2009), pp. 408-417
[HORIBA, 2001]
HORIBA, August 2001. Horiba MEXA-7000DEGR instruction manual.
[Hsieh and Wang, 2011]
M.-F. Hsieh, J. Wang.
Design and experimental validation of an extended kalman filter-based NOx concentration estimator in selective catalytic reduction system applications.
Control Engineering Practice, 19 (2011), pp. 346-353
[Johnson, 2012]
T. Johnson.
Vehicular emissions in review.
SAE Technical Paper 2012-01-0368, 5 (2012),
[Kalman, 1960]
R. Kalman.
A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82. (1960),
[Kalman and Bucy, 1961]
R. Kalman, R. Bucy.
New results in linear filtering and prediction theory.
Journal of Basic Engineering, (1961), pp. 95-108
[Karlsson et al., 2010]
M. Karlsson, K. Ekholm, P. Strandh, P. Tunestål, R. Johansson.
Dynamic mapping of diesel engine through system identification.
In: Proc. American Control Conference. Baltimore, MD, (2010),
[Kato et al., 1996]
N. Kato, K. Nakagaki, N. Ina.
Thick film ZrO2 NOx sensor.
SAE Technical. Paper, (1996), pp. 960334
[Khaleghi et al., 2013]
B. Khaleghi, A. Khamis, F. Karray, S. Razavi.
Multisensor data fusion:. A review of the state-of-the-art.
Information Fusion, 14 (2013), pp. 28-44
[Lainiotis et al., 1994]
D. Lainiotis, N. Assimakis, S. Katsikas.
A new computationally effective. algorithm for solving the discrete riccati equation.
Journal of Mathematical. Analysis and Applications, 3 (1994), pp. 868-895
[Nash, 1967]
R. Nash Jr..
The general solution to a second order optimal filtering problem.
Proceedings of the IEEE, 55 (1967), pp. 93-94
[Payri et al., 2012]
F. Payri, J. Luj¿an, C. Guardiola, B. Pla.
A challenging future for the. ic engine: New technologies and the control role.
Keynote in ECOSM 2012. Workshop on Engine and Powertrain Control, Simulation and Modeling, (2012),
[Polóni et al., 2012]
T. Polóni, B. Rohal’-Ilkiv, D. Alberer, L. del Re, T. Johansen.
Comparison. of Sensor Configurations for Mass Flow Estimation of Turbocharged.
Diesel Engines. Vol. 418 of Lecture Notes in Control and Information Sciences, (2012),
[Schilling, 2008]
Schilling, A., 2008. Model-based detection and isolation of faults in the air and fuel paths of common-rail di diesel engines equipped with a lambda and a nitrogen oxides sensor. Ph.D. thesis, ETH-Zürich.
[Schilling et al., 2006]
A. Schilling, A. Amstutz, C. Onder, L. Guzzella.
A real-time model for. the prediction of the NOx emissions in DI diesel engines.
In: Proceedings of. the 2006 IEEE International Conference on Control Applications. Munich, Germany, (2006),
[Simon, 2001]
D. Simon.
Kalman filtering.
Embedded Systems Programming, 14 (2001), pp. 72-79
[Smith, 2000]
J. Smith.
Demonstration of a fast response on-board NOx sensor for. heavy-duty diesel vehicles. swri project no. 03-02256 contract no. 98-302.
Tech. rep., Southwest Research Institute Engine and Vehicle Research Division P.O. Box 28510 San Antonio, Texas, (2000), pp. 78228-78510
[Sudano, 1995]
J. Sudano.
Analytical solution for a steady-state kalman filter tracker with random power spectral density process noise.
In: Aerospace and Electronics Conference. NAECON 1995., Proceedings of the IEEE National, 2 (1995), pp. 748-751
[Surenahalli et al., 2012]
H. Surenahalli, G. Parker, J. Johnson, M. Devarakonda.
A kalman filter estimator for a diesel oxidation catalyst during active regeneration of a cpf.
In: Proceedings of the American Control Conference., (2012), pp. 4969-4974
[Trimboli et al., 2012]
S. Trimboli, S. Di Cairano, A. Bemporad, I. Kolmanovsky.
Model Predictive Control with Delay Compensation for Air-to-Fuel Ratio Control.
Vol. 423 of Lecture Notes in Control and Information Sciences. Springer-Verlag Berlin Heidelberg, (2012), pp. 2012
[Tschanz et al., 2012]
F. Tschanz, A. Amstutz, C. Onder, L. Guzzella.
Feedback control of particulate matter and nitrogen oxide emissions in diesel engines.
Control Engineering PracticeIn Press, (2012),
[Westlund and Åmströng, 2009]
A. Westlund, H. Åmströng.
Fast physical prediction of no and soot in diesel engines. SAE Technical Paper 2009-, (2009), pp. 01-1121
[Winkler-Ebner et al., 2010]
B. Winkler-Ebner, M. Hirsch, L. del Re, H. Klinger, W. Mistelberger.
Comparison of virtual and physical NOx-sensors for heavy duty diesel engine application.
SAE International Journal of Engines, 3 (2010), pp. 1124-1139
[Yan and Wang, 2012]
F. Yan, J. Wang.
Pressure-based transient intake manifold temperature reconstruction in diesel engines.
Control Engineering Practice, 20 (2012), pp. 531-538
[Zhou et al., 2012]
G. Zhou, J. Jørgensen, C. Duwig, J. Huusom.
State estimation in the automotive scr deNOx process.
In: IFAC Proceedings Volumes., 8 (2012), pp. 501-506
Copyright © 2014. EA
Descargar PDF
Opciones de artículo