En este artículo se hace una revisión de las técnicas de optimización más importantes: programación lineal y no lineal con y sin variables discretas, así como de los algoritmos disponibles hasta la fecha para resolver dichos problemas. Además de los problemas clásicos se hace una extensión para incluir problemas planteados mediante disyunciones y relaciones lógicas, optimización global determinista y estocástica, optimización en problemas sin estructura definida y una visión global de los sistemas de modelado algebraico.
Información de la revista
Vol. 4. Núm. 1.
Páginas 5-23 (enero 2007)
Vol. 4. Núm. 1.
Páginas 5-23 (enero 2007)
Open Access
Una revisión del estado del arte en optimización
Visitas
6285
Este artículo ha recibido
Información del artículo
Resumen
Palabras clave:
Optimización
LP
NLP
MINLP
MILP
Programación disyuntiva
Optimización global
El Texto completo está disponible en PDF
Referencias
[Adjiman and Floudas, 1996]
C.S. Adjiman, C.A. Floudas.
Rigorous convex underestimators for general twice differentiable problems.
Journal of Global Optimization, 9 (1996), pp. 23-40
[Al-Khayyal, 1992]
F.A. Al-Khayyal.
Generalized bilinear Programming.
Mathematics of Operations Research, 60 (1992), pp. 306-314
[Al-Khayyal and Falk, 1983]
F.A. Al-Khayyal, J.E. Falk.
Jointly constrained biconvex programming.
Mathematics of Operations Research, 8 (1983), pp. 273-286
[Ashford and Daniel, 1995]
R.W. Ashford, R.C. Daniel.
XPRESS-MP Reference Manual. Dash Associates.
Blisworth House, (1995),
[Balas, 1985]
E. Balas.
Disjunctive Programming and a hierarchy of relaxations for discrete optimization problems.
SIAM J. Alg. Disc. Meth, 6 (1985), pp. 466-486
[Balas et al., 1993]
E. Balas, S. Ceria, G. Cornuejols.
A lift and project cutting plane algorithm for mixed 0–1 programs.
Mathematical Programming, 58 (1993), pp. 295-324
[Barnhart et al., 1998]
J.R. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance.
Branch and Price: Column generation for solving huge integer programs.
Operations Research, 46 (1998), pp. 316-329
[Barton and Pantelides, 1994]
P. Barton, C. Pantelides.
Modeling of combined discrete/continuous processes.
AIChE Journal, 40 (1994), pp. 966-979
[Beaumont, 1991]
N. Beaumont.
An Algorithm for Disjunctive Programs.
European Journal of Operations Research, 48 (1991), pp. 362-371
[Ben-Tal et al., 1994]
A. Ben-Tal, G. Eiger, V. Gershovitz.
Global optimization by reducing the duality gap.
Mathematical Programming, 63 (1994), pp. 193-212
[Biegler and Grossmann, 2004]
L.T. Biegler, I.E. Grossmann.
Retrospective on Optimization.
Comp. Chem. Engng, 28 (2004), pp. 1169-1192
[Binder et al., 2001]
T. Binder, L. Blank, H. Bock, R. Bulitsch, W. Dahmen, M. Diehl, T. Kronseder, W. Marquardt, J. Schloeder, O. Stryk.
Introduction to model based optimization of chemical processes on moving horizons.
Online Optimization of large scale systems.,
[Bisschop and Roelofs, 1999]
J. Bisschop, M. Roelofs.
AIMMS: The Lenguaje Reference. Paragon Decision Technology.
B.V., Haarlem, (1999),
[Bixby et al., 2002]
Bixby, R.E.; Fenelon, M.; Gu, Z.; Rothberg, E y Wunderling, R. (2002) MIP: Theory and Practice – closing the gap.(http://www.ilog.com/products/optimization/tech/research/mip.pdf).
[Bonami and Biegler, 2005]
P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, A. Wächter.
An algorithmic framework for convex mixed integer nonlinear programs.
IBM Research Report RC23771, (2005),
[Booker et al., 1998]
A.J. Booker, J.E. Dennis Jr., P.D. Frank, D.B. Serafini, V. Torczon, M.W. Trosset.
A rigorous framework optimization of expensive functions by surrogates.
CRPC Technical Report 98739, Rice University, (1998),
[Borchers and Mitchell, 1994]
B. Borchers, J.E. Mitchell.
An Improved Branch and Bound algorithm for mixed integer non linear programming.
Computers and Operations Research, 21 (1994), pp. 359-367
[Brooke et al., 1992]
A. Brooke, D. Kendrick, A. Meeraus.
GAMS: A User‘s Guide. Boyd y Fraser Publising Company.
Massachusets, (1992),
[Byrd et al., 1997]
R.H. Byrd, M.E. Hribar, J. Nocedal.
An interio r point algorithm for large scale nonlinear programming.
Optimization technology Center, Northwestern University, (1997),
[Ceria and Soares., 1999]
S. Ceria, J. Soares.
Convex Programming for Disjunctive Optimization.
Mathematical Programming, 86 (1999), pp. 595-614
[Conn et al., 2000]
A.R. Conn, N. Gould, P. Toint.
Trust Region Methods.
MPS/SIAM. Series on Optimization, (2000),
[Conn et al., 1997]
A.R. Conn, K. Scheinberg, P. Toint.
Recent progress in unconstrained nonlinear optimization without derivatives.
Mathematical Programming, Series B, 79 (1997), pp. 397
[Dakin, 1965]
R.J. Dakin.
A tree search algorithm for mixed integer programming problems.
Computer Journal, 8 (1965), pp. 250-255
[Dantzing, 1963]
G.B. Dantzing.
Linear Programming and Extensions.
Princeton University Press, (1963),
[Dennis and Torczon, 1991]
J.E. Dennis, V. Torczon.
Direct search methods on parallel machines.
SIAM journal of Optics, 1 (1991), pp. 448
[Duran and Grossmann, 1986]
M.A. Duran, I.E. Grossmann.
An Outer Approximation Algorithm for a Class of Mixed Integer Non Linear Programs.
Mathematical Programming, 36 (1986), pp. 307
[Edgar et al., 2002]
T.F. Edgar, D.M. Himmelblau, L.S. Lasdon.
Optimization of Chemical Processes.
McGrawHill, (2002),
[Eldred, 2002]
Eldred, M. (2002). DAKOTA: A multilevel parallel object oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.(http://endo.sandia.gov/DAKOTA/software.html).
[Elmqvist et al., 1998]
Elmqvist, H.; Mattsson, S.; Otter, M. (1998). Modelica: the new object-oriented modeling language. http://citeseer.nj.nec.com/elmqvist98 modelica.html.
[Fletcher and Leyffer, 1994]
R. Fletcher, S. Leyffer.
Solving Mixed Integer Non Linear Programs by Outer Approximation.
Mathematical Programming, 66 (1994), pp. 327
[Fletcher, 1987]
R. Fletcher.
Practical methods of optimization.
Wiley, (1987),
[Fletcher et al., 2002]
R. Fletcher, N.I.M. Gould, S. Leyffer, Ph.L. Toint, A. Waechter.
Global convergence of a trust-region (SQP) filter algorithms for general nonlinear programming.
SIAM Journal on Optimization, 13 (2002), pp. 635-659
[Flippo and Rinnoy Kan, 1993]
O.E. Flippo, A.H.G. Rinnoy Kan.
Decomposition in General Mathematical Programming.
Mathematical Programming, 60 (1993), pp. 361-382
[Floudas and Visweswaran, 1990]
C.A. Floudas, V. Visweswaran.
A global optimization algorithm (GOP) for certain classes of non convex NLPs I Theory.
Computers and Chemical Engineering, 14 (1990), pp. 1397-1417
[Floudas, 2000]
C.A Floudas.
Deterministic Global Optimization: Theory methods and applications.
Kluwer Academic Publishers, (2000),
[Fourer et al., 1993]
R. Fourer, D.M. Gay, B.W. Kernighan.
AMPL: A Modeling Language for Mathematical Programming.
Duxbury Press, Brooks/Cole Publishing Company, (1993),
[Geofrion, 1972]
A.M. Geofrion.
Generalized Benders Decomposition.
Journal of Optimization Theory and Applications, 10 (1972), pp. 237-260
[Griewank and Corliss, 1991]
Automatic Differentiation of Algorithms: Theory,
[Grossmann, 1996]
I.E. Grossmann.
Global optimization in engineering design.
Kluwer Academic Publishers, (1996),
[Grossmann and Lee., 2002]
I.E. Grossmann, S. Lee.
Generalized Disjunctive Programming: Nonlinear Convex Hull Relaxation and algorithms.
Computational Optimization and Applications, (2002),
[Gupta and Ravindran, 1985]
O.K. Gupta, V. Ravindran.
branch and Bound experiments in nonlinear integer programming.
Management Sciences, 31 (1985), pp. 1533-1546
[Han, 1976]
S.P. Han.
Superlinearly Convergent Variable Metric Algorithms for General Nonlinear Programming Problems.
Math Progr, 11 (1976), pp. 263-282
[Hansen, 1980]
E.R. Hansen.
Global optimization using interval analysis: The multidimensional case.
Numerische Mathematick, 34 (1980), pp. 247-270
[Hansen et al., 1992a]
P. Hansen, B. Jaumard, S. Lu.
Global optimization of univariate Lipschitz functions. Surrey and properties.
Mathematical Programming, 55 (1992), pp. 251-272
[Hansen et al., 1992b]
P. Hansen, B. Jaumard, S. Lu.
Global optimization of univariate Lipschitz functions: New algorithms and computational comparison.
Mathematical Programming, 55 (1992), pp. 273-292
[Holland, 1975]
J.H. Holland.
Adaptation in natural and artificial systems.
University of Michigan Press, (1975),
[Hooker and Osorio, 1999]
J.N. Hooker, M.A. Osorio.
Mixed logical. linear programming.
Discrete Applied Mathematics, (1999), pp. 96-97
[Hooker, 2000]
J.N. Hooker.
Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction.
Wiley, (2000),
[Horst and Tuy, 1987]
R. Horst, H. Tuy.
On the convergence of global methods in multiextremal optimization.
Journal of Optimization Theory and Applications, 54 (1987), pp. 253
[Horst et al., 1992]
R. Horst, N.V. Thoai, J. De Vries.
A new simplicial cover technique in constrained global optimization.
Journal of Global Optimization, 2 (1992), pp. 1-19
[Johnson et al., 2000]
E.L. Johnson, E.L. Nemhauser, M.W.P. Savelsbergh.
Progress in Linear Programming based branch and bound algorithms: Exposition.
INFORMS Journal of Computing, (2000), pp. 12
[Kallrath, 2004]
J. Kallrath.
Modeling languages in Mathematical Optimization.
Kluwer Academic Publishers, (2004),
[Karmarkar, 1984]
N. Karmarkar.
A New Polynominal-time algorithm for linear programming.
Combinatorica, 4 (1984), pp. 373-395
[Kelley, 1960]
J.E. Kelley Jr..
The Cutting Plane Method for Solving Convex Programs.
Journal of SIAM, 8 (1960), pp. 703-712
[Kennedy and Everhart, 1995a]
J. Kennedy, R.C. Everhart.
A discrete binary version of the particle swarm algorithm.
In Proceedings of the conference of systems, Man and Cybernetics, pp. 4104-4109
[Kennedy and Everhart, 1995b]
J. Kennedy, R.C. Everhart.
A new optimizer using particle swarm theory.
In proceedings of the sixth international symposium on micro machine and human science,
[Kocis and Grossmann., 1987]
G.R. Kocis, I.E. Grossmann.
Relaxation Strategy for the Structural Optimization of Process Flowsheets.
Ind. Eng. Chem. Res., 26 (1987), pp. 1869
[Kravanja and Grossmann, 1994]
Z. Kravanja, I.E. Grossmann.
New developments and capabilities in PROSYN an automated topology and parameter process synthesizer.
Computers Chem. Eng., 18 (1994), pp. 1097-1114
[Laahorven and Van Aarts, 1987]
P.J.M. Laahorven, E.H.L. Van Aarts.
Simmulated annealing: theory and applications.
Reidel, (1987),
[Lee and Grossmann., 2000]
S. Lee, I.E. Grossmann.
New Algorithms for Nonlinear Generalized Disjunctive Programming.
Computers and Chemical Engineering, 24 (2000), pp. 2125-2141
[Leyffer, 2001]
S. Leyffer.
Integrating SQP and Branch and Bound for Mixed Integer non Linear Programming.
Computational Optimization and Applications, 18 (2001), pp. 295-309
[Luus and Jaakola, 1973]
R. Luus, T.H.I. Jaakola.
Direct search for complex systems.
AIChE Journal, 19 (1973), pp. 645-646
[Ming et al., 1993]
Ming S. Hung, Walter O. Rom, D. Allan.
Waren Optimization with IBM OSL and Handbook for IBM OSL.
The Scientific Press (now Duxbury Press), (1993),
[Murtagh and Saunders, 1987]
B.A. Murtagh, M.A. Saunders.
Minos 5.1 user's guide.
Technical Report SOL 83–20R, Stanford University, (1987),
[Nedler and Mead, 1965]
J.A. Nedler, R. Mead.
A simplex method for function minimization.
Computer Journal, 7 (1965), pp. 308
[Nemhauser and Wolsey, 1988]
G.L. Nemhauser, L.A. Wolsey.
Integer and Combinatorial Optimization.
Wiley Interscinece, (1988),
[Nocedal and Wright, 1999]
J. Nocedal, S.J. Wright.
Numerical Optimization.
Springer, (1999),
[Piela et al., 1991]
P. Piela, Y. Epperly, K. Westerber, A. Westerberg.
ASCEND: An object-oriented computer environment for modeling and analysis: The Modeling Language.
Computers and Chemical Engineering., 15 (1991), pp. 53-72
[Pörn and Westerlund, 2000]
R. Pörn, T. Westerlund.
A Cutting Plane Method for Minimizing Pseudo-Convex Functions in the Mixed Integer Case.
Computers and Chemical Engineering, 24 (2000), pp. 2655-2665
[Powell, 1964]
M.J.D. Powell.
An efficient method for finding the minimum of a function of several variables without calling derivatives.
Computing Journal., 7 (1964), pp. 155
[Powell, 1978]
Powell, M.J.D., (1978) A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. In Numerical Analysis, Dundee, G.A. Watson (ed.), Lecture Notes in Mathematics 630, Springer-Verlag, Berlin.
[Quesada and Grossmann, 1995]
I. Quesada, I.E. Grossmann.
A global optimization algorithm for linear fractional and bilinear programs.
Journal of Global Optimization, 6 (1995), pp. 39-76
[Quesada and Grossmann, 1992]
I.E. Quesada, I.E. Grossmann.
An LP/NLP Based Branch and Bound Algorithm for Convex MINLP Optimization Problems.
Computers and Chemical Engineering, 16 (1992), pp. 937-947
[Raman and Grossmann., 1991]
R. Raman, I.E. Grossmann.
Relation Between MILP Modeling and Logical Inference for Chemical Process Synthesis.
Computers and Chemical Engineering, 15 (1991), pp. 73
[Raman and Grossmann., 1993]
R. Raman, I.E. Grossmann.
Symbolic Integration of Logic in Mixed Integer Linear Programming Techniques for Process Synthesis.
Computers and Chemical Engineering, 17 (1993), pp. 909
[Raman and Grossmann., 1994]
R. Raman, I.E. Grossmann.
Modeling and Computational Techniques for Logic Based Integer Programming.
Computers and Chemical Engineering, 18 (1994), pp. 563
[Rivera, 1998]
J. Rivera.
Modeling with EXTEND.
In Winter Simulation Conference, (1998),
[Ryoo and Sahinidis, 1995]
H.S. Ryoo, N.Y. Sahinidis.
Global optimization of nonconvex NLPs and MINLPs with applications in process design.
Computers and Chemical Engineering., 19 (1995), pp. 551-566
[Sahinidis, 1996]
N.V Sahinidis.
BARON: A general purpose global optimization software package.
Journal of Global Optimization, 8 (1996), pp. 201-205
[Sawaya and Grossmann, 2006]
N. Sawaya, I.E. Grossmann.
Computational Implementation of nonlinear convex hull reformulation.
Por aparecer en Computers and Chemical Engineering, (2006),
[Scharage, 1999]
L. Scharage.
Optimization Modeling with LINGO.
LINDO Systems, Inc, (1999),
[Schichl et al., 2001]
H. Schichl, A. Neumaier, S. Dallwig.
The NOP-2 Modeling Language.
Annals of Operations Research, 104 (2001), pp. 281-312
[Schweiger et al., 1996]
C.A. Schweiger, A. Rojnuckarin, C.A. Floudas.
MINOPT: A Software Package for Mixed-Integer Nonlinear Optimization.
Dept Of Chemical Engineering, Princeton University, (1996),
[Sherali and Alameddine, 1992]
H.D. Sherali, A. Alameddine.
A new reformulation – linearization technique for bilinear programming problems.
Journal of Global Optimization, 2 (1992), pp. 379-410
[Sherali and Tuncbilek, 1992]
H.D. Sherali, C.H. Tuncbilek.
A global optimization algorithm for polynomial programming problems using a reformulationlinearization technique.
Journal of Global Optimization, 2 (1992), pp. 101-112
[Shor, 1990]
N.Z. Shor.
Dual quadratic estimates in polynomial and Boolean programming.
Annals of Operations Research, 25 (1990), pp. 163-168
[Smith and Pantelides, 1999]
E.M.B. Smith, C.C. Pantelides.
A symbolic reformulation spatial Branch and bound algorithm for the global optimization of nonconvex MINLPs.
Computers and Chemical Engineering, 23 (1999), pp. 457-478
[Stubbs and Mehrotra, 1999]
R. Stubbs, S. Mehrotra.
A Branch-and-Cut Method for 0-1 Mixed Convex Programming.
Mathematical Programming, 86 (1999), pp. 515-532
[Tawarmalani and Sahinidis, 2004]
M. Tawarmalani, N.V. Sahinidis.
Global optimization of mixed integer non linear programs: theoretical and computational study.
Mathematical programming Ser. A, 99 (2004), pp. 563-591
[Tawarmalani and Sahinidis, 2002]
Tawarmalani, M. y N. V. Sahinidis, (2002) Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic Publishers, Dordrecht, Vol. 65 in Nonconvex Optimization And Its Applications series.
[Türkay and Grossmann, 1996]
M. Türkay, I.E. Grossmann.
A Logic Based Outer-Approximation Algorithm for MINLP Optimization of Process Flowsheets.
Computers and Chemical Enginering, 20 (1996), pp. 959-978
[Tuy, 1987]
R. Tuy.
Global minimum of difference of two convex functions.
Mathematical Programming Study, 30 (1987), pp. 150-182
[Tuy et al., 1985]
R. Tuy, T.V. Thieu, N.Q. Thai.
A conical algorithm for globally minimizing a concave function over a closed convex set.
Mathematics of Operations Research, 10 (1985), pp. 498-514
[Van Hentenryck et al., 1997]
P. Van Hentenryck, J. Michel, Y. Deville.
Numerica – A Modeling language for Global Optimization.
MIT Press, (1997),
[Vecchietti and Grossmann., 1999]
A. Vecchietti, I.E. Grossmann.
LOGMIP: A Discrete Continuous Nonlinear Optimizer.
Computers and Chemical Engineering, 23 (1999), pp. 555-565
[Vecchietti and Grossmann., 2000]
A. Vecchietti, I.E. Grossmann.
Modeling Issues and Implementation of Language for Disjunctive Programming.
Computers and Chemical Engineering, 24 (2000), pp. 2143-2155
[Viswanathan and Grossmann, 1990]
J. Viswanathan, I.E. Grossmann.
A Combined Penalty Function and Outer Approximation Method for MINLP Optimization.
Computers and Chemical Engineering, 14 (1990), pp. 769
[Wächter, 2002]
A. Wächter.
An interior point algorithm for large scale non linear optimization with applications in process engineering.
Ph. D. Tesis Carnegie Mellon University, (2002),
[Wätcher and Biegler., 2002]
A. Wätcher, L.T. Biegler.
Global and local convergence of line search filter methods for nonlinear programming.
CAPD Technical report B-01–09, (2002),
[Westerlund and Pettersson, 1995]
T. Westerlund, A. Pettersson.
A Cutting Plane Method for Solving Convenx MINLP Problems.
Computers and Chemical Engineering, 19 (1995), pp. S131-S136
[Williams, 1985]
H.P Williams.
Mathematical Building in Mathematical Programming.
John Wiley, (1985),
[Yuan et al., 1988]
X. Yuan, S. Zhang, L. Piboleau, S. Domenech.
Une Methode d’optimisation Nonlineare en Variables Mixtes pour la Conception de Procedes.
RAIRO, 22 (1988), pp. 331
[Zamora and Grossmann, 1998]
J.M. Zamora, I.E. Grossmann.
Continuous global optimization of structured process system models.
Computers and Chemical Engineering, 22 (1998), pp. 1749-1770
[Zamora and Grossmann, 1999]
J.M Zamora, I.E. Grossmann.
A branch and bound algorithm for problems with concave univariate.
Journal of Global Optimization, 14 (1999), pp. 217-249
Copyright © 2007. Elsevier España, S.L.. Todos los derechos reservados