covid
Buscar en
Seminarios de la Fundación Española de Reumatología
Toda la web
Inicio Seminarios de la Fundación Española de Reumatología Receptores específicos para moléculas HLA de clase I en la artritis reumatoide
Información de la revista
Vol. 6. Núm. 1.
Páginas 20-27 (marzo 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 6. Núm. 1.
Páginas 20-27 (marzo 2005)
Acceso a texto completo
Receptores específicos para moléculas HLA de clase I en la artritis reumatoide
Visitas
6667
Mónica Gumà, Miguel López-Botet
Unidad de Inmunopatología Molecular. Universitat Pompeu Fabra (DCEXS). Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Una característica del sistema inmunitario de los animales vertebrados es su capacidad para mantener un equilibrio entre la reactividad y la quiescencia. Gracias a la descripción y al análisis de varios sistemas de receptores activadores e inhibidores, de células linfoides y mieloides, se ha postulado que los pares de receptores activadores e inhibidores son necesarios para iniciar, amplificar y terminar las respuestas inmunitarias. La importancia de este sistema regulador se ha puesto de manifiesto al observar una mayor susceptibilidad para desarrollar patología o fenómenos autoinmunes en cepas de ratones deficientes en algunos de estos receptores. En la artritis reumatoide, la inflamación crónica está causada por la interrelación entre infiltrados linfocitarios, macrófagos y fibroblastos sinoviales. Todas estas células expresan varios de estos receptores activadores y/o inhibidores. Algunos datos sugieren que una disfunción de algunos de estos receptores podría promover la inflamación crónica en la artritis reumatoide y posiblemente en otras enfermedades autoinmunes.

Palabras clave:
Receptor
HLA
Artritis reumatoide
Abstract

A hallmark of the vertebrate immune system is its ability to maintain a equilibrium between the extremes of reactivity and quiescence. With the detailed description and analysis of several inhibitory and activatory receptor systems on lymphoid and myeloid cells, a central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses. The importance of this regulation is demostrated by the autoimmunes disorders observed in mice with targeted disruption of inhibitory receptors. The self-perpetuating pathology in rheumatoid arthritis is caused by the interplay between lymphocytic infiltrates, synovial macrophages and fibroblasts, and their respective products. All of these cells express some of these receptors. Some datas suggests that a dysregulation of these systems may cause autoreactive stimulation in these cells, thus promoting the chronic inflammation in rheumatoid arthritis and possibly other autoimmune diseases.

Key words:
Receptor
MHC
Rheumatoid arthritis
El Texto completo está disponible en PDF
Bibliografía
[1]
W.M. Yokoyama.
Natural killer cell receptors.
Curr Opin Immunol, 7 (1995), pp. 110-120
[2]
E.O. Long.
Regulation of immune responses through inhibitory receptors.
Annu Rev Immunol, 17 (1999), pp. 875-904
[3]
J.I. Healy, C.C. Goodnow.
Positive versus negative signaling by lymphocyte antigen recerptors.
Annu Rev Immunol, 16 (1998), pp. 645-670
[4]
S. Bolland, J.V. Ravetch.
Inhibitory pathways triggered by ITIM-containing receptors.
Adv Immunol, 72 (1999), pp. 149-177
[5]
A. Moretta, L. Moretta.
HLA class I specific inhibitory receptors.
Curr Opin Immunol, 9 (1997), pp. 694-701
[6]
L.L. Lanier.
NK cell receptors.
Annu Rev Immunol, 16 (1998), pp. 359-393
[7]
M. López-Botet, T. Bellon.
Natural killer cell activation and inhibition by receptors for MHC class I.
Curr Opin Immunol, 11 (1999), pp. 301-307
[8]
P.D. Sun.
Structure and function of natural-killer-cell receptors.
Immunol Res, 27 (2003), pp. 539-548
[9]
H. Nishimura, M. Nose, H. Hiai, N. Minato, T. Honjo.
Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor.
Immunity, 11 (1999), pp. 141-151
[10]
A. Nakamura, T. Yuasa, A. Ujike, M. Ono, T. Nukiwa, J.V. Ravetch, et al.
Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease.
J Exp Med, 191 (2000), pp. 899-906
[11]
T. Yuasa, S. Kubo, T. Yoshino, A. Ujike, K. Matsumura, M. Ono, et al.
Deletion of fcgamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis.
J Exp Med, 189 (1999), pp. 187-194
[12]
S. Bolland, J.V. Ravetch.
Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis.
Immunity, 13 (2000), pp. 277-285
[13]
K.S. Nandakumar, M. Andren, P. Martinsson, E. Bajtner, S. Hellstrom, R. Holmdahl, et al.
Induction of arthritis by single monoclonal IgG anti-collagen type II antibodies and enhancement of arthritis in mice lacking inhibitory FcgammaRIIB.
Eur J Immunol, 33 (2003), pp. 2269-2277
[14]
J.V. Ravetch, L.L. Lanier.
Immune inhibitory receptors.
Science, 290 (2000), pp. 84-89
[15]
F. Navarro, M. López-Botet.
Receptores de células NK específicos para moléculas HLA de clase I.
Inmunología, 20 (2001), pp. 38-48
[16]
L.L. Lanier.
On guard- activating NK cell receptors.
Nat Immunol, 2 (2001), pp. 23-27
[17]
A. Diefenbach, D.H. Raulet.
Innate immune recognition by stimulatory immunoreceptors.
Curr Opin Immunol, 15 (2003), pp. 37-44
[18]
E. Vivier, M. Daeron.
Immunoreceptor tyrosine-based inhibition motifs.
Immunol Today, 18 (1997), pp. 286-291
[19]
C. Vilches, P. Parham.
KIR: diverse, rapidly evolving receptors of innate and adaptive immunity.
Annu Rev Immunol, 20 (2002), pp. 217-251
[20]
L.L. Lanier, B.C. Corliss, J. Wu, C. Leong, J.H. Phillips.
Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells.
Nature, 391 (1998), pp. 703-707
[21]
M. Colonna, F. Navarro, T. Bellón, M. Llano, P. García, J. Samaridis, et al.
A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells.
J Exp Med, 186 (1997), pp. 1809-1818
[22]
M. Colonna, F. Navarro, M. López-Botet.
A novel family of inhibitory receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells.
Curr Top Microbiol Immunol, 244 (1999), pp. 115-122
[23]
D. Cosman, N. Fanger, L. Borges, M. Kubin, W. Chin, L. Peterson, et al.
A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules.
Immunity, 7 (1997), pp. 273-282
[24]
S. Lazetic, C. Chang, J.P. Houchins, L.L. Lanier, J.H. Phillips.
Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits.
J Immunol, 157 (1996), pp. 4741-4745
[25]
M. López-Botet, M. Carretero, J. Pérez-Villar, T. Bellon, M. Llano, F. Navarro.
The CD94/NKG2 C-type lectin receptor complex: involvement in NK cell-mediated recognition of HLA class I molecules.
Immunol Res, 16 (1997), pp. 175-185
[26]
V.M. Braud, D.S. Allan, C.A. O’Callaghan, K. Söderström, A. D’Andrea, G.S. Ogg, et al.
HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.
Nature, 391 (1998), pp. 795-799
[27]
N. Lee, M. Llano, M. Carretero, A. Ishitani, F. Navarro, M. López- Botet, et al.
HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A.
Proc Natl Acad Sci USA, 95 (1998), pp. 5199-5204
[28]
J. Wu, Y. Song, A.B. Bakker, S. Bauer, T. Spies, L.L. Lanier, et al.
An activating immunoreceptor complex formed by NKG2D and DAP10.
Science, 285 (1999), pp. 730-732
[29]
S. Zompi, J.A. Hamerman, K. Ogasawara, E. Schweighoffer, V.L. Tybulewicz, J.P. Di Santo, et al.
NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases.
Nat Immunol, 4 (2003), pp. 565-567
[30]
D.D. Billadeau, J.L. Upshaw, R.A. Schoon, C.J. Dick, P.J. Leibson.
NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway.
Nat Immunol, 4 (2003), pp. 557-564
[31]
A. Cerwenka, L.L. Lanier.
NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer.
Tissue Antigens, 61 (2003), pp. 335-343
[32]
D.H. Raulet.
Roles of the NKG2D immunoreceptor and its ligands.
Nat Rev Immunol, 3 (2003), pp. 781-790
[33]
S. Ugolini, E. Vivier.
Regulation of T cell function by NK cell receptors for classical MHC class I molecules.
Curr Opin Immunol, 12 (2000), pp. 295-300
[34]
C.W. McMahon, D.H. Raulet.
Expression and function of NK cell receptors in CD8+ T cells.
Curr Opin Immunol, 13 (2001), pp. 465-470
[35]
M.R. Snyder, C.M. Weyand, J.J. Goronzy.
The double life of NK receptors: stimulation or co-stimulation.
Trends Immunol, 25 (2004), pp. 25-32
[36]
J. Dietrich, H. Nakajima, M. Colonna.
Human inhibitory and activating Ig-like receptores which modulate the function of myeloid cells.
Microbes and Infection, 2 (2000), pp. 323-329
[37]
C.C. Chang, R. Ciubotariu, J.S. Manavalan, J. Yuan, A.I. Colovai, F. Piazza, et al.
Tolerization of dendritic cells by T cells: the crucial role of inhibitory receptors ILT3 and ILT4.
Nat Immunol, 3 (2002), pp. 237-243
[38]
W.P. Arend.
The innate immune system in rheumatoid arthritis.
Arthritis Rheum, 10 (2001), pp. 2224-2234
[39]
P.B. Martens, J.J. Goronzy, D. Schaid, C.M. Weyand.
Expansion of unusual CD4+ T cells in severe rheumatoid arthritis.
[40]
C.M. Weyand, J.C. Brandes, D. Schmidt, J.W. Fulbright, J.J. Goronzy.
Functional properties of CD4+CD28- T cells in the aging immune system.
Mech Ageing Dev, 102 (1998), pp. 131-147
[41]
T. Namekawa, U.G. Wagner, J.J. Goronzy, C.M. Weyand.
Functional subsets of CD4+ T cells in rheumatoid synovitis.
[42]
D. Schmidt, J.J. Goronzy, C.M. Weyand.
CD4+CD7-CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity.
J Clin Invest, 97 (1996), pp. 2027-2037
[43]
G. Miller, T.G. Nepom, M.B. Reich, J.W. Thomas.
Autoreactive T cells from a type I diabetic recognize multiple class II products.
Hum Immunol, 36 (1993), pp. 219
[44]
T. Namekawa, M.R. Snyder, J.H. Yen, B.E. Goehring, P.J. Leibson, C.M. Weyand, et al.
Killer cell activating receptorts function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis.
J Immunol, 165 (2000), pp. 1138-1145
[45]
J.H. Yen, B.E. Moore, T. Nakajima, D. Scholl, D.J. Schaid, C.M. Weyand, et al.
Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis.
J Exp Med, 193 (2001), pp. 1159-1167
[46]
M.P. Martin, G. Nelson, J.H. Lee, F. Pellett, X. Gao, J. Wade, et al.
Susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles.
J Immunol, 169 (2002), pp. 2818-2822
[47]
T. Momot, S. Koch, N. Hunzelmann, T. Krieg, K. Ulbricht, R.E. Schmidt, et al.
Association of killer cell immunoglobulin-like receptors with scleroderma.
Arthritis Rheum, 50 (2004), pp. 1561-1565
[48]
V. Groh, A. Brühl, H. El-Gabalawy, J.L. Nelson, T. Spies.
Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis.
PNAS, 100 (2003), pp. 9452-9457
[49]
T. Matsui, M. Otsuka, K. Maenaka, H. Furukawa, T. Yabe, K. Yamamoto, et al.
Detection of autoanibodies to killer immunoglobulin- like receptors using recombinant fusion proteoins for two killer immnoglobulin-like receptors in patients with systemic autoimmune diseases.
[50]
N. Tedla, K. Gibson, H.P. McNell, D. Cosman, L. Borges, J.P. Arm.
The co-expression of activating and inhibitory leukocyte immunoglobulin- like receptors in rheumatoid synovium.
Am J Pathol, 160 (2002), pp. 425-461
Copyright © 2005. Sociedad Española de Reumatología
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos