metricas
covid
Buscar en
Revista Iberoamericana de Micología
Toda la web
Inicio Revista Iberoamericana de Micología In vitro susceptibility and molecular characterization of Candida spp. from cand...
Información de la revista
Vol. 32. Núm. 4.
Páginas 221-228 (octubre - diciembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3764
Vol. 32. Núm. 4.
Páginas 221-228 (octubre - diciembre 2015)
Original article
Acceso a texto completo
In vitro susceptibility and molecular characterization of Candida spp. from candidemic patients
Sensibilidad in vitro y caracterización molecular de aislamientos de Candida procedentes de pacientes con candidemia
Visitas
3764
Patricia Fernanda Herkerta, Renata Rodrigues Gomesa, Marisol Dominguez Murob, Rosangela Lameira Pinheirob, Gheniffer Fornaria, Vânia Aparecida Vicentea,d, Flávio Queiroz-Tellesa,c,
Autor para correspondencia
queiroz.telles@uol.com.br

Corresponding author.
a Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, LabMicro – Laboratory of Microbiology and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
b Support and Diagnosis Unit, Mycology Laboratory, Hospital of Clinics, Federal University of Paraná, Brazil
c Hospital de Clínicas, Federal University of Paraná, Brazil
d Fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (2)
Tablas (3)
Table 1. Species, identification and GenBank access numbers of strains included in the study.
Table 2. Variation of minimum inhibitory concentrations (μg/ml) obtained according to the tested Candida species.
Table 3. Correlation between the clinical data of the patients and the in vitro susceptibility profile of the tested isolates.
Mostrar másMostrar menos
Abstract
Background

Candida species are the main cause of hospital acquired fungal bloodstream infections. The main risk factors for candidemia include parenteral nutrition, long-term intensive care, neutropenia, diabetes, abdominal surgery and the use of central venous catheters. The antifungal drugs used to treat candidemia are mainly the echinocandins, however some isolates may be resistant to these drugs.

Aims

This work aims to evaluate the in vitro susceptibility patterns of various Candida species isolated from blood samples and provide their identification by molecular characterization.

Methods

Antifungal susceptibility testing was performed using the broth microdilution method. The sequencing of the ITS and D1/D2 regions of rDNA was used for molecular characterization.

Results

Seventy-four of the 80 isolates were susceptible to anidulafungin, 5 were intermediate, and 1 was resistant. For micafungin 67 were susceptible, 8 were intermediate and 5 were resistant. All isolates were susceptible to amphotericin B. Lastly, 65 isolates were susceptible to fluconazole, 8 were dose-dependent and 4 were resistant. The molecular identification corroborated the phenotypic data in 91.3% of the isolates.

Conclusions

Antifungal susceptibility data has an important role in the treatment of candidemia episodes. It was also concluded that the molecular analysis of isolates provides an accurate identification and identifies genetic variability within Candida species isolated from patients with candidemia.

Keywords:
Candida
In vitro susceptibility
Molecular sequencing
Antifungals
Resumen
Antecedentes

Los hongos del género Candida son la causa principal de infección micótica del torrente sanguíneo adquirida en el hospital. Entre los factores de riesgo asociados a la candidemia destacan la nutrición parenteral, la estancia prolongada en una unidad de cuidados intensivos, la neutropenia, la diabetes, la cirugía abdominal y la utilización de catéter venoso central. Los agentes antifúngicos más utilizados para tratarla son las equinocandinas, pero determinados aislamientos son resistentes a dichos componentes, por lo que algunos pacientes no responden al tratamiento.

Objetivos

Este trabajo tiene como objetivo evaluar la sensibilidad in vitro de varios aislamientos de Candida procedentes de muestras de sangre y realizar su caracterización molecular.

Métodos

Se hicieron pruebas de sensibilidad a los antifúngicos mediante el método de microdilución en caldo. Para la caracterización molecular se utilizó la secuenciación de las regiones ITS y D1/D2 del DNAr.

Resultados

De los 80 aislamientos evaluados, 74 fueron sensibles a la anidulafungina, 5 mostraron sensibilidad intermedia y solo uno era resistente. Cuando se utilizó la micafungina, 67 aislamientos resultaron sensibles, 8 presentaron sensibilidad intermedia y 5 fueron resistentes. Los 80 aislamientos fueron sensibles a la anfotericina B. Al menos 65 aislamientos eran sensibles al fluconazol, 8 presentaron sensibilidad dependiente de la dosis y 4 se mostraron resistentes. La identificación molecular confirmó la identificación fenotípica en un 91,3% de los aislamientos.

Conclusiones

Teniendo en cuenta los resultados obtenidos con las pruebas de sensibilidad a los antifúngicos, estas resultan indispensables para el tratamiento adecuado de la candidemia. Se concluye además que la identificación molecular proporciona una identificación precisa y consigue identificar la variabilidad genética de las especies del género Candida aisladas en pacientes con candidemia.

Palabras clave:
Candida
Sensibilidad in vitro
Secuenciación molecular
Antifúngicos
Texto completo

Among the medically important fungi, Candida species are of great importance due to the high frequency of colonization and infection in human hosts.8 Under normal conditions, most do not cause damage to their hosts, and only cause tissue invasions and systemic infections when host defense mechanisms are weakened.26Candida infections account for about 80% of the total fungal infections of the bloodstream, urinary tract and surgical site infections.8 The bloodstream infections caused by Candida have a high prevalence, morbidity and mortality,19 and have a profound economic impact due to the long hospitalization periods, intensive care and treatment.23

The incidence of candidemia in tertiary care hospitals in Brazil is 1.38 cases per 1.000 hospital admissions21 with a 54% mortality rate.6 The underlying conditions are cancer, neutropenia, surgery (mainly abdominal), mechanical ventilation, dialysis, parenteral nutrition and central venous catheter.6 In Brazil, Candida albicans is the leading agent, followed by Candida parapsilosis, Candida tropicalis, Candida guilliermondii, Candida glabrata and Candida krusei. Species as Candida intermedia, Candida haemulonii, Candida lusitaniae, Candida famata and Candida norvegensis are less frequent.21

The differences in the epidemiology and therapeutic approach for the various Candida species justify identification of the species responsible for the disease. This information is essential not only for appropriate patient management, but also for the control of nosocomial infections. Additionally, this information provides hospital-specific data, as antifungal species and susceptibility patterns often vary between institutions.8 Therefore, this study was aimed to evaluate both the in vitro susceptibility patterns and the molecular characterization of those Candida species isolated from patients with candidemia.

Materials and methodsIsolates

This study assessed the in vitro susceptibility and molecular characterization of 80 Candida species obtained from blood samples that had been deposited into the mycology collection of the Laboratory of Mycology, UFPR Hospital, between January 2005 and June 2012 (Table 1).

Table 1.

Species, identification and GenBank access numbers of strains included in the study.

SPECIES  ID  GENBANK ITS/D1D2  SPECIES  ID  GENBANK ITS/D1D2  SPECIES  ID  GENBANK ITS/D1D2 
C. lusitaniae  LMICRO110  KJ451634/–  C. albicans  LMICRO148  KJ451672/–  C. glabrata  LMICRO186  KJ451710/– 
C. tropicalis  LMICRO111  KJ451635/KJ451714  C. albicans  LMICRO149  KJ451673/–  C. pelliculosa  LMICRO187  KJ451711/– 
C. glabrata  LMICRO112  KJ451636/–  C. pelliculosa  LMICRO150  KJ451674/–  C. parapsilosis  LMICRO188  KJ451712/– 
C. glabrata  LMICRO113  KJ451637/–  C. albicans  LMICRO151  KJ451675/–  C. pelliculosa  LMICRO189  KJ451713/– 
C. glabrata  LMICRO114  KJ451638/–  C. albicans  LMICRO152  KJ451676/–  C. albicans  CBS 562  AB018037/AY497682 
C. glabrata  LMICRO115  KJ451639/–  C. albicans  LMICRO153  KJ451677/–  C. albicans  ATCC 10231  FJ159643/– 
C. glabrata  LMICRO116  KJ451640/–  C. albicans  LMICRO154  KJ451678/–  C. albicansa  CBS 1905  –/AY497673 
C. glabrata  LMICRO117  KJ451641/–  C. albicans  LMICRO155  KJ451679/–  C. dubliniensis  CBS 7988  AB035590/– 
C. tropicalis  LMICRO118  KJ451642/–  C. albicans  LMICRO156  KJ451680/–  C. dubliniensisa  CBS 7987  NR103562/U57685 
C. tropicalis  LMICRO119  KJ451643/–  C. albicans  LMICRO157  KJ451681/–  C. dubliniensis  IFM 5422  –/AB828136 
C. guilliermondii  LMICRO120  KJ451644/–  C. dubliniensis  LMICRO158  KJ451682/KJ451717  C. parapsilosis  WM 0295  EF568035/– 
C. krusei  LMICRO121  KJ451645/–  C. albicans  LMICRO159  KJ451683/–  C. parapsilosisa  CBS 604T  AJ635316/CPU45754 
C. albicans  LMICRO122  KJ451646/–  C. albicans  LMICRO160  KJ451684/–  C. parapsilosisa  ATCC 96138  –/AY497665 
C. tropicalis  LMICRO123  KJ451647/–  C. albicans  LMICRO161  KJ451685/–  C. metapsilosis  CBS 2916  AY391844/– 
C. tropicalis  LMICRO124  KJ451648/–  C. albicans  LMICRO162  KJ451686/–  C. metapsilosisa  ATCC 96144T  AJ698049/FJ746055 
C. parapsilosis  LMICRO125  KJ451649/–  C. albicans  LMICRO163  KJ451687/–  C. metapsilosis  ATCC 14054  –/KC881060 
C. parapsilosis  LMICRO126  KJ451650/–  C. albicans  LMICRO164  KJ451688/–  C. orthopsilosis  CBS 10906  FJ872018/– 
C. parapsilosis  LMICRO127  KJ451651/–  C. parapsilosis  LMICRO165  KJ451689/–  C. orthopsilosisa  ATCC 96139T  AJ698048/FJ746056 
C. parapsilosis  LMICRO128  KJ451652/–  C. parapsilosis  LMICRO166  KJ451690/–  C. orthopsilosis  CBS 8825  –/AJ508575 
C. parapsilosis  LMICRO129  KJ451653/–  C. parapsilosis  LMICRO167  KJ451691/–  C. tropicalis  WM 233  EF568042/– 
C. parapsilosis  LMICRO130  KJ451654/–  C. metapsilosis  LMICRO168  KJ451692/KJ451718  C. tropicalisa  IFM 5446  AB437068/– 
C. parapsilosis  LMICRO131  KJ451655/–  C. parapsilosis  LMICRO169  KJ451693/–  C. tropicalisa  CBS 94  –/U45749 
C. parapsilosis  LMICRO132  KJ451656/–  C. parapsilosis  LMICRO170  KJ451694/–  C. tropicalis  DMKUXE318  –/AB847528 
C. lusitaniae  LMICRO133  KJ451657/KJ451715  C. parapsilosis  LMICRO171  KJ451695/–  C. glabrataa  CBS 138  AY198398/– 
C. tropicalis  LMICRO134  KJ451658/KJ451716  C. parapsilosis  LMICRO172  KJ451696/–  C. glabrata  WM 02.57  EF568002/– 
C. guilliermondii  LMICRO135  KJ451659/–  C. parapsilosis  LMICRO173  KJ451697/–  C. famataa  CBS 1795T  AM992910/AJ508559 
C. krusei  LMICRO136  KJ451660/–  C. parapsilosis  LMICRO174  KJ451698/–  C. famataa  CBS 767  GU246256/AY497693 
C. albicans  LMICRO137  KJ451661/–  C. orthopsilosis  LMICRO175  KJ451699/KJ451719  M. guilliermondiia  WM 02374  EF568007/– 
C. albicans  LMICRO138  KJ451662/–  C. parapsilosis  LMICRO176  KJ451700/–  M. guilliermondii  CBS 2030  EF568003/AY497675 
C. albicans  LMICRO139  KJ451663/–  C. parapsilosis  LMICRO177  KJ451701/–  M. guilliermondii  HB 31–2  –/AB568329 
C. albicans  LMICRO140  KJ451664/–  C. parapsilosis  LMICRO178  KJ451702/–  P. anomalaa  PY1  AB331898/– 
C. albicans  LMICRO141  KJ451665/–  C. krusei  LMICRO179  KJ451703/–  P. anomalaa  CBS 5759  DQ249196/– 
C. albicans  LMICRO142  KJ451666/–  C. parapsilosis  LMICRO180  KJ451704/KJ451720  C. lusitaniaea  CBS 4413  EF568024/AJ508571 
C. albicans  LMICRO143  KJ451667/–  C. guilliermondii  LMICRO181  KJ451705/–  C. lusitaniaea  CBS 6936  AY321464/U44817 
C. albicans  LMICRO144  KJ451668/–  C. guilliermondii  LMICRO182  KJ451706/–  P. kudriavzevii  WM 03.204  EF568016/– 
C. albicans  LMICRO145  KJ451669/–  C. guilliermondii  LMICRO183  KJ451707/–  P. kudriavzeviia  CBS 573  EF568018/– 
C. albicans  LMICRO146  KJ451670/–  C. tropicalis  LMICRO184  KJ451708/–  S. cerevisiae  CBS 1171  AB018043/– 
C. albicans  LMICRO147  KJ451671/–  C. glabrata  LMICRO185  KJ451709/–  Neurospora crassa  MYA-4619 or FGSC8771  GU327635/FR774249 
a

Type.

–: data not provided.

Molecular characterization

For the DNA extraction, physical maceration performance with silica:celite (2:1) in CTAB (cetyl trimethylammonium bromide) and CIA (acidic solution of chloroform isoamyl alcohol)32 was used. The sequencing was performed on an ABI3500 sequencer. For ITS sequencing the primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) were used.33 For the amplification of D1/D2 region primers NL-1 (5′-GCATATCAATAAGCGGAGGAAAAG-3′) and NL-4 (5′-GGTCCGTGTTTCAAGACGG-3′) were used,22 with the same conditions used as for the ITS sequencing. For the C. albicans ABC genotyping, primers CA-int-L (5′-ATAAGGGAAGTCGGCAAAATAGATCCG TAA-3′) and CA-int-R (5′-CCTTGGCTGTGGTTTCGCTAGATAGTAGAT-3′) were used.18

Alignment and phylogenetic construction

Sequences were edited with the BioEdit program,14 and compared with reference sequences for detection of similarity with the BLAST program.1 The alignment was performed with the MAFFT,16 and visual inspection by the MEGA 5.1 version.29 The clinical isolates included in the study and 36 reference sequences were used for the phylogenetic analysis (Table 1). An isolate of Neurospora crassa was included as an outgroup.9,10,30 The MEGA version 5.1 program29 was used to estimate the best-fitting evolutionary models for each data and the Maximum Likelihood analysis. Bootstrap support was estimated by 1000 replicates.

Antifungal susceptibility testing

The susceptibility tests against amphotericin B (Sigma–Aldrich Quimica, Madrid, Spain), fluconazole (Sigma–Aldrich Quimica, Madrid, Spain), micafungin (Mycamine®; Astellas Pharma Inc., Toyama, Japan) and anidulafungin (Ecalta-Pfizer, Kent, United Kingdom) were performed with the broth microdilution technique in accordance with the guidelines in CLSI document M27-A3.4,5 A reference strain C. albicans ATCC 10231 was included with each set of experiments for quality control. The MIC values for the echinocandins were verified by LEMI reference laboratory (UNIFESP – São Paulo – Brazil).

Results

The 80 isolates were identified as C. albicans (27 isolates), C. parapsilosis complex (24 isolates), C. glabrata (8 isolates), C. tropicalis (7 isolates), C. guilliermondii (5 isolates), C. krusei (3 isolates), C. pelliculosa (3 isolates), C. lusitaniae (2 isolates), and C. dubliniensis (1 isolate). Molecular identification was consistent with the phenotypic data in 91.3% isolates. Isolate LMICRO112 identified only as a Candida sp., was later confirmed as C. tropicalis with the molecular characterization. LMICRO133 thought to be C. famata was identified as C. lusitaniae through molecular markers; and LMICRO134, also thought to be C. famata, was reidentified as C. tropicalis. A single C. albicans isolate (LMICRO158) was molecularly characterized as C. dubliniensis, and C. guilliermondii LMICRO180 was identified as C. parapsilosis through the molecular analysis. Two isolates in the C. parapsilosis complex, LMICRO168 and LMICRO175, were subsequently reidentified as C. metapsilosis and C. orthopsilosis, respectively.

According to the Maximum Likelihood analysis based on ITS sequencing regions, the isolates were clustered into nine different clades: Albicans, Dubliniensis, Tropicalis, Parapsilosis Complex, Glabrata, Pelliculosa, Guilliermondii, Lusitaniae and Krusei, supported by bootstrap values (Fig. 1). Sequencing analysis of the variable D1/D2 region was performed to confirm the identity of the isolates (LMICRO112, 133, 134, 158, 168, 175, and 180) that exhibited a discordance between molecular and phenotypic identification. The D1/D2 sequencing analysis confirmed the results from ITS sequencing, demonstrating that the isolates belonged to the clades Tropicalis, Lusitaniae, Dubliniensis, and Parapsilosis complex (Fig. 2). A low genetic variability rate among the C. albicans isolates was observed, and considerable interspecific differences were noted for the Parapsilosis complex, dividing it in three species: C. parapsilosis, C. metapsilosis and C. orthopsilosis.

Fig. 1.

Phylogenetic tree of Maximum likelihood based on the alignment of ITS regions and 5.8S rDNA built with 1000 bootstrap using the evolutionary model Tamura 3-parameters with gamma distribution, using mega version 5.1 program. Neurospora crassa (mya-4619) was used as an outgroup. A/B: genotype of C. albicans. *Isolates with altered susceptibility profile. T: type strain. Red: isolates with discordant molecular and phenotypic identification.

Fig. 2.

Phylogenetic tree of Maximum likelihood based on the alignment of D1/D2 region of rDNA built with 1000 bootstrap using the evolutionary model Tamura-Nei with gamma distribution, using mega version 5.1 program. Neurospora crassa (FGSC 8771) was used as an outgroup. T: type strain. Red: isolates with discordant molecular and phenotypic identification.

(0.34MB).

The ABC genotyping of the C. albicans isolates distinguished between genotypes A and B, with a wider prevalence of genotype A (62%). It was noticed that both were susceptible to the tested antifungals, with the exception of isolate LMICRO145 of genotype B that was resistant to fluconazole. The mortality rate was similar between both genotypes, with seven deaths in both groups.

Antifungal susceptibility data showed several resistant isolates of C. glabrata, with 5 of them being resistant to micafungin and intermediate to anidulafungin, and 7 susceptible-dose dependent to fluconazole. The C. albicans species were the most susceptible to the antifungals tested, with only one isolate resistant to fluconazole. Among the C. parapsilosis complex, 5 isolates of C. parapsilosis had intermediate susceptibility to micafungin while the remaining isolates studied were susceptible to all the antifungals tested (Table 2).

Table 2.

Variation of minimum inhibitory concentrations (μg/ml) obtained according to the tested Candida species.

Species  Antifungal agent (no. tested)  No. of isolates with MIC (μg/ml)
    0.03  0.06  0.12  0.25  0.5  16  32  64 
C. albicansAnidulafungin (27)  –  –  24  –  –  –  –  –  –  – 
Micafungin (27)  17  –  –  –  –  –  –  –  – 
Amphotericin B (27)  –  14  –  –  –  –  –  –  – 
Fluconazole (27)  –  –  11  –  –  –  – 
C. parapsilosisAnidulafungin (22)  –  11  –  –  –  –  – 
Micafungin (22)  –  –  –  –  –  –  –  – 
Amphotericin B (22)  –  –  14  –  –  –  –  –  –  – 
Fluconazole (22)  –  –  –  –  –  –  – 
C. metapsilosisAnidulafungin (1)  –  –  –  –  –  –  –  –  –  –  – 
Micafungin (1)  –  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (1)  –  –  –  –  –  –  –  –  –  –  – 
Fluconazole (1)  –  –  –  –  –  –  –  –  –  –  – 
C. orthopsilosisAnidulafungin (1)  –  –  –  –  –  –  –  –  –  –  – 
Micafungin (1)  –  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (1)  –  –  –  –  –  –  –  –  –  –  – 
Fluconazole (1)  –  –  –  –  –  –  –  –  –  –  – 
C. glabrataAnidulafungin (8)  –  –  –  –  –  –  –  –  –  – 
Micafungin (8)  –  –  –  –  –  –  –  – 
Amphotericin B (8)  –  –  –  –  –  –  –  –  –  – 
Fluconazole (8)  –  –  –  –  –  –  –  –  – 
C. tropicalisAnidulafungin (7)  –  –  –  –  –  –  –  –  – 
Micafungin (7)  –  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (7)  –  –  –  –  –  –  –  – 
Fluconazole (7)  –  –  –  –  –  –  – 
C. guilliermondiiAnidulafungin (5)  –  –  –  –  –  –  –  –  –  – 
Micafungin (5)  –  –  –  –  –  –  –  –  – 
Amphotericin B (5)  –  –  –  –  –  –  –  –  –  – 
Fluconazole (5)  –  –  –  –  –  –  –  –  – 
C. kruseiAnidulafungin (3)  –  –  –  –  –  –  –  –  –  –  – 
Micafungin (3)  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (3)  –  –  –  –  –  –  –  –  –  – 
Fluconazole (3)  –  –  –  –  –  –  –  –  –  – 
C. pelliculosaAnidulafungin (3)  –  –  –  –  –  –  –  –  –  – 
Micafungin (3)  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (3)  –  –  –  –  –  –  –  –  – 
Fluconazole (3)  –  –  –  –  –  –  –  –  –  –  – 
C. lusitaniaeAnidulafungin (2)  –  –  –  –  –  –  –  –  –  –  – 
Micafungin (2)  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (2)  –  –  –  –  –  –  –  –  –  – 
Fluconazole (2)  –  –  –  –  –  –  –  –  –  – 
C. dubliniensisAnidulafungin (1)  –  –  –  –  –  –  –  –  –  –  – 
Micafungin (1)  –  –  –  –  –  –  –  –  –  –  – 
Amphotericin B (1)  –  –  –  –  –  –  –  –  –  –  – 
Fluconazole (1)  –  –  –  –  –  –  –  –  –  –  – 

Those isolates resistant to at least one antifungal (LMICRO112, 113, 115, 116, 117, 135 and 145) were further studied analyzing the relationship between the clinical data and the MIC values (Table 3). With regard to clinical response to treatment and the in vitro susceptibility tests results, it was observed that the LMICRO116 isolate (C. glabrata) was obtained from a patient whose blood cultures remained positive during micafungin (MCF) therapy, but was successfully treated after the addition of amphotericin B. The susceptibility tests revealed resistance of the isolate to MCF and anidulafungin (AND), but susceptibility to amphotericin B.

Table 3.

Correlation between the clinical data of the patients and the in vitro susceptibility profile of the tested isolates.

Isolate  Disease associated  Treatment  Response  Susceptibility profile 
LMICRO112C. glabrata  Intestinal sub-occlusion, abdominal surgery  FLU  Undetermined  AND (I) MCF (R)AMB (S)FLU (SDD) 
LMICRO113C. glabrata  Metabolic disease, abdominal surgery  FLU  Favorable  AND (I) MCF (R)AMB (S)FLU (SDD) 
LMICRO115C. glabrata  Crohn disease, adenocarcinoma of the pancreas  Untreateda  –  AND (I) MCF (R)AMB (S)FLU (SDD) 
LMICRO116C. glabrata  Burkitt lymphoma, dialysis  AMB  Favorable  AND (R) MCF (R)AMB (S)FLU (R) 
LMICRO117C. glabrata  Gastric ulcer, diverticular disease, abdominal surgery  Untreatedb  –  AND (I) MCF (R)AMB (S)FLU (SDD) 
LMICRO135C. guilliermondii  ALL, bone marrow transplantation  FLU, voriconazole  Undetermined  AND (S) MCF (I)AMB (S)FLU (R) 
LMICRO145C. albicans  Anorectal malformation, abdominal surgery  FLU, AMB  Favorable  AND (S) MCF (S)AMB (S)FLU (R) 

ALL: acute lymphoblastic leukemia; AND: anidulafungin; MCF: micafungin; AMB: amphotericin B; FLU: fluconazole; S: susceptible; SDD: susceptible-dose dependent; I: intermediate; R: resistant.

a

Died before the beginning of the treatment.

b

Transient candidemia; undetermined: died.

Discussion

The frequency of invasive mycosis by opportunistic fungal pathogens has increased significantly along the last years. Besides, more than 17 different Candida species have been identified as etiological agents of bloodstream infections.27

C. albicans is still considered the most common cause of candidemia in tertiary Brazilian hospitals, with a rate of about 40% of the episodes.11,13,21,25 The results obtained in this study corroborate this evidence. However, a rising incidence of infections caused by the non-C. albicans Candida species, especially C. tropicalis, C. parapsilosis, C. glabrata and C. krusei6,7,13,21,28,35 has been noticed. These species were found in the present study as well. It is also difficult to phenotypically identify cryptic species within species complexes without the addition of molecular sequencing8,20,34 methods. This was observed with the isolates of the Parapsilosis complex and those of C. dubliniensis and C. lusitaniae (Fig. 2), confirming the necessity to complement the presumptive identification based on morphology and biochemistry with molecular data. The identification of the Parapsilosis complex is necessary as these isolates vary in their antifungal susceptibility profiles.17,31 According to this study C. parapsilosis isolates showed intermediate susceptibility to micafungin, corroborating previous findings that suggest a decreased susceptibility in C. parapsilosis.3,12,17 The results of the present study show that the MIC values for amphotericin B among the three species of the Parapsilosis complex were similar. However, Lockhart et al.17 observed higher MIC values for C. parapsilosis. This supports the relevance of the in vitro susceptibility tests for appropriate patient management.

The ABC genotyping of the C. albicans isolates was also included in this study in order to provide additional discriminatory data regarding this species. According to McCullough et al.,18 genotype A is more frequent among the isolates of this species, and it has being correlated with lower susceptibility to flucytosine. In our study, genotype A was predominant (62%) among the analyzed isolates, and most of the isolates were susceptible to all of the antifungals tested regardless of the genotype, with the exception of one genotype B isolate which showed resistance to fluconazole. It was also observed that the mortality rates of the patients were similar, regardless of genotype involved. It remains unclear if genotype A is more virulent.36 Fluconazole has a good therapeutic activity against C. albicans, and has been used to prevent the systemic candidiasis for many years; in these cases, the susceptibility to fluconazole can reach 95%, being effective against most infections by this species.37 However, the repetitive and long-term use of fluconazole for chronic infections and its prophylactic use has favored the appearance of resistant isolates.

Infections due to C. glabrata have risen in the last few years and this appears to be related to the high usage of fluconazole in hospitals and the occurrence of resistant isolates to this antifungal.24 As a result, the echinocandins have been recently added as a first-line indication for the candidemia,8 but it has been noticed that some C. glabrata isolates are resistant to this agent as well.15 In our study, 62% of the C. glabrata isolates (5/8) exhibited resistance to micafungin and 87% (7/8) showed resistance to fluconazole. One of these highly resistant isolates (C. glabrata LMICRO116) was used by Bizerra et al.2 to investigate the mutations associated with resistance. The authors confirmed the presence of a S663F mutation in the FKS2 gene, resulting in the production of a 1,3-β-glucan synthase enzyme with reduced susceptibility to the echinocandins, and a strong potential for clinical failure. Furthermore, species such as C. albicans, C. parapsilosis, C. guilliermondii, and C. tropicalis showed high MIC values in this study, a finding that is not consistent with a previous study conducted at the same hospital.11 This increased resistance to antifungals appears related to the rise of prophylactic and empirical therapies using fluconazole and echinocandins in this hospital.

Most of the Candida isolates showed susceptibility to the antifungal agents tested. However, C. glabrata presented the largest number of isolates resistant to the echinocandins and fluconazole. Accordingly, antifungal susceptibility testing has an important role in the treatment of candidemia, and the molecular analysis of isolates provides accurate identification of cryptic species in the C. parapsilosis complex and demonstrates the genetic variability between Candida species.

Acknowledgements

We are grateful to CAPES and CNPq, Brasília, Brazil, for the financial support.

References
[1]
S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res, 25 (1997), pp. 3389-3402
[2]
F.C. Bizerra, C. Jimenez-Ortigosa, A.C.R. Souza, G.L. Breda, F. Queiroz-Telles, D.S. Perlin, et al.
Breakthrough candidemia due to multidrug resistant C. glabrata during prophylaxis with low dose of micafungin.
AAC, 58 (2014), pp. 2438-2440
[3]
E. Cantón, J. Pemán, G. Quindós.
Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia.
AAC, 55 (2011), pp. 5590-5596
[4]
Clinical and Laboratory Standards Institute (CLSI).
Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3.
3rd ed., Clinical and Laboratory Standards Institute, (2008),
[5]
Clinical and Laboratory Standards Institute (CLSI).
Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard – third informational supplement. CLSI document M27-S4.
Clinical and Laboratory Standards Institute, (2012),
[6]
A.L. Colombo, M. Nucci, B.J. Park, S.A. Nouér, B. Arthington-Skaggs, D.A. Matta, et al.
Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers.
J Clin Microbiol, 44 (2006), pp. 2816-2823
[7]
A.L. Colombo, T. Guimarães, L.R.B.F. Silva, L.P.A. Monfardini, A.K.B. Cunha, P. Rady, et al.
Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality.
Infect Control Hosp Epidemiol, 28 (2007), pp. 570-576
[8]
A.L. Colombo, T. Guimarães, L.F.A. Camargo, R. Richtmann, F. Queiroz-Telles, M.J.C. Salles, et al.
Brazilian guidelines for the management of candidiasis: a joint meeting report of three medical societies – Sociedade Brasileira de Infectologia, Sociedade Paulista de Infectologia, Sociedade Brasileira de Medicina Tropical.
Braz J Infect Dis, 16 (2012), pp. S1-S34
[9]
H.M. Daniel, T.C. Sorrell, W. Meyer.
Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs.
Int J Syst Evol Microbiol, 51 (2001), pp. 1593-1606
[10]
S. Diezmann, C.J. Cox, G. Schonian, R.J. Vilgalys, T.G. Mitchell.
Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis.
J Clin Microbiol, 42 (2004), pp. 5624-5635
[11]
J.C.B. França, C.E.L. Ribeiro, F. Queiroz-Telles.
Candidemia em um hospital terciário brasileiro: incidência, frequência das diferentes espécies, fatores de risco e suscetibilidade aos antifúngicos.
Rev Soc Bras Med Trop, 41 (2008), pp. 23-28
[12]
G. Garcia-Effron, E. Canton, J. Peman, A. Dilger, E. Roma, D.S. Perlin.
Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital.
J Antimicrob Chemother, 67 (2012), pp. 2739-2748
[13]
E. Girão, A.S. Levin, M. Basso, S. Gobara, L.B. Gomes, E.A.S. Medeiros, et al.
Seven-year trend analysis of nosocomial candidemia and antifungal (fluconazole and caspofungin) use in Intensive Care Units at a Brazilian University Hospital.
Med Mycol, 46 (2008), pp. 581-588
[14]
T.A. Hall.
BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.
Nucleic Acids Symp Ser, 41 (1999), pp. 95-98
[15]
K.R. Healey, S.K. Kativar, M. Castanheira, M.A. Pfaller, T.D. Edlind.
Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility.
AAC, 55 (2011), pp. 3947-3949
[16]
K. Katoh, K. Misawa, K. Kuma, T. Miyata.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res, 30 (2002), pp. 3059-3066
[17]
S.R. Lockhart, S.A. Messer, M.A. Pfaller, D.J. Diekema.
Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis, in comparison to the closely related species Candida parapsilosis.
J Clin Microbiol, 46 (2008), pp. 2659-2664
[18]
M.J. McCullough, K.V. Clemons, D.A. Stevens.
Molecular and phenotypic characterization of genotypic Candida albicans subgroups and comparison with Candida dubliniensis and Candida stellatoidea.
J Clin Microbiol, 37 (1999), pp. 417-421
[19]
M.R. Montagna, C. Coretti, G. Lovero, O. De Giglio, O. Montagna, N. Laforgia, et al.
Diagnostic performance of 13-β-d-glucan in neonatal and pediatric patients with candidemia.
Int J Mol Sci, 12 (2011), pp. 5871-5877
[20]
A.J. Mota, G.N. Back-Brito, F.G. Nobrega.
Molecular identification of Pichia guilliermondii, Debaryomyces hansenii and Candida palmioleophila.
Genet Mol Biol, 35 (2012), pp. 122-125
[21]
M. Nucci, F. Queiroz-Telles, T. Alvarado-Matute, I.N. Tiraboschi, J. Cortes, J. Zurita, et al.
Epidemiology of candidemia in Latin America: a laboratory-based survey.
[22]
K. O’Donnell.
Fusarium and its near relatives.
The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, pp. 225-233
[23]
P.M. Olaechea, M. Palomar, C. León-Gil, F. Álvarez-Lerma, R. Jordá, J. Nolla-Salas, et al.
Economic impact of Candida colonization and Candida infection in the critically ill patient.
Eur J Clin Microbiol Infect Dis, 23 (2004), pp. 323-330
[24]
A.C. Pasqualotto, R.A. Zimerman, S.H. Alves, V.R. Aquino, D. Branco, D. Wiltgen, et al.
Take control over your fluconazole prescriptions: the growing importance of Candida glabrata as an agent of candidemia in Brazil.
Infect Control Hosp Epidemiol, 29 (2008), pp. 898-899
[25]
X.S. Passos, C.R. Costa, C.R. Araújo, E.S. Nascimento, L.K.H. Souza, O.F.L. Fernandes, et al.
Species distribution and antifungal susceptibility patterns of Candida spp. bloodstream isolates from a Brazilian tertiary care hospital.
Mycopathologia, 163 (2007), pp. 145-151
[26]
J.C. Pérez, C.A. Kumamoto, A.D. Johnson.
Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit.
PLoS Biol, 11 (2013), pp. e1001510
[27]
M.A. Pfaller, D.J. Diekema.
Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus.
J Clin Microbiol, 42 (2004), pp. 4419-4431
[28]
M.A. Pfaller, G.J. Moet, S.A. Messer, R.N. Jones, M. Castanheira.
Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community – onset and nosocomial isolates in the SENTRY antimicrobial surveillance program, 2008–2009.
AAC, 55 (2011), pp. 561-566
[29]
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, et al.
Molecular evolutionary genetics analysis using Maximum likelihood, evolutionary distance, and maximum parsimony methods.
Mol Biol Evol, 28 (2011), pp. 2731-2739
[30]
C.K.M. Tsui, H.M. Daniel, V. Robert, W. Meyer.
Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses.
FEMS Yeast Res, 8 (2008), pp. 651-659
[31]
E. Van-Asbeck, K.V. Clemons, M. Martinez, A.J. Tong, D. Stevens.
Significant differences in drug susceptibility among species in the Candida parapsilosis group.
Diagn Microbiol Infect Dis, 62 (2008), pp. 106-109
[32]
V.A. Vicente, D. Attili-Angelis, M.R. Pie, F. Queiroz-Telles, L.M. Cruz, M.J. Najafzadeh, et al.
Environmental isolation of black yeast-like fungi involved in human infection.
Stud Mycol, 61 (2008), pp. 137-144
[33]
T.J. White, T. Bruns, S. Lee, J. Taylor.
Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.
PCR protocols: a guide to methods and applications, pp. 315-322
[34]
H. Xafranski, A.S.A. Melo, A.M. Machado, M.R.S. Briones, A.L. Colombo.
A quick and low-cost PCR-based assay for Candida spp. identification in positive blood culture bottles.
BMC Infect Dis, 13 (2013), pp. 467
[35]
P.C.N. Xavier, M.R. Chang, M.O. Nunes, D.B. Palhares, R.A. Silva, G.F. Bonfim, N.F. Almeida Junior.
Candidemia neonatal, em hospital public do Mato Grosso do Sul.
Rev Soc Bras Med Trop, 41 (2008), pp. 459-463
[36]
X.Q. Yang, Q. Zhang, L.Y. Lu, R. Yang, Y. Liu, J. Zou.
Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries.
Arch Oral Biol, 57 (2012), pp. 1048-1053
[37]
Y. Ying, Y. Zhao, X. Hu, Z. Cai, X. Liu, G. Jin, et al.
In vitro fluconazole susceptibility of 1,903 clinical isolates of Candida albicans and the identification of ERG11 mutations.
MDR, 19 (2012), pp. 266-273
Copyright © 2014. Revista Iberoamericana de Micología
Descargar PDF
Opciones de artículo