was read the article
array:24 [ "pii" => "S1665268119302649" "issn" => "16652681" "doi" => "10.5604/01.3001.0012.3146" "estado" => "S300" "fechaPublicacion" => "2018-09-01" "aid" => "70101" "copyright" => "Fundación Clínica Médica Sur, A.C." "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Ann Hepatol. 2018;17:843-56" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 210 "formatos" => array:3 [ "EPUB" => 14 "HTML" => 134 "PDF" => 62 ] ] "itemSiguiente" => array:19 [ "pii" => "S1665268119302650" "issn" => "16652681" "doi" => "10.5604/01.3001.0012.3160" "estado" => "S300" "fechaPublicacion" => "2018-09-01" "aid" => "70102" "copyright" => "Fundación Clínica Médica Sur, A.C." "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Ann Hepatol. 2018;17:857-63" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 160 "formatos" => array:3 [ "EPUB" => 14 "HTML" => 100 "PDF" => 46 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Fast Morphological Gallbladder Changes Triggered by a Hypercholesterolemic Diet" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "857" "paginaFinal" => "863" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 4604 "Ancho" => 4121 "Tamanyo" => 464837 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Gallbladder morpho-structural changes induced by a hypercholesterolemic diet. <span class="elsevierStyleBold">A.</span> Ecographic analysis showed an increase in gallbladder size. <span class="elsevierStyleBold">B.</span> Morphological difference between the liver of the Chow group and the liver of the HC group, shown with a pale lipid deposition. <span class="elsevierStyleBold">C.</span> Evidence of biliary lithiasis hypersecretion inducing cholesterol formation as highly birefringent crystals. <span class="elsevierStyleBold">D.</span> The determination of total cholesterol presence was ***P < 0.0001 vs. Chow.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Alberto López-Reyes, Denise Clavijo-Cornejo, Javier Fernández-Torres, Daniel Medina-Luna, Erendida G. Estrada-Villaseñor, Luis E. Gómez-Quiroz, Marwin Gutiérrez, Julio Granados, Gilberto Vargas-Alarcón, Carlos Pineda, Hiram García, Luis A Morales-Garza, María C. Gutiérrez-Ruiz, Karina Martínez-Flores" "autores" => array:14 [ 0 => array:2 [ "nombre" => "Alberto" "apellidos" => "López-Reyes" ] 1 => array:2 [ "nombre" => "Denise" "apellidos" => "Clavijo-Cornejo" ] 2 => array:2 [ "nombre" => "Javier" "apellidos" => "Fernández-Torres" ] 3 => array:2 [ "nombre" => "Daniel" "apellidos" => "Medina-Luna" ] 4 => array:2 [ "nombre" => "Erendida G." "apellidos" => "Estrada-Villaseñor" ] 5 => array:2 [ "nombre" => "Luis E." "apellidos" => "Gómez-Quiroz" ] 6 => array:2 [ "nombre" => "Marwin" "apellidos" => "Gutiérrez" ] 7 => array:2 [ "nombre" => "Julio" "apellidos" => "Granados" ] 8 => array:2 [ "nombre" => "Gilberto" "apellidos" => "Vargas-Alarcón" ] 9 => array:2 [ "nombre" => "Carlos" "apellidos" => "Pineda" ] 10 => array:2 [ "nombre" => "Hiram" "apellidos" => "García" ] 11 => array:2 [ "nombre" => "Luis A" "apellidos" => "Morales-Garza" ] 12 => array:2 [ "nombre" => "María C." "apellidos" => "Gutiérrez-Ruiz" ] 13 => array:2 [ "nombre" => "Karina" "apellidos" => "Martínez-Flores" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268119302650?idApp=UINPBA00004N" "url" => "/16652681/0000001700000005/v1_201905171007/S1665268119302650/v1_201905171007/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1665268119302637" "issn" => "16652681" "doi" => "10.5604/01.3001.0012.3144" "estado" => "S300" "fechaPublicacion" => "2018-09-01" "aid" => "70100" "copyright" => "Fundación Clínica Médica Sur, A.C." "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Ann Hepatol. 2018;17:836-42" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 134 "formatos" => array:3 [ "EPUB" => 15 "HTML" => 73 "PDF" => 46 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Serum Electrolyte Levels and Outcomes in Patients Hospitalized with Hepatic Encephalopathy" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "836" "paginaFinal" => "842" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 95 "Ancho" => 2074 "Tamanyo" => 33228 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">The Model for End-Stage Liver Disease (MELD) score, with and without adjustment for serum sodium level.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Ali A. Alsaad, Fernando F. Stancampiano, William C. Palmer, April M. Henry, Jillian K. Jackson, Michael G. Heckman MS, Nancy N. Diehl, Andrew P. Keaveny" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Ali A." "apellidos" => "Alsaad" ] 1 => array:2 [ "nombre" => "Fernando F." "apellidos" => "Stancampiano" ] 2 => array:2 [ "nombre" => "William C." "apellidos" => "Palmer" ] 3 => array:2 [ "nombre" => "April M." "apellidos" => "Henry" ] 4 => array:2 [ "nombre" => "Jillian K." "apellidos" => "Jackson" ] 5 => array:2 [ "nombre" => "Michael G. Heckman" "apellidos" => "MS" ] 6 => array:2 [ "nombre" => "Nancy N." "apellidos" => "Diehl" ] 7 => array:2 [ "nombre" => "Andrew P." "apellidos" => "Keaveny" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268119302637?idApp=UINPBA00004N" "url" => "/16652681/0000001700000005/v1_201905171007/S1665268119302637/v1_201905171007/en/main.assets" ] "en" => array:17 [ "idiomaDefecto" => true "titulo" => "NEK2 Promotes Hepatoma Metastasis and Serves as Biomarker for High Recurrence Risk after Hepatic Resection" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "843" "paginaFinal" => "856" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Yu-Ying Chang, Chia-Jui Yen, Shih-Huang Chan, Yi-Wen Chou, Yun-Ping Lee, Ching-Yu Bao, Chien-Jung Huang, Wenya Huang" "autores" => array:8 [ 0 => array:3 [ "nombre" => "Yu-Ying" "apellidos" => "Chang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Chia-Jui" "apellidos" => "Yen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">†</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Shih-Huang" "apellidos" => "Chan" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">‡</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Yi-Wen" "apellidos" => "Chou" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "Yun-Ping" "apellidos" => "Lee" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "Ching-Yu" "apellidos" => "Bao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] ] ] 6 => array:3 [ "nombre" => "Chien-Jung" "apellidos" => "Huang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">§</span>" "identificador" => "aff0020" ] ] ] 7 => array:4 [ "nombre" => "Wenya" "apellidos" => "Huang" "email" => array:1 [ 0 => "whuang@mail.ncku.edu.tw" ] "referencia" => array:4 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">||</span>" "identificador" => "aff0025" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">¶</span>" "identificador" => "aff0030" ] 3 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:6 [ 0 => array:3 [ "entidad" => "Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan" "etiqueta" => "*" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung. University, Tainan, Taiwan" "etiqueta" => "†" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan" "etiqueta" => "‡" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan" "etiqueta" => "§" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan" "etiqueta" => "||" "identificador" => "aff0025" ] 5 => array:3 [ "entidad" => "Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan" "etiqueta" => "¶" "identificador" => "aff0030" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "*" "correspondencia" => "Correspondence and reprint request:" ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:2 [ 0 => array:1 [ "imagen" => "gr1.jpeg" ] 1 => array:1 [ "imagen" => "gr2.jpeg" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Effects of NEK2 on cell growth and G1 to S phase cell cycle progression. <span class="elsevierStyleBold">A.</span> Cell proliferation assay of human hepatoma HuH7 cells stably expressing</span> shNek2 <span class="elsevierStyleItalic">and</span> shGFP <span class="elsevierStyleItalic">constructs. The cell numbers after 24, 48 and 72 h of growth in regular medium were counted. The KD efficiency of</span> Nek2 <span class="elsevierStyleItalic">at the time of seeding was detected by Western blotting as shown in the top left region of the graph. <span class="elsevierStyleBold">B.</span> Colony formation assay in the HuH7 cells stably expressing</span> shNek2 <span class="elsevierStyleItalic">and</span> shGFP <span class="elsevierStyleItalic">and overexpressing</span> Nek2 <span class="elsevierStyleItalic">or the vector only. Left: one set of representative images of the experimenta results; right: summary of the data from three independent experiments. <span class="elsevierStyleBold">C.</span> Cell cycle profile analysis in the</span> Nek2 <span class="elsevierStyleItalic">KD and control HuH7 cells. After synchronization with nocodazole treatments, the cell cycle profiles were analyzed immediately after the treatment (0 h) and at various time points after release from nocodazole. The percentages of cells in the G1, S and G2/Mphases are indicated. The Nek2 KD cells exhibited G1 to S phase arrest. <span class="elsevierStyleBold">D.</span> Expressions of the cell cycle regulatory factors that were affected by NEK2. Left: representative images of Western blotting and RT-PCR for the detection of the expression levels of p27, E2F1, phosphorylated AKT, and cyclin D1; right: summary of the data from three independent experiments. The p-AKT level in the bar chart indicates the ratio of the intensity of phosphorylated AKT to the total AKT. Actin served as the internal control. *: p < 0.05. **: p < 0.01. ***: p < 0.001.</span></p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="s0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0015">Introduction</span><p id="p0005" class="elsevierStylePara elsevierViewall">Hepatocellular carcinoma (HCC) is among the leading causes of deaths by cancer worldwide, with over 500,000 people affected every year.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> Understanding the etiologies and developing effective preventive strategies for HCC are very important for lowering its incidence. The main etiological factors causing HCC include chronic viral hepatitis B/C, alcohol intoxication, and chronic metabolic syndromes such as non-alcoholic fatty liver disease (NASH).<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> In countries with hepatitis B/C epidemics, most HCCs are related to chronic viral hepatitis, whereas in most American and European countries, in which viral hepatitis is not highly prevalent, non-viral factors, such as alcohol addiction and chronic metabolic syndromes, are the major causes of HCC.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a>,<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> Most early cases of HCC are not diagnosed due to the lack of observable symptoms, which leads to high recurrence rates after primary therapies.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> Therefore, developing reliable biomarkers to screen HCC patients with a high risk of recurrence after primary treatment is very important for identifying those that should engage aggressive therapeutic approaches or intensive follow ups to closely monitor possible disease progression.</p><p id="p0010" class="elsevierStylePara elsevierViewall">Thus far, curative surgical resection of the tumor is the primary therapeutic approach for HCC in the early stages, such as the Barcelona Clinic Liver Cancer (BCLC) stage A.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> For these HCC cases, the tumor genotype has been demonstrated to greatly affect the efficacy of post-surgery adjuvant therapies and the relative risk of recurrence.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> Many high-risk prognostic biomarkers have been identified for HCC.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> An important group of high-risk biomarkers includes cell cycle and mitosis factors.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> During the prophase of mitosis, centrosome duplication and separation occur and equip the cell for chromosome alignment and bipolar movement.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> The efficiency of centrosome duplication/separation has been demonstrated to be highly correlated with cell proliferation and growth.<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> Never in mitosis-related kinase 2 (NEK2), a member of the NEK serine/threonine kinase family, is an essential factor for centrosome assembly/separation and has been found to correlate with recurrence in some types of cancer.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> NEK2 interacts with the kinetochore complex component NDC80 in the control of centrosome separation and bipolar spindle formation in mitotic cells by phosphorylating centrosomal proteins, such as centrosome-associated protein (CEP) 250 and ninein-like (NINL), which results in their displacement from the centrosomes.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a>,<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> NEK2 also regulates kinetochore microtubule attachment stability and the mitotic checkpoint protein complex via the phosphorylation of NDC80, cell-division cycle (CDC) 20 and mitotic arrest deficient 2 like 1 (mAD2L1).<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a></p><p id="p0015" class="elsevierStylePara elsevierViewall">Although the role of NEK2 in centrosome regulation in mitosis had been extensively elaborated, its role in interphase remains unclear. Recent studies have documented that the nuclear localization of NEK2 occurs in neoplastic cells and is correlated with worse prognoses for colorectal cancer and testicular germ cell tumors (TGCT), which indicates that the non-centrosomal pool of NEK2 plays a unique role in tumor progression.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a>,<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> Therefore, in this study, we explored the molecular mechanism by which NEK2 regulates HCC progression through a non-centrosomal role. We found that NEK2 plays a regulatory role in the G1-S phase transition. We also found that the <span class="elsevierStyleItalic">Nek2</span> expression level is highly correlated with HCC recurrence in patients who have received hepatectomy surgeries. Therefore, NEK2 could potentially serve as a biomarker for a high risk of recurrence in post-surgery HCC patients.</p></span><span id="s0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0020">Material and Methods</span><span id="s0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0025">HCC patients, cell lines and transgenic mice</span><p id="p0020" class="elsevierStylePara elsevierViewall">Human liver tissue sections were collected from the HCC patients who were admitted to National Cheng Kung University Hospital (NCKUH) for hepatectomy surgery from 2008 to 2012. All the HCC was diagnosed by medical imaging evaluation and biopsy histopathologic reviews by two pathologists independently. The tumor staging and histologic grading followed the American Joint Committee on Cancer (AJCC) classification.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> Liver cirrhosis in the non-tumorous liver was observed with the stainings of the H&E and Masson’s trichrome methods. The patients were regularly followed-up at clinic visits every 1-3 months after a hepatic resection. HCC recurrence was detected by medical imaging and biopsy confirmed. All of the patients provided signed informed consent to use their surgical specimens for this research. And all of the protocols for this study were reviewed and approved by the NCKUH Institutional Review Board (IRB No.: ER-100-058 [04/25/2011]). A total of 109 HCC cases were recruited: 12 patients, including 6 HBV- and 6 HCV-related HCC cases, were analyzed with a cDNA microarray assay, and 97 HBV-related HCC cases (<a class="elsevierStyleCrossRef" href="#t0005">Table 1</a>) were analyzed with a quantitative reverse transcription-polymerase chain reaction (RT-PCR) assay. The human hepatoma HuH7 and SK-Hep1 cell lines were used for <span class="elsevierStyleItalic">in vitro</span> cell culture studies. <span class="elsevierStyleItalic">Nek2</span> and Plk1 <span class="elsevierStyleItalic">(polo-like kinase 1)</span> gene knockdown (KD) constructs were prepared using specific short hairpin RNAs (shRNAs) whose genes were cloned into the lentiviral vector pLKO.1, which was obtained from the National RNAi Core Facility (Academia Sinica, Taipei, Taiwan), according to a previously described protocol.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> An shRNA construct against GFP (shGFP) was used as a negative control. A HuH7 cell line with stable <span class="elsevierStyleItalic">Nek2</span> overexpression was constructed using the Tet-off gene expression system (Clontech) for the <span class="elsevierStyleItalic">Nek2</span> gene. HCC tumorous and peri-tumorous mouse liver tissue samples were dissected from 18-month-old C57BL/6 transgenic mice carrying HBx, pre-S2 mutant LHBS, and pre-S2/HBx double transgenes.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a></p><elsevierMultimedia ident="t0005"></elsevierMultimedia></span><span id="s0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0030">Cell survival and proliferation analyses</span><p id="p0025" class="elsevierStylePara elsevierViewall">Cell proliferation and colony formation assays were employed to detect the effect of NEK2 on cell proliferation. Briefly, the <span class="elsevierStyleItalic">Nek2</span> KD and vector control HuH7 cells were grown in 24-well cell culture plates at 1 × 105 cells/ well, and the cell numbers were determined using cell counting chambers after 24, 48 and 72 h of growth. For the colony formation assay, 1000 <span class="elsevierStyleItalic">Nek2</span> knockdown, overexpression and control HuH7 cells were seeded in 10-cm cell culture dishes and then grown for 14 days before harvest. The numbers of cell colonies (diameter ≥ 0.5 mm) in the culture dishes were calculated according to a previously described protocol.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> Regarding the assays of cell sensitivity to the NEK2 inhibitor pelitinib,<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> the Sk-Hep1 and HuH7 cells were treated with various doses of pelitinib (Cayman, Inc.) or else mock treated for 8 and 24 h and then subjected to the MTT [α3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide] assay according to a previously described protocol.<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a></p></span><span id="s0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0035">Cell cycle analysis</span><p id="p0030" class="elsevierStylePara elsevierViewall">The <span class="elsevierStyleItalic">Nek2</span> KD and control HuH7 cells were synchronized with nocodazole (330 nM) treatment for 16 h. The cells were then released into the regular growth medium and harvested after 4, 8, 12 and 24 h. After serial washing with phosphate-buffered saline (pH 7.4), the cells were fixed with 70% ethanol (v/v) overnight at -20 °C and then stained with a propidium iodide solution (20 <span class="elsevierStyleItalic">µ</span>g/mL propidium iodide, 0.001% Triton X-100 and 200 <span class="elsevierStyleItalic">µ</span>g/mL RNase) for 30 min at room temperature. The DNA contents of the cells were determined by flow cytometry| (BD<span class="elsevierStyleSup">TM</span> Biosciences).</p></span><span id="s0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0040">Cell migration and invasion assays</span><p id="p0035" class="elsevierStylePara elsevierViewall">HuH7 cells overexpressing or with knocked down <span class="elsevierStyleItalic">Nek2</span> were analyzed for migration activities following a previously described protocol. Briefly, 1 × 105 cells were seeded in each upper chamber of 24-well Transwell inserts (Corning, NY, USA) and grown in serum-free medium; the bottom chamber contained regular DMEM growth medium with 10% fetal bovine serum. After 24 and 48 h of incubation, the cells that adhered to the Transwell inserts were fixed with 4% formaldehyde and then stained with crystal violet. The cells on the upper surface of the Transwell membrane were wiped off using a cotton swab, and the cells that had migrated to the lower surface of the membrane were counted using Image J image processing software (NIH, USA). For the cell invasion assay, cells were grown in 24-well Transwell inserts that were precoated with 0.5% Matrigel (BD<span class="elsevierStyleSup">TM</span> Biosciences) and grown for 24 and 48 h before harvest. The invading cells were counted according to the same protocol that was used in the cell migration assay. For the wound healing assay, 2 × 10<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>/well cells were seeded in 6-well culture dishes and grown for 24 h to form a confluent monolayer. The wound was created by cutting a line on the cell monolayer using a pipette tip, and the detached cells were washed off with PBS (pH 7.4). The wound images were photographed immediately after the wound was created and after incubation for 24 h, and the wound healing rate was measured.</p></span><span id="s0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0045">Quantitative reverse transcription polymerase chain reaction</span><p id="p0040" class="elsevierStylePara elsevierViewall">Total RNA was extracted from the tumorous and adjacent non-tumorous HCC tissues using TRIzol reagent (Sigma-Aldrich) according to a previously described protocol and then reverse transcribed into cDNA.<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a> The expression levels of the <span class="elsevierStyleItalic">Nek2, FoxM1</span>, and <span class="elsevierStyleItalic">Plk1</span> genes were examined by quantitative RT-PCR (Applied Biosystems, Inc.).<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> Briefly, the liver cDNA was mixed with TaqMan™ Master Mix, the gene-specific PCR primers and TaqMan™ probes and then analyzed using an Applied Biosystems<span class="elsevierStyleSup">®</span> 7500 Real-Time PCR System. The housekeeping gene <span class="elsevierStyleItalic">Gapdh</span> was used as endogenous control for gene expression. The real-time RT-PCR data were analyzed using the StepOne™ Software (ABI).</p></span><span id="s0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0050">cDNA microarray analysis</span><p id="p0045" class="elsevierStylePara elsevierViewall">Twelve pairs of the tumorous and peri-tumorous liver tissues (6 HBV- and 6 HCV-related HCC) that were surgically resected from the HCC patients were subjected to cDNA microarray analysis (Agilent Human Gene Expression v2 4x44K Microarray Kit) to screen for genes whose expression levels were changed in the tumor. Moreover, the HCC tumorous and peri-tumorous mouse liver tissues from fourteen 18-month-old C57BL/6 transgenic mice carrying HBx, pre-S<span class="elsevierStyleInf">2</span> mutant LHBS, and pre-S<span class="elsevierStyleInf">2</span>/HBx double transgenes were similarly analyzed using an Agilent Mouse Gene Expression v2 4x44K Microarray Kit.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a> The experimental protocol and data analysis methods followed a previously described protocol.</p></span><span id="s0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0055">Multivariate regression and Cox proportional hazards statistical analyses</span><p id="p0050" class="elsevierStylePara elsevierViewall">The relative <span class="elsevierStyleItalic">Nek2</span> mRNA levels, as determined by quantitative RT-PCR, were analyzed for their correlations with various clinicopathological factors. The association of the <span class="elsevierStyleItalic">Nek2</span> level with HCC recurrence was analyzed using a Mann-Whitney test. Univariate logistic regression analysis was used to screen for the clinicopathologic factors that were correlated with HCC recurrence. Factors for which the p-value was < 0.1 (a value that is commonly used to screen for significant factors for uni- to multivariate analyses) were retained for multivariate regression analysis.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a>,<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> The HCC recurrence probabilities for different combinations of <span class="elsevierStyleItalic">Nek2</span> level and AJCC stage (i.e., well/ moderately and poorly differentiated stages) were then estimated based on Cox proportional hazards analyses. The relative risk scores of the various combinations in the groups with well/moderately and poorly differentiated tumors were computed, and Cox survival curves were developed.</p></span></span><span id="s0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0060">Results</span><p id="p0055" class="elsevierStylePara elsevierViewall">To characterize the role of NEK2 in HCC progression, its effect on the proliferation of HCC cells was first analyzed. Based on the direct cell counting and colony formation assays, the <span class="elsevierStyleItalic">Nek2</span> knockdown cells exhibited lower cell propagation and colony formation, whereas those that overexpressed <span class="elsevierStyleItalic">Nek2</span> exhibited the opposite effects, which indicated that NEK2 promotes the proliferation of hepatoma HuH7 cells (<a class="elsevierStyleCrossRef" href="#f0005">Figure 1</a>A and B). Recent studies have found that the nuclear localization of NEK2 is associated with worse prognoses for some cancers, implying that NEK2 plays a unique role in interphase. We found that, after the synchronization of cells in the M phase with nocodazole treatments, the <span class="elsevierStyleItalic">Nek2</span> KD cells exhibited delayed G1 to S phase cell cycle progression, as 8 h after the release from arrest, 69% and 49% of the <span class="elsevierStyleItalic">Nek2</span> KD and HuH7 control cells remained in G1 phase, respectively; 12 h after the release, the corresponding values were 58% and 25% (<a class="elsevierStyleCrossRef" href="#f0005">Figure 1</a>C). These findings indicate that NEK2 promotes G1 to S phase cell cycle progression. Additionally, the knockdown of <span class="elsevierStyleItalic">Nek2</span> caused decreases in cyclin D1 and E2F1 and AKT phosphorylation, as well as an increase in the cyclin-dependent kinase inhibitor p27<span class="elsevierStyleSup">kip1</span> (<a class="elsevierStyleCrossRef" href="#f0005">Figure 1</a>D).<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">24</span></a>,<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a> Taken together, these results indicate that NEK2 regulates the expression of G1-S cell cycle factors and thereby enhances G1 to S progression.</p><elsevierMultimedia ident="f0005"></elsevierMultimedia><p id="p0060" class="elsevierStylePara elsevierViewall">The effects of NEK2 on the invasion and migration of HuH7 and SK-Hep1 hepatoma cells were investigated. Analyses of the Transwell migration and wound healing assays revealed that the <span class="elsevierStyleItalic">Nek2</span> expression level was positively correlated with the cell migration and wound healing activities (<a class="elsevierStyleCrossRef" href="#f0010">Figure 2</a>A and B). Additionally, the small-molecule NEK2 inhibitor pelitinib (EKB-569), which binds to the NEK2 catalytic site with high affinity and blocks its kinase activity, was used to validate the effects of NEK2 on cell migration.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> The results revealed that while pelitinib at the concentrations used to treat the HuH7 (5 <span class="elsevierStyleItalic">μ</span>M) and SK-Hep1 (1<span class="elsevierStyleItalic">μ</span>M) cells did not cause significant cytotoxicity (<a class="elsevierStyleCrossRef" href="#f0010">Figure 2</a>C), it greatly reduced the migration activities of the HuH7 and SK-Hep1 cells, which supports the notion that NEK2 is an essential factor for HCC cell migration (<a class="elsevierStyleCrossRef" href="#f0010">Figure 2</a>D). Furthermore, analysis of the Matrigel cell invasion assays revealed that <span class="elsevierStyleItalic">Nek2</span> KD significantly decreased the invasion activities (<a class="elsevierStyleCrossRef" href="#f0010">Figure 2</a>E). In these cells, the level of NEK2 was closely correlated with the levels of invasion factors, including MMP9 and E-cadherin, which indicated that NEK2 promotes HCC invasion by regulating the expressions of these essential invasion factors (<a class="elsevierStyleCrossRef" href="#f0010">Figure 2</a>F).<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a></p><elsevierMultimedia ident="f0010"></elsevierMultimedia><p id="p0065" class="elsevierStylePara elsevierViewall">Given the findings that NEK2 contributes to the migration and invasion of HCC cells, an HCC cohort of patients who had undergone curative resection surgeries in NCKUH was recruited for the relevant clinical observations. Based on the cDNA microarray analysis (N = 12), both HBV- and HCV-related HCCs presented with increases in the <span class="elsevierStyleItalic">Nek2</span> mRNA levels in the tumors compared with the levels in the peri-tumorous liver tissues (<a class="elsevierStyleCrossRef" href="#f0015">Figure 3</a>A). Ninety-seven HBV-related HCC cases were further analyzed by real-time RT-PCR, which revealed that <span class="elsevierStyleItalic">Nek2</span> expression in the tumorous regions was much higher than that in the peri-tumorous regions (<a class="elsevierStyleCrossRef" href="#f0015">Figure 3</a>B). Additionally, the transgenic mice carrying the HBV oncogenes HBx and pre-S2 mutant LHBS and those carrying both genes all exhibited significant increases in <span class="elsevierStyleItalic">Nek2</span> expression in the HCC tumors (<a class="elsevierStyleCrossRef" href="#f0015">Figure 3</a>C). Similarly, in the Oncomine HCC database, <span class="elsevierStyleItalic">Nek2</span> induction in primary liver cancer (N = 75) is clearly demonstrated (with a median increase value of 8-fold) compared with normal livers. The correlation of the <span class="elsevierStyleItalic">Nek2</span> expression level with HCC recurrence in our cohort was further examined. Based on a multivariate regression statistical analysis, among the various clinicopathological factors analyzed, only the <span class="elsevierStyleItalic">Nek2</span> induction level in the tumor (T) compared with the adjacent non-tumorous (NT) region and the AJCC stage (stage III <span class="elsevierStyleItalic">vs.</span> I/II) were found to be correlated with the HCC recurrence rate (<a class="elsevierStyleCrossRef" href="#t0010">Table 2</a>). Moreover, among the patients with the same tumor AJCC stage and differentiation grade (i.e., poor or well/moderate), those with higher <span class="elsevierStyleItalic">Nek2</span> levels exhibited higher odds ratios for recurrence than did the other patients (<a class="elsevierStyleCrossRef" href="#t0015">Table 3</a>). The relative HCC recurrence risks in the post-hepatic resection patients were calculated based on a Cox proportional hazards analysis using the <span class="elsevierStyleItalic">Nek2</span> level (level 1 to 3), the tumor AJCC stage (I/II <span class="elsevierStyleItalic">vs.</span> III) and the differentiation grade (well/moderate <span class="elsevierStyleItalic">vs.</span> poor) as covariables. This Cox analysis revealed that, for the patients with tumors at the same AJCC stage and differentiation grade, those with higher <span class="elsevierStyleItalic">Nek2</span> levels had higher risk scores than did those with lower <span class="elsevierStyleItalic">Nek2</span> levels. The tumor AJCC stage and differentiation grade also exhibited strong correlations with the HCC recurrence risk (<a class="elsevierStyleCrossRef" href="#t0020">Table 4</a>). Cox survival curves were developed to examine the time-related HCC recurrence probabilities of the post-hepatic resection patients (<a class="elsevierStyleCrossRef" href="#f0020">Figure 4</a>A). These curves can potentially serve as a convenient method for predicting the recurrence risk of HCC patients. In parallel, a similar finding was reported in the HCC database (N = 371) of the cBioPortal for Cancer Genomics, which reported positive correlations of alterations in <span class="elsevierStyleItalic">Nek2</span> expression with disease-free and overall survival rates after hepatectomy surgeries (<a class="elsevierStyleCrossRef" href="#f0020">Figure 4</a>B). Taken together, the findings of others and ours in various HCC cohorts indicate that the <span class="elsevierStyleItalic">Nek2</span> level in HCC is a promising biomarker for a high risk of recurrence in patients following curative resection surgeries.</p><elsevierMultimedia ident="f0015"></elsevierMultimedia><elsevierMultimedia ident="t0010"></elsevierMultimedia><elsevierMultimedia ident="t0015"></elsevierMultimedia><elsevierMultimedia ident="t0020"></elsevierMultimedia><elsevierMultimedia ident="f0020"></elsevierMultimedia><p id="p0070" class="elsevierStylePara elsevierViewall">Recent studies have demonstrated that the cell cycle factors FOXM1 and PLK1 up-regulate the expression of <span class="elsevierStyleItalic">Nek2</span>, which enables <span class="elsevierStyleItalic">Nek2</span> to execute its tasks in centrosome separation and maturation.<a class="elsevierStyleCrossRefs" href="#bib0135"><span class="elsevierStyleSup">27</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> In the <span class="elsevierStyleItalic">FoxM1</span> -overexpressing cells, <span class="elsevierStyleItalic">Nek2</span> as well as <span class="elsevierStyleItalic">Plk1 and β-catenin</span> were induced, and all of these increases were abolished by the FOXM1 inhibitor thiostrepton (5 mM).<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> In the <span class="elsevierStyleItalic">Plk1</span> KD cells, <span class="elsevierStyleItalic">Nek2</span> was also greatly down-regulated (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>A). These results supported the notion that FOXM1 and PLK1 up-regulated <span class="elsevierStyleItalic">Nek2</span> expression and β-catenin-mediated invasion. Furthermore, the real-time RT-PCR analyses revealed that the expression levels of both the <span class="elsevierStyleItalic">FoxM1</span> and <span class="elsevierStyleItalic">Plk1</span> genes were greatly enhanced in the HCC tumors as was <span class="elsevierStyleItalic">Nek2</span> (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>B). However, in contrast to <span class="elsevierStyleItalic">Nek2</span>, neither <span class="elsevierStyleItalic">FoxM1</span> nor <span class="elsevierStyleItalic">Plk1</span> exhibited a positive correlation with HCC recurrence (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>C). These findings indicate that, although the NEK2 activators FOXM1 and PLK1 play some roles in activating NEK2 in HCC, NEK2 behaves as a unique oncogenic factor that promotes HCC recurrence and can potentially serve as a biomarker for a high risk of recurrence.</p><elsevierMultimedia ident="f0025"></elsevierMultimedia></span><span id="s0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0065">Discussion</span><p id="p0075" class="elsevierStylePara elsevierViewall">Currently, deep analysis and interpretation of biomarkers in cancer tissue is the most important approach for the execution of precision cancer medicine.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a> Exploration of targetable biomarkers in cancer patients is the most highlighted field in the new generation of cancer therapy approaches.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">33</span></a> In this study, using whole-genome cDNA microarray analysis of surgically resected HCC tissues, we found that the cell cycle factor gene <span class="elsevierStyleItalic">Nek2</span> was greatly overexpressed in tumors, and it was also highly correlated with the recurrence rate. In addition to its function in M phase progression, NEK2 was found to play an important role in G1 to S phase progression that is mediated by the regulation of the activities of some G1/S cell cycle checkpoints, which indicates that the function of NEK2 in interphase likely promotes cell proliferation and cancer metastasis. Interestingly, the upstream activators of NEK2, i.e., FOXM1 and PLK1, were not correlated with recurrence despite being overexpressed in most of the analyzed tumorous HCC tissues, which suggests that NEK2 is a unique factor in regulation of cancer progression.<a class="elsevierStyleCrossRefs" href="#bib0135"><span class="elsevierStyleSup">27</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> Several other studies in different populations have made similar findings that <span class="elsevierStyleItalic">Nek2</span> expression level in HCC was correlated with high proliferation, invasion, and recurrence rates.<a class="elsevierStyleCrossRefs" href="#bib0170"><span class="elsevierStyleSup">34</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">36</span></a> Therefore, the current study in our HCC cohort in Southern Taiwan has revealed consistent findings with those in other regions, and together, clearly demonstrated that NEK2 is indeed an important high-risk factor for HCC progression.</p><p id="p0080" class="elsevierStylePara elsevierViewall">The effect of NEK2 on cancer progression has been well documented mainly through its involvement in centrosome duplication and separation, which promotes mitosis progression.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> Thus, the expression of NEK2 has been reported to correlate with increased β-catenin relocalization and shortened cancer-related survival time.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> NEK2 has also been found to co-localize with nuclear splicing speckles through its interaction with and phosphorylation of the oncogenic splicing factors serine/arginine-rich splicing factor (SRSF) 1 and 2, which facilitate the splicing of the pyruvate kinase transcript and promotes aerobic glycolysis in multiple myeloma.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">37</span></a>,<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">38</span></a> Here, we also found that NEK2 enhanced AKT phosphorylation and p27<span class="elsevierStyleSup">Kip1</span> degradation, which led to the G1-to-S transition and thus demonstrated a new role of NEK2 in regulating cancer progression in interphase.</p><p id="p0085" class="elsevierStylePara elsevierViewall">The expression of and associated centrosomal functions of NEK2 have been demonstrated to be regulated through oncoprotein FOXM1-mediated transactivation activity, which has been reported to enhance G1/S and G2/M cell cycle progression, tumor initiation and metastasis.<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">29</span></a>,<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> In the current study, the expression level of <span class="elsevierStyleItalic">FoxM1</span> was found to be greatly increased in the tumorous HCCs compared with the peri-tumorous regions. In hepatoma cells, the overexpression of FoxM1 also increased the level of NEK2. However, unlike <span class="elsevierStyleItalic">Nek2, FoxM1</span> did not exhibit a significant correlation with HCC recurrence, suggesting that NEK2 mediates HCC progression through FOXM1-dependent and FOXM1-independent pathways and can serve as a unique promising biomarker for a high risk of HCC recurrence. Similarly, PLK1, which has been found to regulate NEK2 phosphorylation and thereby promote the stabilization of β-catenin and centrosome disjunction, has been found to increase the level of NEK2 in hepatoma cells.<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">27</span></a>,<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">28</span></a> Moreover, similar to <span class="elsevierStyleItalic">FoxM1</span>, the mRNA levels of <span class="elsevierStyleItalic">Plk1</span> were greatly increased in the HCC tumors; however, unlike <span class="elsevierStyleItalic">Nek2</span>, the <span class="elsevierStyleItalic">Plk1</span> levels did not exhibit a correlation with HCC recurrence. Taken together, these results support the strong and unique positive association of NEK2 with HCC recurrence that is likely mediated by its integrated effects on the activation of β-catenin transactivation and the promotion of cell cycle progression in the M- and inter-phases.</p><p id="p0090" class="elsevierStylePara elsevierViewall">In the current study, based on the Cox proportional hazard statistical analysis of the HCCs that were stratified by tumor differentiation stage, a predictive model indicating the recurrence probabilities in relation to time after surgery was developed using the AJCC tumor stage and the <span class="elsevierStyleItalic">Nek2</span> induction level as covariables. This model could potentially serve as a convenient method for identifying the HCC patients who are at a relatively high risk for recurrence after surgery and those who ought to undertake intensive adjuvant therapies. In conclusion, the results of this study identified NEK2 as an important factor for the high risk of HCC recurrence after curative hepatic resection, and together with tumor AJCC stage and differentiation status, NEK2 could serve as a promising biomarker for precision medicine.</p></span><span id="s0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0070">Abbreviations</span><p id="p0095" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="l0005"><li class="elsevierStyleListItem" id="u0005"><span class="elsevierStyleLabel">•</span><p id="p0100" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">BCLC:</span> Barcelona Clinic Liver Cancer.</p></li><li class="elsevierStyleListItem" id="u0010"><span class="elsevierStyleLabel">•</span><p id="p0105" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">CDC:</span> cell division cycle.</p></li><li class="elsevierStyleListItem" id="u0015"><span class="elsevierStyleLabel">•</span><p id="p0110" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">CEP:</span> centrosome-associated protein.</p></li><li class="elsevierStyleListItem" id="u0020"><span class="elsevierStyleLabel">•</span><p id="p0115" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">FoxMl:</span> forkhead box protein M1.</p></li><li class="elsevierStyleListItem" id="u0025"><span class="elsevierStyleLabel">•</span><p id="p0120" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">HCC:</span> hepatocellular carcinoma.</p></li><li class="elsevierStyleListItem" id="u0030"><span class="elsevierStyleLabel">•</span><p id="p0125" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">MAD2L1:</span> mitotic arrest deficient 2 like 1.</p></li><li class="elsevierStyleListItem" id="u0035"><span class="elsevierStyleLabel">•</span><p id="p0130" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">NASH:</span> non-alcoholic fatty liver disease.</p></li><li class="elsevierStyleListItem" id="u0040"><span class="elsevierStyleLabel">•</span><p id="p0135" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">NEK2:</span> NIMA-related kinase 2.</p></li><li class="elsevierStyleListItem" id="u0045"><span class="elsevierStyleLabel">•</span><p id="p0140" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">NINL:</span> ninein-like.</p></li><li class="elsevierStyleListItem" id="u0050"><span class="elsevierStyleLabel">•</span><p id="p0145" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">PLK1:</span> polo-like kinase 1.</p></li><li class="elsevierStyleListItem" id="u0055"><span class="elsevierStyleLabel">•</span><p id="p0150" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">RT-PCR:</span> reverse transcription-polymerase chain reaction.</p></li><li class="elsevierStyleListItem" id="u0060"><span class="elsevierStyleLabel">•</span><p id="p0155" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">shRNAs:</span> short hairpin RNAs.</p></li><li class="elsevierStyleListItem" id="u0065"><span class="elsevierStyleLabel">•</span><p id="p0160" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">SRSF:</span> serine/arginine-rich splicing factor.</p></li><li class="elsevierStyleListItem" id="u0070"><span class="elsevierStyleLabel">•</span><p id="p0165" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">TGCT:</span> testicular gem cell tumors.</p></li></ul></p></span><span id="s0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0075">Funding</span><p id="p0170" class="elsevierStylePara elsevierViewall">This study was supported by the Taiwan Ministry of Science and Technology (grant nos. 106-2622-B-006-003-CC2 and 106-2320-B-006-048-MY3 to WH), the Taiwan Ministry of Health and Welfare (grant no. MOHW106-TDU-B-211-113003 to CJY and WH), and the National Cheng Kung University Center of Infectious Disease and Signaling Research (grant no. D105-22004 to WH).</p></span><span id="s0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0080">Author Contributions</span><p id="p0175" class="elsevierStylePara elsevierViewall">YYC, YWC, and CYB analyzed the growth and cell cycle progression of hepatoma cells and drafted the manuscript; CJY recruited the main HCC study participants, did the clinical follow-up, and drafted the manuscript; SHC and YPL did the statistical analyses; CJH performed the analyses of the clinicopathological factors in HCC patients; and WH designed the study. All authors read and approved the final manuscript.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1191453" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abs0010" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1110663" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "s0005" "titulo" => "Introduction" ] 3 => array:3 [ "identificador" => "s0010" "titulo" => "Material and Methods" "secciones" => array:7 [ 0 => array:2 [ "identificador" => "s0015" "titulo" => "HCC patients, cell lines and transgenic mice" ] 1 => array:2 [ "identificador" => "s0020" "titulo" => "Cell survival and proliferation analyses" ] 2 => array:2 [ "identificador" => "s0025" "titulo" => "Cell cycle analysis" ] 3 => array:2 [ "identificador" => "s0030" "titulo" => "Cell migration and invasion assays" ] 4 => array:2 [ "identificador" => "s0035" "titulo" => "Quantitative reverse transcription polymerase chain reaction" ] 5 => array:2 [ "identificador" => "s0040" "titulo" => "cDNA microarray analysis" ] 6 => array:2 [ "identificador" => "s0045" "titulo" => "Multivariate regression and Cox proportional hazards statistical analyses" ] ] ] 4 => array:2 [ "identificador" => "s0050" "titulo" => "Results" ] 5 => array:2 [ "identificador" => "s0055" "titulo" => "Discussion" ] 6 => array:2 [ "identificador" => "s0060" "titulo" => "Abbreviations" ] 7 => array:2 [ "identificador" => "s0065" "titulo" => "Funding" ] 8 => array:2 [ "identificador" => "s0070" "titulo" => "Author Contributions" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2018-02-10" "fechaAceptado" => "2018-04-07" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1110663" "palabras" => array:5 [ 0 => "Hepatocellular carcinoma" 1 => "Cancer progression" 2 => "Cell cycle" 3 => "Invasion" 4 => "Hepatitis virus" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abs0010" class="elsevierStyleSection elsevierViewall"><p id="sp0065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Introduction and aim.</span> Developing reliable biomarkers for hepatocellular carcinoma (HCC) patients who are at a high risk of recurrence after curative hepatic resection is very important for determining subsequent therapeutic strategies. We investigated the role of the cell cycle factor NIMA-related kinase 2 (NEK2) in HCC progression in hepatoma cells and post-surgery patients.</p><p id="sp1065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Material and methods.</span> The effects of NEK2 on proliferation, invasion and migration of hepatoma HuH7 and SK-Hep1 cells were evaluated. In a post-surgery HCC cohort (N = 97), the <span class="elsevierStyleItalic">Nek2</span> induction levels in the tumors were examined with real-time RT-PCR analysis, and the results were analyzed for their correlations with recurrence.</p><p id="sp1165" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Results.</span> NEK2 promoted G1 to S phase cell cycle progression by causing increases in cyclin D1 and AKT phosphorylation and decreases in the cyclin-dependent kinase inhibitor p27, indicating that NEK2 plays an important role during interphase in addition to its previously identified role in M phase. NEK2 also enhanced the proliferation, migration and invasion of hepatoma cells and regulated the expression of E-cadherin and MMP9. The <span class="elsevierStyleItalic">Nek2</span> mRNA levels in the tumors were highly correlated with recurrence rates in the post-surgery HCC patients. Combined evaluation of the tumor AJCC stage and the <span class="elsevierStyleItalic">Nek2</span>level can serve as a reliable method for predicting the relative risk of HCC recurrence in these patients. Conclusions. NEK2 plays a significant role in cell cycle progression in the inter- and M-phases. NEK2 enhances HCC metastasis and is correlated with recurrence and thus can potentially serve a promising high-risk biomarker for HCC.</p></span>" ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:2 [ 0 => array:1 [ "imagen" => "gr1.jpeg" ] 1 => array:1 [ "imagen" => "gr2.jpeg" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Effects of NEK2 on cell growth and G1 to S phase cell cycle progression. <span class="elsevierStyleBold">A.</span> Cell proliferation assay of human hepatoma HuH7 cells stably expressing</span> shNek2 <span class="elsevierStyleItalic">and</span> shGFP <span class="elsevierStyleItalic">constructs. The cell numbers after 24, 48 and 72 h of growth in regular medium were counted. The KD efficiency of</span> Nek2 <span class="elsevierStyleItalic">at the time of seeding was detected by Western blotting as shown in the top left region of the graph. <span class="elsevierStyleBold">B.</span> Colony formation assay in the HuH7 cells stably expressing</span> shNek2 <span class="elsevierStyleItalic">and</span> shGFP <span class="elsevierStyleItalic">and overexpressing</span> Nek2 <span class="elsevierStyleItalic">or the vector only. Left: one set of representative images of the experimenta results; right: summary of the data from three independent experiments. <span class="elsevierStyleBold">C.</span> Cell cycle profile analysis in the</span> Nek2 <span class="elsevierStyleItalic">KD and control HuH7 cells. After synchronization with nocodazole treatments, the cell cycle profiles were analyzed immediately after the treatment (0 h) and at various time points after release from nocodazole. The percentages of cells in the G1, S and G2/Mphases are indicated. The Nek2 KD cells exhibited G1 to S phase arrest. <span class="elsevierStyleBold">D.</span> Expressions of the cell cycle regulatory factors that were affected by NEK2. Left: representative images of Western blotting and RT-PCR for the detection of the expression levels of p27, E2F1, phosphorylated AKT, and cyclin D1; right: summary of the data from three independent experiments. The p-AKT level in the bar chart indicates the ratio of the intensity of phosphorylated AKT to the total AKT. Actin served as the internal control. *: p < 0.05. **: p < 0.01. ***: p < 0.001.</span></p>" ] ] 1 => array:7 [ "identificador" => "f0010" "etiqueta" => "Figure 2." "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:3 [ 0 => array:1 [ "imagen" => "gr3.jpeg" ] 1 => array:1 [ "imagen" => "gr4.jpeg" ] 2 => array:1 [ "imagen" => "gr5.jpeg" ] ] "descripcion" => array:1 [ "en" => "<p id="sp0015" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Enhancement of cell migration and invasion by NEK2 in hepatoma cells. <span class="elsevierStyleBold">A.</span> The Transwell migration assay to detect the effect of NEK2 on the migration abilities of the HuH7 and SK-Hep1 hepatoma cells. The Nek2 KD</span> (shNek2) <span class="elsevierStyleItalic">and control (shGFP) cells, as well as the cells overexpressing Nek2</span> (Nek2 <span class="elsevierStyleItalic">OE) and the plasmid vector were analyzed. Left: representative images of the migrated cells among the various analyzed cell types; right: quantitation of the migrated cells summarized over three independent experiments. <span class="elsevierStyleBold">B.</span> Wound healing assays. The</span> Nek2 <span class="elsevierStyleItalic">KD and overexpressing cells were analyzed for their migration activities toward a pre-cut wound in confluent cell cultures. Left: representative images of the data before (0 h) and after 24 h of incubation (24 h). The dotted lines indicate the edges of the wounds. Right: measurement of the percent of the areas of the cell wounds that were infiltrated by cell migration after 24 h of incubation summarized over the data from three independent experiments. <span class="elsevierStyleBold">C.</span> Cytotoxicities of pelitinib to the HuH7 and SK-Hep1 cells as detected with MTT assays. Pelitinib was examined for its cytotoxicity at the concentrations used in the Transwell migration assays of the HuH7 (1 μM) and SK-Hep1 (5 μM) cells. The bar charts represent data summarized from three independent experiments. At the indicated dosages, pelitinib did not cause significant cell death. <span class="elsevierStyleBold">D.</span> Inhibition of cell migration by the NEK2 inhibitor pelitinib as demonstrated in the Transwell migration assays with the HuH7 (1 μM) and SK-Hep1 (5 μM) cells. The left and right panels display representative images and quantitation of the data from three independent experiments, respectively.</span> E. The Matrigel invasion assay to detect the cell invasion activities in the Nek2 KD (shNek2), control (shGFP) HuH7 and SK-Hep1 cells. Left, representative images of the cells that migrated through the Matrigel; right, quantitation of the invaded cells summarized from the data from three independent experiments. F. Western blotting to detect the levels of the cell invasion markers E-cadherin and MMP9, which are regulated by NEK2. Nek2 KD (shNek2) caused a significant decrease in MMP9 and an increase in E-cadherin. The left and right panels display representative images and quantitation of the data from three independent experiments (mean ± S.D.), respectively. **: p < 0.01. ***: p < 0.001.</p>" ] ] 2 => array:7 [ "identificador" => "f0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 3717 "Ancho" => 4404 "Tamanyo" => 445056 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0030" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Overexpression of</span> Nek2 <span class="elsevierStyleItalic">in tumors in HCC patients and HBV HBx/pre-S<span class="elsevierStyleInf">2</span> mutant LHBS transgenic mice.</span> Nek2 <span class="elsevierStyleItalic">expressions were detected in the HCC patients (N = 12) by cDNA microarray and in the HBV-related HCC patients (N = 97) and HBx/pre-S<span class="elsevierStyleInf">2</span> mutant LHBS transgenic mice by real-time RT-PCR. <span class="elsevierStyleBold">A.</span></span> Nek2 <span class="elsevierStyleItalic">overexpression in human HCC as detected with the cDNA microarray analysis. Both the HBV- (N = 6) and HCV-related (N = 6) HCCs exhibited significant increases in</span> Nek2 <span class="elsevierStyleItalic">mRNA in the tumors. The data are indicated by the mean ± the S. E. M. <span class="elsevierStyleBold">B.</span> Real-time RT-PCR to detect the</span> Nek2 <span class="elsevierStyleItalic">mRNA levels in the tumorous (T) and adjacent non-tumorous (NT) regions in the HCC cases (N = 97). The data are indicated as the relative mRNA levels of</span> Nek2 <span class="elsevierStyleItalic">to the</span> Gapdh <span class="elsevierStyleItalic">internal control gene in the same patient. The bar represents the median value for the set of samples. (C) Real-time RT-PCR to detect</span> Nek2 <span class="elsevierStyleItalic">expressions in the HCCs in the HBx (N = 4), pre-S<span class="elsevierStyleInf">2</span> mutant LHBS (N = 5), HBx/pre-S<span class="elsevierStyleInf">2</span> mutant LHBS double (N = 5) transgenic, and control C57BL/6 (N = 5) mice. <span class="elsevierStyleBold">D.</span> Overexpression of</span> Nek2 <span class="elsevierStyleItalic">in the human primary HCCs and the corresponding normal liver tissues (N =75) as presented in the Oncomine™ Cancer Microarray Database. *: p < 0.05. ***: p < 0.001.</span></p>" ] ] 3 => array:7 [ "identificador" => "f0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 3971 "Ancho" => 4404 "Tamanyo" => 570346 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0035" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Correlation of</span> Nek2 <span class="elsevierStyleItalic">expression with HCC recurrence. <span class="elsevierStyleBold">A</span>. Cox survival curves for the HCC cases shown according to the risk scores of the AJCC stages (S) and</span> Nek2 expression levels (G, also summarized in <a class="elsevierStyleCrossRef" href="#t0020">Table 4</a>). In the well/moderately and poorly differentiated HCC group, both the AJCC stage and Nek2 <span class="elsevierStyleItalic">expression are correlated with the recurrence probabilities after curative hepatic resections. <span class="elsevierStyleBold">B.</span> Correlations of the alterations of</span> Nek2 <span class="elsevierStyleItalic">expression in the HCCs with the disease-free (left) and overal survivals as presented in the HCC database of cBioPortal for Cancer Genomics. The threshold for gene expression alteration (Z-score) in a tumor was a 1.8-fold increase or decrease compared with the level expressed in the peri-tumorous region. Both of HCC diseasefree (p value 0.0023) and overall (p value 0.0152) survival rates are correlated with alterations of Nek2 expression in the tumor.</span></p>" ] ] 4 => array:7 [ "identificador" => "f0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 3950 "Ancho" => 4404 "Tamanyo" => 528582 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0040" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">The levels of the NEK2 activators FOXM1 and PLK1 are increased in HCC but are not correlated with recurrence. <span class="elsevierStyleBold">A.</span></span> FoxM1 <span class="elsevierStyleItalic">was over-expressed by plasmid transfection in HuH7 cells. Western blotting and RT-PCR assays revealed that</span> FoxM1 <span class="elsevierStyleItalic">overexpression</span> (FoxM1 <span class="elsevierStyleItalic">OE) increased the levels of NEK2, PLK1, and ß-catenin, whereas the FOXM1 inhibitor thiostrepton (5 mM) decreased these levels. Knockdown of</span> Plk1 <span class="elsevierStyleItalic">with shRNA aso caused a decrease in NEK2. Left, representative images of the experimental results. Right, quantitation of the data summarized from three independent experiments. Control, mock-treated cells; experiment, the cells transfected with exogenous gene or KD constructs or treated with thiostrepton. <span class="elsevierStyleBold">B.</span> Expressions of</span> FoxM1 <span class="elsevierStyleItalic">and</span> Plk1 <span class="elsevierStyleItalic">in the tumorous (T) and adjacent non-tumorous (NT) regions of the HCCs (N = 97) as detected by real-time RT-PCR. The levels of the</span> FoxM1 <span class="elsevierStyleItalic">and</span> Plk1 <span class="elsevierStyleItalic">mRNAs were normalized to that of the housekeeping gene</span> Gapdh. <span class="elsevierStyleItalic">*:p < 0.05. **: p < 0.01. ***:p < 0.001. <span class="elsevierStyleBold">C.</span> Neither the</span> FoxM1 <span class="elsevierStyleItalic">nor the</span> Plk1 <span class="elsevierStyleItalic">mRNA level in the tumor (T) compared with the level in the non-tumorous (NT) region was correlated with HCC recurrence after curative hepatic resections as indicated by Fisher’s exact statistical tests.</span></p>" ] ] 5 => array:7 [ "identificador" => "t0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Characteristic \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Case N \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Gender (male/female) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">74/23 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Age [mean (range), year] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">56 (27-80) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AFP<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> [median (range), ng/mL] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.3 (1-6.05 × 10<span class="elsevierStyleSup">4</span>) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AST<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> [median (range), U/L] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">43 (24-205) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ALT<a class="elsevierStyleCrossRef" href="#tblfn0015"><span class="elsevierStyleSup">c</span></a> [median (range), U/L] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40 (12.271) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AJCC stage (I/II/III) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">41/38/18 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tumor differentiation grade (W/M/P/NA)<a class="elsevierStyleCrossRef" href="#tblfn0020"><span class="elsevierStyleSup">d</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19/68/7/3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Vascular invasion (yes/no) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">33/64 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cirrhosis (yes/no) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47/50 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2033459.png" ] ] ] "notaPie" => array:4 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Alpha-fetal protein</p>" ] 1 => array:3 [ "identificador" => "tblfn0010" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara" id="npar0010">Aspartate transaminase</p>" ] 2 => array:3 [ "identificador" => "tblfn0015" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara" id="npar0015">Alanine transaminase</p>" ] 3 => array:3 [ "identificador" => "tblfn0020" "etiqueta" => "d" "nota" => "<p class="elsevierStyleNotepara" id="npar0020">W/M/P: well/moderately/poorly differentiated tumors. NA: not available</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0045" class="elsevierStyleSimplePara elsevierViewall">Demographic characteristics of the HBV-related HCC cases (n = 97) in this study.</p>" ] ] 6 => array:7 [ "identificador" => "t0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Univariate</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Multivariate</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hazard ratio (95% Cl)<a class="elsevierStyleCrossRef" href="#tblfn0025"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">p</span> value \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hazard ratio (95% Cl) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">p</span> value \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="5" align="left" valign="top"><span class="elsevierStyleItalic">Nek2</span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">T/NT<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.11 (0.98 - 1.25) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.075 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.13 (1.01-1.28) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.047 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="5" align="left" valign="top">Nek2</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">T/Gadph<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">c</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.13 (0.95-1.35) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.159 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ALT<a class="elsevierStyleCrossRef" href="#tblfn0040"><span class="elsevierStyleSup">d</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.91 (0.61-1.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.648 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AST<a class="elsevierStyleCrossRef" href="#tblfn0045"><span class="elsevierStyleSup">e</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.85 (1.06-3.23) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.031 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.25 (0.71-2.19) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.443 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="5" align="left" valign="top">Cirrhosis</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Yes <span class="elsevierStyleItalic">vs.</span> no \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.86 (0.51-1.46) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.578 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="5" align="left" valign="top">Gender</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Male <span class="elsevierStyleItalic">vs.</span> female \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.93 (0.51-1.68) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.802 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="5" align="left" valign="top">Histological grade</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Moderate <span class="elsevierStyleItalic">vs.</span> well Poor <span class="elsevierStyleItalic">vs.</span> well \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.12 (0.54-2.32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.761 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.58 (0.26-1.32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.197 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Poor vs. well \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.82 (1.40-10.39) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.009 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.32 (0.40-4.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.651 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="5" align="left" valign="top">AJCC stage</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">II <span class="elsevierStyleItalic">vs.</span> I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.58 (0.84-2.98) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.158 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.31 (0.64-2.68) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.453 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">III <span class="elsevierStyleItalic">vs.</span> I/II \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.75 (2.85-11.60) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">< 0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.49 (2.44-12.35) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">< 0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2033460.png" ] ] ] "notaPie" => array:5 [ 0 => array:3 [ "identificador" => "tblfn0025" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0025">CI: confidence interval.</p>" ] 1 => array:3 [ "identificador" => "tblfn0030" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara" id="npar0030">Nek2 mRNA levels in the tumorous (T) vs. adjacent non-tumorous region (NT).</p>" ] 2 => array:3 [ "identificador" => "tblfn0035" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara" id="npar0035">mRNA levels of Nek2 (T) vs. the house keeping Gapdh gene in the tumor.</p>" ] 3 => array:3 [ "identificador" => "tblfn0040" "etiqueta" => "d" "nota" => "<p class="elsevierStyleNotepara" id="npar0040">ALT: alanine transaminase.</p>" ] 4 => array:3 [ "identificador" => "tblfn0045" "etiqueta" => "e" "nota" => "<p class="elsevierStyleNotepara" id="npar0045">Aspartate transaminase.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0050" class="elsevierStyleSimplePara elsevierViewall">Multivariate regression analysis of the correlations of the various clinicopathologic factors with HCC recurrence.</p>" ] ] 7 => array:7 [ "identificador" => "t0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Level \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Odds ratio \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">p</span>-value \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Log <span class="elsevierStyleItalic">Nek2</span> T/NT<a class="elsevierStyleCrossRef" href="#tblfn0050"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.172 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.048 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.495 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.006 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Differentiation grade \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Well/moderate poor \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.319 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.01 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AJCC stage \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">I/II \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">III \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.710 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">< 0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2033458.png" ] ] ] "notaPie" => array:1 [ 0 => array:3 [ "identificador" => "tblfn0050" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0050"><span class="elsevierStyleItalic">Nek2 induction levels in the tumorous (T) compared with the adjacent non-tumorous (NT) regions: 1</span>, LogNek2 <span class="elsevierStyleItalic">T/NT < 0.0112; 2, 0.0112-3.67; 3, > 3.67.</span></p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0055" class="elsevierStyleSimplePara elsevierViewall">Odds ratios for HCC recurrence based on the AJCC stage, <span class="elsevierStyleItalic">Nek2</span> level and differentiation grade (Fisher’s exact test).</p>" ] ] 8 => array:7 [ "identificador" => "t0020" "etiqueta" => "Table 4" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"><span class="elsevierStyleItalic">Nek2</span> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Level \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">AJCC stage well/moderate<a class="elsevierStyleCrossRef" href="#tblfn0055"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Risk score poor<a class="elsevierStyleCrossRef" href="#tblfn0055"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">I/II<a class="elsevierStyleCrossRef" href="#tblfn0060"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.319 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">I/II<a class="elsevierStyleCrossRef" href="#tblfn0060"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.172 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.491 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">I/II<a class="elsevierStyleCrossRef" href="#tblfn0060"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.495 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.814 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">III \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.710 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.029 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">III \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.882 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.201 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">III \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8.205 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11.524 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2033457.png" ] ] ] "notaPie" => array:2 [ 0 => array:3 [ "identificador" => "tblfn0055" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara" id="npar0055">Tumor differentiation grade.</p>" ] 1 => array:3 [ "identificador" => "tblfn0060" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara" id="npar0060">Tumor AJCC stage I or II.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0060" class="elsevierStyleSimplePara elsevierViewall">Cox proportional hazards risk scores for HCC recurrence based on the AJCC stage, <span class="elsevierStyleItalic">Nek2</span> level, and differentiation grade.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bs0010" "bibliografiaReferencia" => array:38 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global cancer statistics" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Jemal A." 1 => "Bray F." 2 => "Center M.M." 3 => "Ferlay J." 4 => "Ward E." 5 => "Forman D." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3322/caac.20107" "Revista" => array:6 [ "tituloSerie" => "CA Cancer J Clin" "fecha" => "2011" "volumen" => "61" "paginaInicial" => "69" "paginaFinal" => "90" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21296855" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatocellular carcinoma epidemiology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Bosetti C." 1 => "Turati F." 2 => "La Vecchia C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bpg.2014.08.007" "Revista" => array:6 [ "tituloSerie" => "Best Pract Res Clin Gastroenterol" "fecha" => "2014" "volumen" => "28" "paginaInicial" => "753" "paginaFinal" => "770" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25260306" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatitis B virus and hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Arbuthnot P." 1 => "Kew M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2613.2001.iep0082-0077-x" "Revista" => array:6 [ "tituloSerie" => "Int J Exp Pathol" "fecha" => "2001" "volumen" => "82" "paginaInicial" => "77" "paginaFinal" => "100" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11454100" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. EASL Conference" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Bruix J." 1 => "Sherman M." 2 => "Llovet J.M." 3 => "Beaugrand M." 4 => "Lencioni R." 5 => "Burroughs A.K." 6 => "Christensen E." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Hepatol" "fecha" => "2001" "volumen" => "35" "paginaInicial" => "421" "paginaFinal" => "430" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11592607" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Zhu K." 1 => "Dai Z." 2 => "Zhou J." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Biomark Res" "fecha" => "2013" "volumen" => "1" "paginaInicial" => "10" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cell cycle regulators and human hepatocarcinogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Hui A.M." 1 => "Makuuchi M." 2 => "Li X." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Hepato Gastroenterology" "fecha" => "1998" "volumen" => "45" "paginaInicial" => "1635" "paginaFinal" => "1642" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9840120" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The centrosome in higher organisms: structure, composition, and duplication" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Ou Y." 1 => "Rattner J.B." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0074-7696(04)38003-4" "Revista" => array:6 [ "tituloSerie" => "Int Rev Cytol" "fecha" => "2004" "volumen" => "238" "paginaInicial" => "119" "paginaFinal" => "182" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15364198" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The centrosome in normal and transformed cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Wang Q." 1 => "Hirohashi Y." 2 => "Furuuchi K." 3 => "Zhao H." 4 => "Liu Q." 5 => "Zhang H." 6 => "Murali R." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1089/1044549041562276" "Revista" => array:6 [ "tituloSerie" => "DNA Cell Biol" "fecha" => "2004" "volumen" => "23" "paginaInicial" => "475" "paginaFinal" => "489" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15307950" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cell cycle regulation by the NEK family of protein kinases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Fry A.M." 1 => "O’Regan L." 2 => "Sabir S.R." 3 => "Bayliss R." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1242/jcs.111195" "Revista" => array:6 [ "tituloSerie" => "J Cell Sci" "fecha" => "2012" "volumen" => "125" "paginaInicial" => "4423" "paginaFinal" => "4433" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23132929" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nek2 kinase in chromosome instability and cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Hayward D.G." 1 => "Fry A.M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.canlet.2005.06.017" "Revista" => array:6 [ "tituloSerie" => "Cancer Lett" "fecha" => "2006" "volumen" => "237" "paginaInicial" => "155" "paginaFinal" => "166" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16084011" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Role of NEK2A in human cancer and its therapeutic potentials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Xia J." 1 => "Franqui Machin R." 2 => "Gu Z." 3 => "Zhan F." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2015/862461" "Revista" => array:5 [ "tituloSerie" => "BioMed Res Int" "fecha" => "2015" "volumen" => "2015" "paginaInicial" => "862461" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25705694" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Wei R." 1 => "Ngo B." 2 => "Wu G." 3 => "Lee W.H." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1091/mbc.E11-01-0012" "Revista" => array:6 [ "tituloSerie" => "Mol Biol Cell" "fecha" => "2011" "volumen" => "22" "paginaInicial" => "3584" "paginaFinal" => "3594" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21832156" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nip2/centrobin may be a substrate of Nek2 that is required for proper spindle assembly during mitosis in early mouse embryos" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Sonn S." 1 => "Jeong Y." 2 => "Rhee K." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrd.20990" "Revista" => array:6 [ "tituloSerie" => "Mol Reprod Dev" "fecha" => "2009" "volumen" => "76" "paginaInicial" => "587" "paginaFinal" => "592" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19117032" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nek2 targets the mitotic checkpoint proteins Mad2 and Cdc20: a mechanism for aneuploidy in cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Liu Q." 1 => "Hirohashi Y." 2 => "Du X." 3 => "Greene M.I." 4 => "Wang Q." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.yexmp.2009.12.004" "Revista" => array:6 [ "tituloSerie" => "Exp Mol Pathol" "fecha" => "2010" "volumen" => "88" "paginaInicial" => "225" "paginaFinal" => "233" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20034488" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Increased expression and nuclear localization of the centrosomal kinase Nek2 in human testicular seminomas" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Barbagallo F." 1 => "Paronetto M.P." 2 => "Franco R." 3 => "Chieffi P." 4 => "Dolci S." 5 => "Fry A.M." 6 => "Geremia R." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Pathol" "fecha" => "2009" "volumen" => "217" "paginaInicial" => "431" "paginaFinal" => "441" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Overexpression of the Nek2 kinase in colorectal cancer correlates with beta-catenin relocalization and shortened cancer-specific survival" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Neal C.P." 1 => "Fry A.M." 2 => "Moreman C." 3 => "McGregor A." 4 => "Garcea G." 5 => "Berry D.P." 6 => "Manson M.M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jso.23717" "Revista" => array:6 [ "tituloSerie" => "J Surg Oncol" "fecha" => "2014" "volumen" => "110" "paginaInicial" => "828" "paginaFinal" => "838" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25043295" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Moffat J." 1 => "Grueneberg D.A." 2 => "Yang X." 3 => "Kim S.Y." 4 => "Kloepfer A.M." 5 => "Hinkle G." 6 => "Piqani B." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2006.01.040" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2006" "volumen" => "124" "paginaInicial" => "1283" "paginaFinal" => "1298" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16564017" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses the pro-oncogenic effects induced by hepatitis B virus pre-S2 mutant oncoprotein and represents a potential chemopreventive agent in high-risk chronic HBV patients" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Hsieh Y.H." 1 => "Su I.J." 2 => "Yen C.J." 3 => "Tsai T.F." 4 => "Tsai H.W." 5 => "Tsai H.N." 6 => "Huang Y.J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/carcin/bgs365" "Revista" => array:6 [ "tituloSerie" => "Carcinogenesis" "fecha" => "2013" "volumen" => "34" "paginaInicial" => "475" "paginaFinal" => "485" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23172669" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Centrosomal kinase Nek2 cooperates with oncogenic pathways to promote metastasis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Das T.K." 1 => "Dana D." 2 => "Paroly S.S." 3 => "Perumal S.K." 4 => "Singh S." 5 => "Jhun H." 6 => "Pendse J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/oncsis.2013.34" "Revista" => array:5 [ "tituloSerie" => "Oncogenesis" "fecha" => "2013" "volumen" => "2" "paginaInicial" => "e69" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24018644" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Hsieh H.C." 1 => "Hsieh Y.H." 2 => "Huang Y.H." 3 => "Shen F.C." 4 => "Tsai H.N." 5 => "Tsai J.H." 6 => "Lai Y.T." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbrc.2005.07.067" "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "2005" "volumen" => "335" "paginaInicial" => "181" "paginaFinal" => "187" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16105547" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Hsieh Y.H." 1 => "Chang Y.Y." 2 => "Su I.J." 3 => "Yen C.J." 4 => "Liu Y.R." 5 => "Liu R.J." 6 => "Hsieh W.C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/path.4531" "Revista" => array:6 [ "tituloSerie" => "J Pathol" "fecha" => "2015" "volumen" => "236" "paginaInicial" => "337" "paginaFinal" => "347" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25775999" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22." "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Hosmer DW, Lemeshow S. Applied Logistic Regression. 3rd ed. John Wiley & Sons, Inc; 2000." ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23." "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Yen CJ, Ai YL, Tsai HW, Chan SH, Su IJ, Yen CS, Cheng YC, et al. Hepatitis B virus surface gene pr-S2 mutant as a highrisk serum marker for hepatoma recurrence after curative hepatic resection. <span class="elsevierStyleItalic">Hepatology</span> [In press] 2018." ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "p27KIP1, an inhibitor of cyclin-dependent kinases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Koff A." 1 => "Polyak K." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Prog Cell Cycle Res" "fecha" => "1995" "volumen" => "1" "paginaInicial" => "141" "paginaFinal" => "147" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9552359" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Hsieh Y.H." 1 => "Su I.J." 2 => "Wang H.C." 3 => "Tsai J.H." 4 => "Huang Y.J." 5 => "Chang W.W." 6 => "Lai M.D." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1158/1541-7786.MCR-07-0098" "Revista" => array:6 [ "tituloSerie" => "Mol Cancer Res" "fecha" => "2007" "volumen" => "5" "paginaInicial" => "1063" "paginaFinal" => "1072" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17951406" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Matrix metalloproteinases: regulators of the tumor microenvironment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Kessenbrock K." 1 => "Plaks V." 2 => "Werb Z." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2010.03.015" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2010" "volumen" => "141" "paginaInicial" => "52" "paginaFinal" => "67" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20371345" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Plk1 controls the Nek2A-PP1ä antagonism in centrosome disjunction" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Mardin B.R." 1 => "Agircan F.G." 2 => "Lange C." 3 => "Schiebel E." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Curr Biol" "fecha" => "2011" "volumen" => "21" "paginaInicial" => "1145" "paginaFinal" => "1151" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nek2 phosphorylates and stabilizes beta-catenin at mitotic centrosomes downstream of Plk1" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Mbom B.C." 1 => "Siemers K.A." 2 => "Ostrowski M.A." 3 => "Nelson W.J." 4 => "Barth A.I." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1091/mbc.E13-06-0349" "Revista" => array:6 [ "tituloSerie" => "Mol Biol Cell" "fecha" => "2014" "volumen" => "25" "paginaInicial" => "977" "paginaFinal" => "991" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24501426" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Forkhead box M1B is a determinant of rat susceptibility to hepatocarcinogenesis and sustains ERK activity in human HCC" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Calvisi D.F." 1 => "Pinna F." 2 => "Ladu S." 3 => "Pellegrino R." 4 => "Simile M.M." 5 => "Frau M." 6 => "De Miglio M.R." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/gut.2008.152652" "Revista" => array:6 [ "tituloSerie" => "Gut" "fecha" => "2009" "volumen" => "58" "paginaInicial" => "679" "paginaFinal" => "687" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19136513" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Wonsey D.R." 1 => "Follettie M.T." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Cancer Res" "fecha" => "2005" "volumen" => "65" "paginaInicial" => "5181" "paginaFinal" => "5189" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Jiang L." 1 => "Wang P." 2 => "Chen L." 3 => "Chen H." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Int J Clin Exp Pathol" "fecha" => "2014" "volumen" => "7" "paginaInicial" => "5450" "paginaFinal" => "5460" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25337187" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Garofalo A." 1 => "Sholl L." 2 => "Reardon B." 3 => "Taylor-Weiner A." 4 => "Amin-Mansour A." 5 => "Miao D." 6 => "Liu D." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Genome Med" "fecha" => "2016" "volumen" => "8" "paginaInicial" => "79" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Strategies for modern biomarker and drug development in oncology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Smith A.D." 1 => "Roda D." 2 => "Yap T.A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13045-014-0070-8" "Revista" => array:5 [ "tituloSerie" => "J Hematol Oncol" "fecha" => "2014" "volumen" => "7" "paginaInicial" => "70" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25277503" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "34." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NEK2 serves as a prognostic biomarker for hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Li G." 1 => "Zhong Y." 2 => "Shen Q." 3 => "Zhou Y." 4 => "Deng X." 5 => "Li C." 6 => "Chen J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/ijo.2017.3837" "Revista" => array:6 [ "tituloSerie" => "Int J Oncol" "fecha" => "2017" "volumen" => "50" "paginaInicial" => "405" "paginaFinal" => "413" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28101574" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "35." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High NEK2 expression is a predictor of tumor recurrence in hepatocellular carcinoma patients after hepatectomy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Wubetu G.Y." 1 => "Morine Y." 2 => "Teraoku H." 3 => "Yoshikawa M." 4 => "Ishikawa D." 5 => "Yamada S." 6 => "Ikemoto T." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Anticancer Res" "fecha" => "2016" "volumen" => "36" "paginaInicial" => "757" "paginaFinal" => "762" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26851035" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "36." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatoma cell functions modulated by NEK2 are associated with liver cancerprogression" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Wu S.M." 1 => "Lin S.L." 2 => "Lee K.Y." 3 => "Chuang H.C." 4 => "Feng P.H." 5 => "Cheng W.L." 6 => "Liao C.J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ijc.30559" "Revista" => array:6 [ "tituloSerie" => "Int J Cancer" "fecha" => "2017" "volumen" => "140" "paginaInicial" => "1581" "paginaFinal" => "1596" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27925179" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "37." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Naro C." 1 => "Barbagallo F." 2 => "Chieffi P." 3 => "Bourgeois C.F." 4 => "Paronetto M.P." 5 => "Sette C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gkt1307" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2014" "volumen" => "42" "paginaInicial" => "3218" "paginaFinal" => "3227" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24369428" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "38." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Gu Z." 1 => "Xia J." 2 => "Xu H.W." 3 => "Frech I." 4 => "Tricot G." 5 => "Zhan F.H." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13045-017-0392-4" "Revista" => array:5 [ "tituloSerie" => "J Hematol Oncol" "fecha" => "2017" "volumen" => "10" "paginaInicial" => "17" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28086949" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/16652681/0000001700000005/v1_201905171007/S1665268119302649/v1_201905171007/en/main.assets" "Apartado" => array:4 [ "identificador" => "77721" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Article" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/16652681/0000001700000005/v1_201905171007/S1665268119302649/v1_201905171007/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268119302649?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 6 | 0 | 6 |
2024 October | 20 | 2 | 22 |
2024 September | 13 | 1 | 14 |
2024 August | 19 | 2 | 21 |
2024 July | 24 | 6 | 30 |
2024 June | 27 | 7 | 34 |
2024 May | 38 | 1 | 39 |
2024 April | 38 | 6 | 44 |
2024 March | 56 | 1 | 57 |
2024 February | 34 | 9 | 43 |
2024 January | 26 | 2 | 28 |
2023 December | 13 | 10 | 23 |
2023 November | 25 | 6 | 31 |
2023 October | 33 | 9 | 42 |
2023 September | 18 | 2 | 20 |
2023 August | 15 | 4 | 19 |
2023 July | 22 | 6 | 28 |
2023 June | 35 | 4 | 39 |
2023 May | 71 | 6 | 77 |
2023 April | 71 | 2 | 73 |
2023 March | 45 | 1 | 46 |
2023 February | 39 | 1 | 40 |
2023 January | 26 | 2 | 28 |
2022 December | 14 | 4 | 18 |
2022 November | 15 | 6 | 21 |
2022 October | 17 | 8 | 25 |
2022 September | 15 | 7 | 22 |
2022 August | 14 | 16 | 30 |
2022 July | 15 | 7 | 22 |
2022 June | 18 | 9 | 27 |
2022 May | 19 | 6 | 25 |
2022 April | 23 | 8 | 31 |
2022 March | 20 | 9 | 29 |
2022 February | 15 | 3 | 18 |
2022 January | 24 | 9 | 33 |
2021 December | 10 | 8 | 18 |
2021 November | 34 | 7 | 41 |
2021 October | 55 | 15 | 70 |
2021 September | 42 | 31 | 73 |
2021 August | 9 | 6 | 15 |
2021 July | 12 | 12 | 24 |
2021 June | 10 | 11 | 21 |
2021 May | 18 | 9 | 27 |
2021 April | 24 | 15 | 39 |
2021 March | 75 | 5 | 80 |
2021 February | 7 | 5 | 12 |
2021 January | 13 | 10 | 23 |
2020 December | 15 | 12 | 27 |
2020 November | 10 | 10 | 20 |
2020 October | 12 | 8 | 20 |
2020 September | 14 | 4 | 18 |
2020 August | 16 | 6 | 22 |
2020 July | 10 | 7 | 17 |
2020 June | 11 | 4 | 15 |
2020 May | 16 | 6 | 22 |
2020 April | 5 | 2 | 7 |
2020 March | 8 | 5 | 13 |
2020 February | 19 | 7 | 26 |
2020 January | 14 | 9 | 23 |
2019 December | 18 | 6 | 24 |
2019 November | 16 | 2 | 18 |
2019 October | 16 | 4 | 20 |
2019 September | 14 | 7 | 21 |
2019 August | 4 | 3 | 7 |
2019 July | 9 | 6 | 15 |
2019 June | 18 | 8 | 26 |
2019 May | 16 | 14 | 30 |