metricas
covid
Buscar en
Clinics
Toda la web
Inicio Clinics Seroprevalence of SARS-CoV-2 in Brazil: A systematic review and meta-analysis
Journal Information
Vol. 78.
(January - December 2023)
Share
Share
Download PDF
More article options
Visits
1009
Vol. 78.
(January - December 2023)
Original articles
Full text access
Seroprevalence of SARS-CoV-2 in Brazil: A systematic review and meta-analysis
Visits
1009
Gerusa Maria Figueiredoa,
Corresponding author
gfigueiredo@usp.br

Corresponding author.
, Fátima Mitiko Tenganb, Sergio Roberto Camposa, Expedito José Lunaa
a Departamento de Medicina Preventiva da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
b Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
Highlights

  • The seroprevalence of SARS-CoV-2 antibodies in Brazil in 2020 was 11%.

  • Seroprevalence increased with time, 1% in the first and 83% in the last quarter of the year.

  • Seroprevalence was higher in the Northern region, decreasing as one moves south.

This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (1)
Tables (3)
Table 1. Estimation of the prevalence of SARS-CoV-2 in studies conducted in Brazil.
Table 2. Seroprevalence of anti-SARS-CoV-2 antibodies in Brazil, in selected subgroup [9]..
Table 3. Multivariate meta-regression analysis of the anti-SARS-CoV-2 seroprevalence studies in Brazil.
Show moreShow less
Additional material (1)
Abstract
Objectives

To summarize the data on SARS-CoV-2 seroprevalence surveys conducted in Brazil before the introduction of vaccines

Methods

The authors conducted a systematic review and meta-analysis on the seroprevalence of SARS-CoV-2 infection in Brazil. The present review followed the PRISMA guidelines. The authors searched Medline, Embase, and LILACS databases for serologic surveys conducted in the Brazilian population, in the period from 01/10/2019 to 07/11/2021, without language restrictions. The authors included studies that presented data concerning SARS-CoV-2 antibodies seroprevalence in Brazil and had a sample size ≥50 individuals. Considering the expected heterogeneity between studies, all analyses were performed using the random effects model, and heterogeneity was assessed using the I2 statistic

Results

Of 586 publications identified in the initial searches, 54 were included in the review and meta-analysis, which contained the results of 135 surveys, with 336,620 participants. The estimated seroprevalence was 11.0%, ranging from 1.0% to 83.0%, with a substantial heterogeneity (I2 = 99.55%). In subgroup analyses, the authors observed that the prevalence of SARS-CoV-2 antibodies was 13.0% in blood donors, 9.0% in the population-based surveys, 13% in schoolchildren, and 11.0% in healthcare workers.

Conclusions

Seroprevalence increases over time. Large differences were observed among the regions of the country. It was higher in the Northern region, decreasing towards the South. The present results may contribute to the analysis of the spread of SARS-CoV-2 infection in the Brazilian population before vaccination, one of the factors that may be influencing the clinical presentation of COVID-19 cases related to the new variants, as well as the effectiveness of the vaccination program.

Keywords:
Seroprevalence
SARS-CoV-2
Systematic review
Meta-analysis
Full Text
Introduction

The COVID-19 pandemic, caused by SARS-CoV-2 was first reported in Wuhan, China, in December 2019 [1]. It quickly spread globally and constitutes the largest pandemic of the last 100 years. In Brazil, the first case of SARS-CoV-2 was confirmed in late February 2020. In the beginning, transmission was restricted to a few large cities where imported cases were detected, and local transmission was established. In late March and April, the disease spread from these original entry points to the whole country. Serologic surveillance is one of the recommended strategies to monitor the spread of SARS-CoV-2 infection in the population, once asymptomatic and moderate cases may be underreported. Serologic surveys provide additional information regarding the spread of SARS-CoV-2 infection in the population and help to understand the spread of infection in the population and their immunity. This knowledge was of great importance in that period, when vaccine trials were still being carried out and real manufacturing and distribution capacity throughout the world were not in place, and just non-pharmacological measures for prevention and control were available.

In April 2020, serological surveys were started for this purpose. A large national seroprevalence survey was undertaken in Brazil, and several others with restricted geographical coverage or convenience samples were carried out. Until December 2020, several studies were carried out with highly variable estimates of seroprevalence that could largely be due to differences in attack rates, but which also feature heterogeneous sampling strategies and assays used.

So far, there is no study summarizing these surveys in Brazil and so the authors conducted a systematic review and meta-analysis with this objective.

The results of the present study may contribute to the analysis of the spread of SARS-CoV-2 infection in the Brazilian population before vaccination, one of the factors that may be influencing the clinical presentation of COVID-19 cases related to the new variants, as well as the effectiveness of the vaccination program.

Methods

The authors conducted a systematic review of published articles and a manual search, on the seroprevalence of SARS-CoV-2 infection in Brazil. The present review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement [2].

Search strategies

The search was carried out in Medline (through the PubMed platform), Embase and Latin American Literature (Lilacs) databases, without language restrictions.

In Medline, the terms COVID, COVID-19, COV, coronavir*, Sars, SARS-CoV-2, 2019-nCoV, prevalence, cross-sectional study, seroepidemiology, serosurvey, serology, serological survey and Brazil, were used, restricting the surveys to humans and in the period from 01/10/2019 to 07/11/2021 (more details on the search strategy in the Supplementary File 1).

In Embase, the terms 'coronavirus disease 2019′:ti,ab,kw AND (prevalence:ti,ab,kw OR seroprevalence:ti,ab,kw) AND brazil:ti,ab,kw, were used, no time or human restrictions.

In Lilacs, the authors used the terms (“SARS-CoV-2”) or “COVID-19” [Descritor de assunto] and “BRASIL” [Descritor de assunto], no time or human restrictions.

The surveys were carried out with different strategies, such as seroprevalence on representative samples of the population, the country as a whole, states, municipalities, or regions, seroprevalence surveys carried out on samples of specific population groups, and surveys on convenience samples.

Through a manual search of references in selected articles and review articles on the topic, the authors sought to identify other relevant studies missed in the searches. The authors also investigated the websites of Municipal and State Health Departments in search of official reports and, considering that the topic of the review is recent and that many researchers are dedicating themselves to its research, the authors also added articles available to the public, but not reviewed by peers (sites: MedRxiv, BioRxiv, Euro PMC Preprint, BMC, SSRN, Wellcome Open Search). Two authors (SRCC and FT) selected articles, examining titles and abstracts, resulting in a list of potentially relevant sources. After reading the full text of the selected references, the articles were selected for inclusion in the review. Disagreements were resolved by discussion and consensus. Study authors were contacted when data were not clear enough.

Selection of studies

Only articles/documents that contained original data on the seroprevalence of SARS-CoV-2 infection in Brazil carried out in 2020 and whose sample size was greater than or equal to 50, were included. The authors did not include case reports, case series, review articles, comments, studies whose participants did not live in Brazil, or articles that contained the same data. Regarding the latter studies, the article with the most complete data was included in the present review.

The following definition for SARS-CoV-2 infection was used: the presence of anti-SARS-CoV-2 antibodies IgG and/or IgM to SARS-CoV-2 measured by Enzyme Immunoassay (ELISA) or Chemiluminescent Immunoassay (CLIA test) or rapid tests serological Immunochromatography (ICA).

Data extraction

Two investigators (SRCC, FMT) collected data independently and disagreements were resolved through discussions and consensus. The following data were collected: name of the first author/document title, State of Brazil where the study was carried out, data collection period, sample size, gender, age, race, number of positive individuals for anti-SARS-CoV-2 and diagnostic method for detecting anti-SARS-CoV-2.

Inclusion criteria: Seroprevalence surveys were conducted in Brazil, with a sample ≥50, without other restrictions.

Exclusion criteria: Reports of clinical trials of therapeutic or preventive products, studies without one of the following data: number of participants; the number of participants with reagent results for SARS-CoV-2 antibodies; studies that did not explicitly state their geographic scope; studies that did not explicitly state the laboratory assay that was used for antibodies detection; studies that did not explicitly state the methods for sample selection.

Statistical analysis

Considering the expected heterogeneity between studies, all meta-analyses were performed using the random effects model, which includes variation among studies. Heterogeneity was assessed using the I2 statistic, which describes the percentage of variation among studies that is due more to heterogeneity than to chance [3]. I2 values greater than 25%, 50%, and 75% are considered evidence of mild, moderate to high heterogeneity among studies. Low values of I2 suggest that variability among estimates is compatible with random variation.

To investigate possible causes of heterogeneity among studies, the authors performed a meta-analysis of the following subgroups.

  • 1.

    Study groups: The surveys were grouped into the following subgroups: population-based surveys with randomly selected samples, blood donors, schoolchildren, and healthcare workers. The surveys addressing other population groups, such as indigenous people, pregnant women, patients with different chronic conditions, self-selected samples, and others, were included just in the main seroprevalence meta-analysis. The authors decided not to compose other subgroups due to the small number of surveys in each category.

  • 2.

    Studies carried out by trimester (in the 1st, 2nd, 3rd, and 4th trimester).

  • 3.

    Studies carried out in each region of Brazil.

Potential sources of heterogeneity were also investigated by regression analysis. The objective of which was to report differences in the size of the effect of the study characteristics. The following factors were examined: study group (population-based or not), sample size (continuous variable), and laboratory method for detecting anti-SARS-CoV-2 (rapid test or not.).

To examine the publication bias, the authors used tests proposed by Begg and Mazumdar [4] and Egger et al [5].

The authors performed four sensitivity analyses, considering only studies with:

  • 1.

    sample size < 100;

  • 2.

    sample size < 500;

  • 3.

    Sample size < 1000;

  • 4.

    Studies published in scientific journals;

  • 5.

    Studies that used rapid tests (immunochromatography) to detect anti-SARS-CoV-2 antibodies.

Results

The authors initially identified 586 publications in the databases (MEDLINE, Lilacs and Embase), and in manual searching (Fig. 1Supplementary file 1) After the exclusion of duplicates (36), the authors analyzed 550 references by reading the abstracts. 474 were subsequently excluded, leaving 76 references selected for full-text reading. After reading the full text of the 76 articles, the authors ultimately selected 54 for final inclusion in the review.

Through the search and selection of articles and/or reports on the prevalence of SARS-CoV-2 infection in Brazil shown in Fig. 1 (Search and Selection Flowchart), the authors identified 54 relevant reference sources for this review, in which 135 serological surveys were identified, with a total of 336,62  participants, about the topic: 7 articles/reports containing two surveys each; [6–12] two articles/reports containing three surveys each [13,14], one report with four surveys [15], two articles containing five surveys each [16,17], two articles/reports containing seven surveys each [18,19], three articles/reports containing eight surveys each [20–22], one report with data from ten surveys [23] and one article with information from 18 surveys [24].

Fig. 1.

flowchart of the identification, inclusion, and exclusion of studies.

(0.57MB).
General characteristics of selected surveys

The general characteristics of the selected surveys are shown in Table 1. Of the 135 surveys, 91 (67.4%) were published in the year 2020 and 44 (32.6%) in 2021. Three surveys and studies (2.2%) were carried out in the Central-West region of Brazil, 14 (10.4%) in the North region, 35 (25.9%) in the Northeast region, 15 (11.1%) in the South region and 68 (50.4%) in the Southeast. Data from 5 (3.7%) surveys were collected in the first quarter of 2020, 62 (45.9%) in the second quarter, 46 (34.0%) in the third quarter, 13 (9.6%) in the fourth trimester, and the rest of the survey studies [9] were carried out in more than one quarter, as shown in Table 1. The most frequent surveys were population-based studies (58.5%), in blood donors (14.8%), schoolchildren (4.4%), and health workers (3.7%). The most frequently used diagnostic test for the detection of anti-SARS-CoV-2 was immunochromatography (70.4%), followed by ELISA (22.4%) and CLIA (7.4%).

Table 1.

Estimation of the prevalence of SARS-CoV-2 in studies conducted in Brazil.

Author  Publication Year  Type of Participants  Trimester  State  Region  Diagnostic Test  Total  Positives  %Male  %White 
Barros ENC et al. [25]2021  Care Facilities Patients and Workers  SP  SE  ICA  209  24  35.4  74.2 
Caramelli B et al. [26]2021  Sport and Social Club Members  SP  SE  ELISA  938  54  47.0   
Cleto-Yamane TL et al. [27]2021  Immunosuppressed Patients  2,3  RJ  SE  ICA  114  35     
Costa SF et al. [28]2021  Healthcare Workers  SP  SE  ICA  4987  701  27.1  64.3 
Diegoli H et al. [6]2021  Population Based Randomly Selected  SC  ICA  3245  187     
Diegoli H et al. [6]2021  Population Based Randomly Selected  SC  ICA  1158  26     
Garibaldi PMM et al. [29]2021  Outbreak investigation in nursing facility  SP  SE  ICA  49  24     
Pontes GS et al. [30]2021  Indigenous People  AM  ELISA  280  170  42.1   
Gurgel RQ et al. [31]2021  Asymptomatic Patients in Hospital  SE  NE  ICA  987  16     
Silva HP et al. [32]2021  Indigenous People  PA  ELISA  101  84  42.6   
Miraglia JL et al. [33]2021  Population Based Randomly Selected  SP  SE  ICA  272  119  33.5   
Chiste JA et al. [34]2021  Pregnant Women  3,4  PR  ICA  195  17     
Lalwani P et al. [35]2021  Self-Selected [by media]  AM  ELISA  3046  886  39.1   
Trafane LF et al. [36]2021  Sickle cell disease patients  3,4  SP  SE  CLIA  135  15  57.0   
Nicolette VC et al. [37]2021  Population Based Randomly Selected  AC  ELISA  1281  448  54.0   
Oliveira MS et al. [38]2021  Healthcare Workers  1,2,3  SP  SE  ELISA  1996  110  29.0   
Pasqualotto AC et al. [39]2021  Military Forces  RS  ELISA  1592  28     
Rodrigues EPS et al. [40]2021  Indigenous People  PA  ELISA  100  73  51.0   
Santana FM et al. [41]2021  Immunosuppressed Patients  1,2,3  SP  SE  CLIA  100  21  15.0   
Araujo AAS et al. [42]2021  University Students  SE  NE  ICA  276  62     
Araujo AAS et al. [43]2021  Population Based Randomly Selected  SE  NE  ICA  5615  652  40.3   
Martinez EZ et al. [7]2021  Population Based Randomly Selected  SP  SE  ICA  646  19     
Martinez EZ et al. [7]2021  Population Based Randomly Selected  SP  SE  ICA  709  43.6  63.9 
Tess BH et al. [44]2021  Population Based Randomly Selected  SP  SE  CLIA  463  30    65.2 
Maciel ELN et al. [45]2021  Population Based Randomly Selected  ES  SE  ICA  1447  161  35.0  35.6 
Pinto Junior VC et al. [13]2021  Population Based Randomly Selected  CE  NE  ICA  423  107     
Pinto Junior VC et al. [13]2021  Population Based Randomly Selected  CE  NE  ICA  854  250     
Pinto Junior VC et al. [13]2021  Population Based Randomly Selected  CE  NE  ICA  282  59     
Lugon P et al. [8]2021  Favela Children  2,3  RJ  SE  CLIA  242  79     
Lugon P et al. [8]2021  Favela Children Contacts  2,3  RJ  SE  CLIA  231  72     
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2645  247     
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2481  261  36.0  52.1 
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2323  282     
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2529  296     
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2447  298  36.0  51.6 
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2225  303     
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2125  270     
Albuquerque JOM et al. [20]2021  Population Based Randomly Selected  SP  SE  ICA  2012  244  34.9  49.8 
Couto AC et al. [9]2021  Shelter homeless people  SP  SE  ELISA  203  111  88.7  29.6 
Couto AC et al. [9]2021  Shelter Workers  SP  SE  ELISA  87  43  50.6  34.5 
Cristelli MP et al. [46]2021  Kidney Transplant Recipients  SP  SE  ICA  416  34  59.1  45.0 
Bernardes-Souza B et al. [10]2021  Population Based Randomly Selected  MG  SE  ICA  400  39.0  52.8 
Bernardes-Souza B et al. [10]2021  Population Based Randomly Selected  MG  SE  ICA  400  49.0  58.8 
Stringari LL et al. [47]2021  Blood Donors  1,2  ES  SE  CLIA  7370  210  32.5   
Amorim Filho L et al. [48]2020  Blood Donors  RJ  SE  ICA  2857  114     
Batista KBC et al. [49]2020  Population Based Randomly Selected  SP  SE  ICA  2.342  33  46.5   
Borges LP et al. [50]2020  Firefighters  SE  NE  ICA  2635  218     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  881  242     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  1147  419     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  882  183     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  868  214     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  829  46     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  821     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  911  422     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  901  359     
Buss LF et al. [24]2020  Blood Donors  AM  CLIA  832     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  906  113     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  879  84     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  877  100     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  933  101     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  900  27     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  799     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  880  105     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  826  44     
Buss LF et al. [24]2020  Blood Donors  SP  SE  CLIA  2454  22     
Costa SF et al. [51]2020  Healthcare Workers  SP  SE  CLIA  4417  528     
Espírito Santo. SES [21]  2020  Elementary or High School Students  ES  SE  ICA  3062  340  48.9  33.6 
Espírito Santo. SES [21]  2020  Educational Professionals  ES  SE  ICA  3922  304  27.5  43.5 
Espírito Santo. SES [21]  2020  Population Based Randomly Selected  ES  SE  ICA  4612  97     
Espírito Santo. SES [21]  2020  Population Based Randomly Selected  ES  SE  ICA  7831  511     
Espírito Santo. SES [21]  2020  Population Based Randomly Selected  ES  SE  ICA  4644  239    37.9 
Espírito Santo. SES [21]  2020  Population Based Randomly Selected  ES  SE  ICA  7678  517     
Espírito Santo. SES [21]  2020  Population Based Randomly Selected  ES  SE  ICA  4633  341    36.0 
Espírito Santo. SES [21]  2020  Population Based Randomly Selected  ES  SE  ICA  4922  473    35.1 
Gomes CC et al. [52]2020  Population Based Randomly Selected  ES  SE  ICA  4.608  97  39.0  38.3 
Horta BL et al. [16]2020  Population Based Randomly Selected    CO  ICA  9792  43     
Horta BL et al. [16]2020  Population Based Randomly Selected    SE  ICA  21,860  149     
Horta BL et al. [16]2020  Population Based Randomly Selected    ICA  14,888  31     
Horta BL et al. [16]2020  Population Based Randomly Selected    NE  ICA  26,809  776    23.6 
Horta BL et al. [16]2020  Population Based Randomly Selected    ICA  16,013  1065    19.3 
Ismael C et al. [53]2020  Healthcare Workers  RJ  SE  ICA  60     
Silva AAM et al. [54]2020  Population Based Randomly Selected  MA  NE  CLIA  3156  1167  38.0   
Paula CC et al. [11]2020  Self-Selected  MT  CO  ICA  2.144  252     
Paula CC et al. [11]2020  Self-Selected  MT  CO  ICA  4.248  1161     
Picon RV et al. [12]2020  Population Based Randomly Selected  RS  ICA  1450  40  34.0  79.3 
Picon RV et al. [12]2020  Population Based Randomly Selected  RS  ICA  1127  20  35.8  100.0 
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  98  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  139  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  163  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  174  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  163  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  226  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  210  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  206  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  190  47.0   
Teresina. FMS [23]  2020  Population Based Randomly Selected  PI  NE  ICA  900  180  47.0   
Rio de Janeiro. SMS [17]  2020  Population Based Randomly Selected  RJ  SE  ICA  3211  556  31.1  24.9 
Rio de Janeiro. SMS [17]  2020  Population Based Randomly Selected  RJ  SE  ICA  3202  396  28.5  26.9 
Rio de Janeiro. SMS [17]  2020  Population Based Randomly Selected  RJ  SE  ICA  3200  300  31.3  26.0 
Rio de Janeiro. SMS[17]  2020  Population Based Randomly Selected  RJ  SE  ICA  3170  319  28.5  27.3 
Rio de Janeiro. SMS [17]  2020  Population Based Randomly Selected  RJ  SE  ICA  3048  233  31.8  29.8 
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500  10     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500  21     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500  43     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500  55     
Hallal PC et al. [22]2020  Population Based Randomly Selected  RS  ICA  4500  62     
Sales MJT et al. [55]2020  Population Based Randomly Selected  PE  NE  ICA  904  39     
Melo MS et al. [56]2020  Healthcare Workers  SE  NE  ICA  471  101     
Oliveira LMS et al. [57]2020  Outpatients in Public Hospital  SP  SE  CLIA  439  61  35.5   
Silva VO et al. [58]2020  Healthcare Workers  2,3  SP  SE  ICA  406  35  27.1   
São Paulo. SMS [15]  2020  Elementary or High School Students  SP  SE  ICA  2659  428    36.3 
São Paulo. SMS [15]  2020  Elementary or High School Students  SP  SE  ICA  2518  460     
São Paulo. SMS [15]  2020  Elementary or High School Students  SP  SE  ICA  2182  360     
São Paulo. SMS [15]  2020  Elementary or High School Students  SP  SE  ICA  2069  331     
Campinas. SMS [59]  2020  Population Based Randomly Selected  SP  SE  ICA  1937  43  41.4   
SoroEpi-MSP [14]  2020  Population Based Randomly Selected  SP  SE  CLIA  1183  135  46.6   
SoroEpi-MSP [14]  2020  Population Based Randomly Selected  SP  SE  CLIA  1470  127     
SoroEpi-MSP [14]  2020  Population Based Randomly Selected  SP  SE  CLIA  1129  296  46.6   
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900     
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900     
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900  13     
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900  18     
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900  34     
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900  52     
Vieira MACS et al. [18]2020  Population Based Randomly Selected  PI  NE  ICA  900  79     
Ceara. SES [19]  2020  Population Based Randomly Selected  CE  NE  ICA  3301  468  34.5  24.1 
Ceara. SES [19]  2020  Population Based Randomly Selected  CE  NE  ICA  3306  433  33.6  25.8 
Ceara. SES [19]  2020  Elementary or High School Students  CE  NE  ICA  3327  88  49.6  27.1 
Ceara. SES [19]  2020  Population Based Randomly Selected  CE  NE  ICA  3331  485  30.3  24.2 
Ceara. SES [19]  2020  Population Based Randomly Selected  CE  NE  ICA  800  92  39.6  19.5 
Ceara. SES [19]  2020  Population Based Randomly Selected  CE  NE  ICA  485  64  34.0  26.0 
Ceara. SES [19]  2020  Population Based Randomly Selected  CE  NE  ICA  700  11  35.3  32.0 

Notes: ICA, Immunocromatography Assays; ELISA, Enzyme-Linked Immunosorbent Assay; CLIA, Chemiluminescence Immunoassay.

Meta-analysis

  • a)

    General: The authors found a general estimated prevalence of 11.0% (95% CI 11.0‒12.0), ranging from 1.0% (95% CI 0.0‒1.0) to 83.0% (95% CI 75.0‒89.0), with substantial heterogeneity (I2 = 99.55%) (Supplementary File 2).

  • b)

    Subgroups:

  • i.

    In population-based surveys (Table 2) the estimated prevalence was 9.0% (95% CI 6.0%‒9.0%), in blood donors it was 13.0% (95% CI 11.0‒13.0), in schoolchildren it was 13.0% (95% CI 7.0‒20.0) and in health workers it was 11.0% (95% CI 7.0‒15.0) (more details in the Supplementary File 3, 4, 5, 6).

    Table 2.

    Seroprevalence of anti-SARS-CoV-2 antibodies in Brazil, in selected subgroup [9]..

    Subgroup  Number of Surveys  Seroprevalence% (95% CI) 
    Population based  79  9.0 (95% CI 6.0‒9.0) 
    Blood donors  20  13.0 (95% CI 11.0‒16.0) 
    Schoolchildren  13.0 (95% CI 7.0‒20.0) 
    Healthcare workers  11.0 (95% CI 7.0‒15.0) 
    Trimester (2020)     
    1.0 (95% CI 0.00‒0.01) 
    62  7.0 (95% CI 6.0‒7.0) 
    46  73.0 (95% CI 64.0‒81.0) 
    13  83.0 (95% CI 75.0‒89.0) 
    Region of Brazil     
    North  15  29.0 (95% CI 24.0‒35.0) 
    Northeast  35  14.0 (95% CI 12.0‒16.0) 
    Central-West  13.0 (95% CI 3.0‒30.0) 
    Southeast  67  12.0 (95% CI 11.0‒13.0) 
    South  15  1.0 (95% CI 1.0‒1.0) 
  • ii.

    Yet, in Table 2, the authors can see the estimates of anti-SARS-CoV-2 prevalence, separating the surveys according to the period (a quarter of 2020) in which the data were collected. The highest prevalence was observed in the 3rd and 4th trimesters (73.0% and 83.0%, respectively).

  • iii.

    Finally, analyzing by regions of Brazil, the North region had the highest prevalence rate (Table 2) 32.0% (followed by the Northeast (13.0%), Central-Western (13.0%), Southeast (12.0%) and, finally, the South region (1.0%).

  • c)

    Sensitivity analysis:

  • iv.

    Excluding surveys with sample sizes ≤ 100, ≤ 500 and ≤ 1000, the prevalence estimates found was 11.0% (95% CI 11.0‒12.0), 10.0% (9.0‒12.0), 11.0% and 9.0% (9.0‒10.0), respectively. Supplementary File 7, 8, 9).

  • v.

    The estimated prevalence of published and peer-reviewed surveys was 10.0% (10.0–11.0) Supplementary File 10.

  • lowerRoman%1

    When analyzing just the surveys that used the rapid test to detect the anti-SARS-CoV-2 antibody (immunochromatography), the authors observed a prevalence of 9.0% (95% CI 9.0‒10.0). Supplementary File 11.

  • d)

    Others analysis:

  • vi.

    The estimated prevalence of -SARS-CoV-2 antibodies in male participants was 18.0% (95% CI 17.0‒20.0) and 22.0% (95% CI 20.0‒25.0) in females; in white participants it was 8.0% (7.0‒9.0) and in non-white participants, it was 11.0% (9.0‒13.0). It should be noted that the number of articles that presented these variables was small.

  • vii.

    Meta-regression: The authors tested the variables “sample size” (continuous variable), rapid test or not, population-based study or not, and whether published after peer review or not. The first 3 variables showed a significant contribution to the outcome (Table 3).

    Table 3.

    Multivariate meta-regression analysis of the anti-SARS-CoV-2 seroprevalence studies in Brazil.

      Meta regression coeficient  p-value  95% (CI) 
    Peer review  −0.7939297  0.001  −1.25954 ‒ 0.3283196 
    Pop based  −0.5347804  0.046  −1.059428 ‒ 0.0101331 
    Sample size  −0.0000966  0.001  −0.0001561 ‒ 0.0000372 
    Rapid test  −0.5483888  0.066  −1.133172 ‒ 0.0363943 
    cons  −1.181352  0.000  −1.754376 ‒ 0.6083286 
  • viii.

    There was evidence of bias using the Egger (p = 0.000) and Begg (p = 0.001) tests.

  • e)

    Additional studies:

Additional studies of interest included in this review, as the authors identified at least two surveys in these groups, were in indigenous populations, in immunosuppressed patients (i.e., diagnosed with cancer or undergoing solid organ transplantation), and people who self-requested the test for diagnose SARS-CoV-2 infection, as shown in Table 1. The prevalence of SARS-CoV-2 antibodies in indigenous populations ranged from 60.71% to 83.17%; in immunosuppressed patients, the variation was from 8.17% to 30.70%, and in people who self-requested the test, the variation was from 11.75% to 27.33%.

Discussion

The authors systematically reviewed seroprevalence studies of SARS-CoV-2 antibodies conducted in Brazil and identified fifty-four studies from all Brazilian states. The present review indicated that the overall seroprevalence of SARS-CoV-2 in Brazil was 11.0% (95% CI 11.0‒12.0) and the heterogeneity among the studies was substantial (99.54%%). In subgroup analyses, the authors observed that the prevalence of SARS-CoV-2 antibodies was 13.0% in blood donors, 9.0% in the population-based surveys, 13% in schoolchildren, and 9.0% in the studies that used the commercial immunochromatographic assays to identify the presence of anti-SARS-CoV-2 antibodies.

As expected, seroprevalence increased over time, from very low figures in the first trimester of 2020, to high proportions in the second half of the year. Seroprevalence in Brazil followed similar trends as observed in other countries, such as Spain, where the prevalence was estimated at 5% after the first epidemic wave [60], and the United States, 3.5% among blood donors [61,62], in July 2020. A large increase in the proportion of infected people during 2020 was also observed, both in developed countries, such as the United States and in developing countries, such as India. In the first, the seroprevalence among blood donors rose to 83.3% in May 2021, when combining natural infection and vaccine-induced seroconversion (Jones et al. 2020). In the latter, seroprevalence in the general population was 0.73% in May‒June and increased to 24.1% in December 2020 [63].

Large differences in seroprevalence were observed amongst the different regions of Brazil. Seroprevalence increased from the South to the Northern region, where the Amazon rainforest is located. This region was particularly hit by the second pandemic wave, being the probable emergence of the gama variant of SARS-CoV-2 in Brazil [64], more transmissible than the previous ones.

The Northern Region of Brazil showed high seroprevalence already in the first seroepidemiological surveys, carried out in the second quarter of 2020. In the first national survey, whose data collection was carried out in May 2020, nine of the ten municipalities with the highest seroprevalence in the country were in this region [16]. In the city of Manaus, one of the largest metropolises in the Amazon region, the seroprevalence among blood donors reached values above 40% in the same period. [24] At the other extreme, the Central-West region had a lower seroprevalence, even considering that this region had a lower number of surveys carried out, compared to other regions. The Northeast region, which includes nine states in the country, ranked second in terms of seroprevalence, followed by the Southeast region. Necessary care when interpreting aggregate seroprevalence estimates is that some regions, and within them, some states, carried out a much larger number of surveys than others, and may be overrepresented in the analysis.

Some surveys pointed out a high seroprevalence among the Indigenous peoples, with the Amazon region being the one that concentrates the largest number of indigenous people in the country. Unfortunately, the number of surveys in which data were stratified by skin color/ethnicity was small, which made it impossible to calculate an estimate of seroprevalence according to this variable.

Part of the differences observed in seroprevalence may be related to the type of assay used in the surveys. In the first months of the pandemic, only immunochromatographic assays were available in Brazil. These assays have lower sensitivity than the enzyme immunoassay and chemiluminescence methods [65], Its sensitivity also depends on the type of sample collected, and its performance is worse in samples collected by finger prick. These assays, with this type of biological sample, were the most used in Brazil during the first months of the pandemic, which may have contributed to the underestimation of seroprevalence, although the Northern Region of Brazil showed high seroprevalence already in the first seroepidemiological surveys.

Although the authors detected considerable heterogeneity and publication bias, we could observe that the available data are robust, even including only surveys with a sample size greater than one hundred or only greater than 500; the same would happen if the authors included only surveys published in peer-reviewed scientific journals, with overlapping confidence intervals of prevalence estimates in these cases.

This is the first systematic review of the seroprevalence of SARS-CoV-2 carried out in Brazil before the implementation of the vaccine in the country, which started in January 2021. It was intended to present this methodology of high robustness in an unprecedented infection in the world, with Brazil presenting a very high disease burden. The study also presented the spread of the infection and in which scenarios the effectiveness of vaccination in the country could be estimated.

Authors’ contributions

Gerusa M. Figueiredo: Conceptualization; writing original draft; writing review & editing.

Fátima M. Tengan: Conceptualization; writing, original draft; writing review & editing, selected the eligible studies by reading the titles and abstracts, and a list of potentially relevant studies was generated.

Expedito J.A. Luna: Conceptualization; writing original draft; writing review & editing.

Sergio R. Campos: Writing review & editing, selected the eligible studies by reading the titles and abstracts, and a list of potentially relevant studies were generated.

Acknowledgement

Jadher Percio.

References
[1]
N. Zhu, D.Y. Zhang, W.L. Wang, X. Li, B. Yang, J. Song, et al.
A novel coronavirus from patients with pneumonia in China, 2019.
N Engl J Med, 382 (2020), pp. 727-733
[2]
D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, PRISMAGroup.
Preferred reporting items for systematic reviews andmeta-analyses: the PRISMA statement.
J Clin Epidemiol, 6 (2009),
[3]
J.P. Higgins, I.R. White, J. Anzures-Cabrera.
Meta-analysis of skewed data: combining results reported on log-transformed or raw scales.
Stat Med, 27 (2008), pp. 6072-6092
[4]
C.B. Begg, M. Mazumdar.
Operating characteristics of a rank correlation test for publication bias.
Biometrics, 50 (1994), pp. 1088-1101
[5]
M. Egger, G.D. Smith, M. Schneider, C. Minder.
Bias in meta-analysis detected by a simple, graphical test.
[6]
Diegoli H., Conzatti V.S., Mazin S.C., Safanelli J., Dellatorre L.D.C., Keli Bett K., et al. Population-Based Study of anti-SARS-CoV-2, Social Distancing and Government Responses in Joinville, Brazil.[Internet] MedRxiv [Preprint] 2020. [Cited in 2021 Oct 22]: 10p. Avaliable from: https://www.medrxiv.org/content/10.1101/2021.02.08.21251009v1. doi: 10.1101/2021.02.08.21251009.
[7]
E.Z. Martinez, A.D.C. Passos, A.L.D. Fabbro, A.S. Silva, A.C. Escarso, A. Pazin-Filho, et al.
Prevalence of virological and serological markers of SARS-CoV-2 infection in the population of Ribeirão Preto, Southeast Brazil: an epidemiological survey.
Rev Soc Bras Med Trop, 54 (2021),
[8]
P. Lugon, T. Fuller, L. Damasceno, G. Calvet, P.C. Resende, A.R. Matos, et al.
SARS-CoV-2 infection dynamics in children and household contacts in a Slum in Rio de Janeiro.
Pediatrics, 148 (2021),
[9]
A.C. Couto, L.B. Kmetiuk, R.R. Delai, A.P.D. Brandão, C.O. Monteiro, L.H.A. Silva, et al.
High SARS-CoV-2 seroprevalence in persons experiencing homelessness and shelter workers from a day-shelter in São Paulo, Brazil.
PLoS Negl Trop Dis, 15 (2021),
[10]
B. Bernardes-Souza, S.R. Costa Júnior, C.A. Santos, R.M. Nascimento Neto, F.C. Bottega, D.C. Godoy, et al.
Logistics workers are a key factor for SARS-CoV-2 Spread in Brazilian Small Towns: case-control study.
JMIR Public Health Surveill, 7 (2021), pp. e30406
[11]
Paula CC, Passos JPC, Shimoya-Bittencour W, Lamare CAV, Oliveira RG; Prevalence of molecular and serological tests of the new coronavirus (SARS-CoV-2) in Carlos Chagas-Sabin Laboratories in Cuiabá [Internet]. medRxiv [Preprint] 2020 [Cited in 2021 Oct 22]:14p. Avaliable from: https://doi.org/10.1101/2020.10.26.20219683.
[12]
R.V. Picon, I. Carreno, A.A. Silva, M. Mossmann, G. Laste, G.C. Domingues, et al.
Coronavirus disease 2019 population-based prevalence, risk factors, hospitalization, and fatality rates in southern Brazil.
Int J Infect Dis, 100 (2020), pp. 402-410
[13]
V.C. Pinto Júnior, L.F.W.G. Moura, R.C. Cavalcante, J.R.C. Lima, A.S. Bezerra, D.R.S. Dantas, et al.
Prevalence of COVID-19 in children, adolescents and adults in remote education situations in the city of Fortaleza, Brazil.
Int J Infect Dis, 108 (2021), pp. 20-26
[14]
SoroEpi-MSP [Internet]. Serial soroepidemiological survey to monitor the prevalence of SARS-CoV-2 infection in the Municipality of São Paulo, SP, Brazil. [Cited 2022 Jan 20]. Available from: https://www.monitoramentocovid19.org/.
[15]
Secretaria Municipal de Saúde da Prefeitura de São Paulo. [Homepage da Internet]. FASES 1 a 4 ‒ Prevalência da infecção em escolares das redes públicas e privada da cidade de São Paulo - 13 de outubro de 2020 [Cited 2022 Jan 20]. Available from: https://www.prefeitura.sp.gov.br/cidade/secretarias/saude/vigilancia_em_saude/doencas_e_agravos/coronavirus/?p=291766.
[16]
B.L. Horta, M.F. Silveira, A.J.D. Barros, F.C. Barros, F.P. Hartwig, M.S. Dias, et al.
Prevalence of antibodies against SARS-CoV-2 according to socioeconomic and ethnic status in a nationwide Brazilian survey.
Rev Panam Salud Publica, 44 (2020), pp. e135
[17]
Secretaria Municipal de Saúde da Prefeitura da Cidade do Rio de Janeiro [Internet]. Painel Inquérito Soroepidemiologico COVID-19. [Cited 2022 Jan 20]. Available from: https://pcrj.maps.arcgis.com/apps/MapSeries/index.html?appid=f3d95aef1cfd4dd08b7ee566627666f9.
[18]
M.A.C.S. Vieira, C.P.B. Vieira, A.S. Borba, M.C.C. Melo, M.S. Oliveira, R.M. Melo, et al.
Sequential serological surveys in the early stages of the coronavirus disease epidemic: limitations and perspectives.
Rev Soc Bras Med Trop, 53 (2020),
[19]
Secretaria Executiva de Vigilância em Saúde do Ceará. [Internet]. Soroprevalência de COVID-19. [Cited 2022 Jan 20]. Available from: https://indicadores.integrasus.saude.ce.gov.br/#/indicadores/indicadores-coronavirus/soroprevalencia-covid.
[20]
J.O.M. Albuquerque, G.A. Kamioka, G. Madalosso, S.A. Costa, P.B. Ferreira, F.A. Pino, et al.
Prevalence evolution of SARS-CoV-2 infection in the city of São Paulo, 2020-2021.
Rev Saude Publica, 55 (2021), pp. 62
[21]
Secretaria de Estado da Saúde do Espírito Santo [Internet]. Coronavírus - Inquérito Sorológico. [Cited 2022 Jan 20]. Available from: https://saude.es.gov.br/Inquerito_Sorologico.
[22]
P.C. Hallal, M.F. Silveira, A.M.B. Menezes, B.L. Horta, A.J.D. Barros, L.C. Pellanda, et al.
Slow Spread of SARS-CoV-2 in Southern Brazil over a 6-month period: report on 8 sequential statewide serological surveys including 35 611 participants.
Am J Public Health, 111 (2021), pp. 1542-1550
[23]
Fundação Municipal de Saúde - Prefeitura de Teresina [Internet]. Pesquisa de Investigação Sorológica. [Cited 2022 Jan 20]. Available from: https://pmt.pi.gov.br/tag/investigacao-sorologica/.
[24]
L.F. Buss, C.A. Prete Jr, C.M.M. Abrahim, A. Mendrone Jr, T. Salomon, C. Almeida-Neto, et al.
Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic.
Science, 371 (2021), pp. 288-292
[25]
E.N.C. Barros, A.P. Valle, P.E. Braga, J.Y.K. Viscondi, A.R.B. Fonseca, T. Vanni, et al.
COVID-19 in long-term care facilities in Brazil: serological survey in a post-outbreak setting.
Rev Inst Med Trop Sao Paulo, 63 (2021), pp. e10
[26]
B. Caramelli, M.C. Escalante-Rojas, H.K.C. Chauhan, R.F. Siciliano, M.S. Bittencourt, A.C Micelli.
The "false-positive" conundrum: igA reference level overestimates the seroprevalence of antibodies to SARS-CoV-2.
J Glob Health, 11 (2021), pp. 05001
[27]
T.L. Cleto-Yamane, G. Rodrigues-Santos, M.C. Magalhães-Barbosa, P.G. Moura, R.D. Vasconcelos, J.L.S. Gouveia, et al.
Screening of COVID-19 in outpatient children with cancer or solid organ transplantation: preliminary report.
Eur J Pediatr, 180 (2021), pp. 3237-3241
[28]
S.F. Costa, P. Giavina-Bianchi, L. Buss, G.H.M. Peres, M.M. Rafael, L.G.N. Santos, et al.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence and risk factors among Oligo/Asymptomatic healthcare workers: estimating the impact of community transmission.
Clin Infect Dis, 73 (2021), pp. e1214-e1218
[29]
P.M.M. Garibaldi, N.N. Ferreira, G.R. Moraes, J.C. Moura, D.L.A. Espósito, G.J. Volpe, et al.
Efficacy of COVID-19 outbreak management in a skilled nursing facility based on serial testing for early detection and control.
Braz J Infect Dis, 25 (2021),
[30]
G.S. Pontes, J.M. Silva, R. Pinheiro-Silva, A.N. Barbosa, L.C. Santos, A.P.Q. Ramalho, et al.
Increased vulnerability to SARS-CoV-2 infection among indigenous people living in the urban area of Manaus.
[31]
R.Q. Gurgel, L.C. Sá, D.R.V. Souza, A.F. Martins, I.L.S. Matos, A.G.A. Lima, et al.
SARS-CoV-2 has been circulating in northeastern Brazil since February 2020: evidence for antibody detection in asymptomatic patients.
J Infect, 82 (2021), pp. 186-230
[32]
H.P. Silva, I.N. Abreu, C.N.C. Lima, A.C.R. Lima, A.N. Barbosa, L.R. Oliveira, et al.
Migration in times of pandemic: sARS-CoV-2 infection among the Warao indigenous refugees in Belém, Pará, Amazonia, Brazil.
BMC Public Health, 21 (2021), pp. 1659
[33]
J.L. Miraglia, C.N. Monteiro, A.G.R. Romagnolo, R.X. Gomes, C.P. Mangueira, E.A. Rosseto-Welter, et al.
A seroprevalence survey of anti-SARS-CoV-2 antibodies among individuals 18 years of age or older living in a vulnerable region of the city of São Paulo.
Brazil. PLoS One., 16 (2021),
[34]
J.A. Chiste, I.N. Furuie, M.B. Nogueira, J.S. Longo, C.A. Fugaça, B.M. Cavalli, et al.
SARS-CoV-2 in asymptomatic pregnant women in South Brazil: RT-PCR and serological detection.
J Perinat Med, 49 (2021), pp. 717-722
[35]
P. Lalwani, B.B. Salgado, I.V. Pereira Filho, D.S.S. Silva, T.B.N. Morais, M.F. Jordão, et al.
SARS-CoV-2 seroprevalence and associated factors in Manaus, Brazil: baseline results from the DETECTCoV-19 cohort study.
Int J Infect Dis, 110 (2021), pp. 141-150
[36]
L.F. Trafane, V.A. Costa, A.S.S. Duarte, A.B. Zangirolami, J.L. Proenca-Modena, P.M. Campos, et al.
Low SARS-CoV-2 seroprevalence in a cohort of Brazilian sickle cell disease patients: possible effects of emphasis on social isolation for a population initially considered to be at very high risk.
EJHaem, 2 (2021), pp. 478-482
[37]
V.C. Nicolete, P.T. Rodrigues, I.C. Johansen, R.M. Corder, J. Tonini, M.A. Cardoso, et al.
Interacting Epidemics in Amazonian Brazil: prior Dengue Infection Associated with Increased COVID-19 Risk in a Population-Based Cohort Study.
Clin Infect Dis, 73 (2021), pp. 2045-2054
[38]
M.S. Oliveira, R.D. Lobo, F.P. Detta, J.M. Vieira-Junior, T.L.S. Castro, D.B. Zambelli, et al.
SARS-CoV-2 seroprevalence and risk factors among health care workers: estimating the risk of COVID-19 dedicated units.
Am J Infect Control, 49 (2021), pp. 1197-1199
[39]
A.C. Pasqualotto, P.C. Pereira, D.F.D. Lana, A.V. Schwarzbold, M.S. Ribeiro, C.V.W. Riche, et al.
COVID-19 seroprevalence in military police force, Southern Brazil.
PLoS ONE, 16 (2021),
[40]
E.P.S. Rodrigues, I.N. Abreu, C.N.C. Lima, D.L.M. Fonseca, S.F.G. Pereira, L.C. Reis, et al.
High prevalence of anti-SARS-CoV-2 IgG antibody in the Xikrin of Bacajá (Kayapó) indigenous population in the brazilian Amazon.
Int J Equity Health, 20 (2021), pp. 50
[41]
Santana FM, Lopes JB, Perez MO, Campana G, Levi JE, Lopes FPPL, et al. Journal of Molecular and Genetic Medicine. Seroconversion for SARS-CoV-2 in Rheumatic Patients on Synthetic and Biologics Disease Modifying Anti-Rheumatic Drugs in São Paulo, Brazil. ResearchSquare[Preprint] 2020. [Cited in 2021 Oct 22]: 10p. Avaliable from: https://www.researchsquare.com/article/rs-97191/v1https://doi.org/10.21203/rs.3.rs-97191/v1.
[42]
A.A.S. Araújo, L.J. Quintans-Júnior, D.M. Schimieguel, C.B. Corrêa, T.R. Moura, R.C.M. Cavalcante, et al.
Seroprevalence of SARS-CoV-2 antibodies in low-income university students.
EXCLI J, 20 (2021), pp. 276-280
[43]
A.A.S. Araújo, L.J. Quintans-Júnior, L. Heimfarth, D.M. Schimieguel, C.B. Corrêa, T.R. Moura, et al.
Seroprevalence of SARS-CoV-2 antibodies in the poorest region of Brazil: results from a population-based study.
Epidemiol Infect, 149 (2021), pp. e130
[44]
B.H. Tess, C.F.H. Granato, M.C.G.P. Alves, M.C.T. Pintão, M.C. Nunes, E.G. Rizzatti, et al.
Assessment of initial SARS-CoV-2 seroprevalence in the most affected districts in the municipality of São Paulo, Brazil.
Braz J Infect Dis, 25 (2021),
[45]
E.L.N. Maciel, P.M. Jabor, L.R. Macedo, G.L. Almada, R.L. Zanotti, C. Cerutti Junior, et al.
Living conditions, seroprevalence and symptoms of COVID-19 in slums in the Metropolitan Region of Vitória (Espírito Santo).
Rev Bras Epidemiol, 24 (2021),
[46]
M.P. Cristelli, L.A. Viana, C.M. Fortaleza, C. Granato, M.R. Nakamura, D.W.C.L. Santos, et al.
Lower seroprevalence for SARS-CoV-2-specific antibodies among kidney transplant recipients compared to the general population in the city of Sao Paulo, Brazil.
Transpl Infect Dis, 23 (2021), pp. e13706
[47]
L.L. Stringari, M.N. Souza, N.F. Medeiros Junior, J.P. Goulart, C. Giuberti, R. Dietze, et al.
Covert cases of Severe Acute Respiratory Syndrome Coronavirus 2: an obscure but present danger in regions endemic for Dengue and Chikungunya viruses.
PLoS ONE, 16 (2021),
[48]
L. Amorim Filho, C.L. Szwarcwald, S.O.G. Mateos, A.C.M.P. Leon, R.A. Medronho, V.G. Veloso, et al.
Seroprevalence of anti-SARS-CoV-2 among blood donors in Rio de Janeiro.
Brazil. Rev Saude Publica., 54 (2020), pp. 69
[49]
Batista KBC, Caseiro MM, Barros CR, Martins LC, Chioro A, Araújo ESA, et al. COVID-19 Seroprevalence in Baixada Santista Metropolitan Area – Brazil [Internet], MedRxiv [Preprint] 2020. [Cited in 2021 Oct 22]: 10p. Avaliable from: https://www.medrxiv.org/content/10.1101/2020.08.28.20184010v1. https://doi.org/10.1101/2020.08.28.2018401.
[50]
L.P. Borges, A.F. Martins, M.S. Melo, M.G.B. Oliveira, J.M. Rezende Neto, M.B. Dósea, et al.
Seroprevalence of SARS-CoV-2 IgM and IgG antibodies in an asymptomatic population in Sergipe.
Brazil. Rev Panam Salud Publica., 44 (2020), pp. e108
[51]
Costa SF, Borges IC, Giavina-Bianchi P, Buss L, Peres CHM, Santos LGN., et al. Evaluating Burnout Among Health Workers Routinely Screened for SARS-CoV-2. [Internet] Researchsquare.[Preprint] 2020. [Cited in 2021 Oct 22]:22p. Avaliable from: https://www.researchsquare.com/article/rs-108503/v1.
[52]
Gomes CC, Cerutti Junior C, Zandonade E, Maciel ELN., Alencar FEC, Almada GL, et al. A population-based study of the prevalence of COVID-19 infection in Espírito Santo, Brazil: methodology and results of the first stage [Internet]. medRxiv [Preprint] 2020 [Cited in 2021 Oct 22]:17p. Avaliable from: https://doi.org/10.1101/2020.06.13.20130559.
[53]
Ismael C, Ismael P, Silva CM, Melo MSM, Ferreira Neto B, Melo J, et al. Universal Screening of SARS-CoV-2 of Oncology Healthcare Workers ‒ a Brazilian experience. [Internet] ScieloPreprints [Preprint] 2020. [Cited in 2021 Oct 22]:7p. Avaliable from: https://preprints.scielo.org/index.php/scielo/preprint/view/293.
[54]
A.A.M. Silva, L.G. Lima-Neto, C.M.P.S. Azevedo, L.M.M. Costa, M.L.B.M. Bragança, A.K.D. Barros Filho, et al.
Population-based seroprevalence of SARS-CoV-2 and the herd immunity threshold in Maranhão.
Rev Saude Publica, 54 (2020), pp. 131
[55]
Sales MJT, Kerr LRFS, Brizolara RV, Barreto ICHCB, Almeida RLF, Goes PSA, et al. Fernando de Noronha: how an island controlled the community transmission of COVID-19 in Brazil. [Internet] medRxiv [Preprint] 2020 [Cited in 2021 Oct 22]:20p. Avaliable from: https://doi.org/10.1101/2020.10.22.20216010.
[56]
Melo MS, Borges LP, Souza DRV, Martins AF, Neto JMR, Ribeiro AA, et al. Anti-SARS-CoV-2 IgM and IgG antibodies in health workers in Sergipe, Brazil. [Internet] medRxiv [Preprint] 2020 [Cited in 2021 Oct 19]:11p. Avaliable from: https://doi.org/10.1101/2020.09.24.20200873.
[57]
L.M.S. Oliveira, B.T. Tiyo, L.T. Silva, L.A.M. Fonseca, R.C. Rocha, V.A. Santos, et al.
Prevalence of anti-SARS-CoV-2 antibodies in outpatients of a large public university hospital in Sao Paulo, Brazil.
Rev Inst Med Trop Sao Paulo., 62 (2020), pp. e91
[58]
Silva VO, Oliveira EL, Castejon MJ, Yamashiro R, Ahagon CM, López-Lopes GI, et al. Prevalence of antibodies against SARS-CoV-2 in professionals of a public health laboratory at são paulo, SP, Brazil. [Internet] medRxiv [Preprint] 2020 [Cited in 2021 Oct 19]: 18p. Avaliable from: https://doi.org/10.1101/2020.10.19.20213421.
[59]
Secretaria Municipal de Saúde da Prefeitura de Campinas [Internet]. Inquérito Soroepidemiológico Campinas ‒ (COVID-19) [Cited 2022 Jan 20]. Available from: https://covid-19.campinas.sp.gov.br/pesquisas
[60]
M. Pollán, B. Pérez-Gómez, R. Pastor-Barriuso, J. Oteo, M.A. Hernán, M. Pérez-Olmeda, et al.
Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a Nationwide, population-based seroepidemiological study.
[61]
J.M. Jones, M. Stone, H. Sulaeman, R.V. Fink, H. Dave, M.E. Levy, et al.
Estimated US infection and vaccine-induced SARS-CoV-2 seroprevalence based on blood donors, July 2020 – May 2021.
JAMA, 326 (2021), pp. 1400-1409
[62]
K.L. Bajema, R.E. Wiegand, K. Cuffe, S.V. Patel, R. Iachan, T. Lim, et al.
Estimated SARS-CoV-2 seroprevalence in the US as of September 2020.
JAMA Intern Med, 181 (2021), pp. 450-460
[63]
M.V. Murhekar, T. Bhatnagar, J.W.V. Thangaraj, V. Saravanakumar, M.S. Kumar, S. Selvaraju, et al.
SARS-CoV-2 seroprevalence among the general population and healthcare workers in India, December 2020 – January 2021.
Int J Infect Dis, 108 (2021), pp. 145-155
[64]
N.R. Faria, T.A. Mellan, C. Whittaker, I.M. Claro, D.S. Candido, S. Mishra, et al.
Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus.
Brazil. Science., 372 (2021), pp. 815-821
[65]
Ö. Appak, A. Gülmez, I. Güzel, N.S. Gezer, Ö.G. Doruk, O.A. Ergor, et al.
Evaluation of COVID-19 antibody response with using three different tests.
Iran J Microbiol, 13 (2021), pp. 565-573
Copyright © 2023. HCFMUSP
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos