was read the article
array:24 [ "pii" => "S1807593222004483" "issn" => "18075932" "doi" => "10.6061/clinics/2020/e2343" "estado" => "S300" "fechaPublicacion" => "2020-01-01" "aid" => "448" "copyright" => "CLINICS" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 0 "licencia" => "https://creativecommons.org/licenses/by/4.0/" "subdocumento" => "dis" "cita" => "Clinics. 2020;75C:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:19 [ "pii" => "S1807593222004495" "issn" => "18075932" "doi" => "10.6061/clinics/2020/e2353" "estado" => "S300" "fechaPublicacion" => "2020-01-01" "aid" => "449" "copyright" => "CLINICS" "documento" => "article" "crossmark" => 0 "licencia" => "https://creativecommons.org/licenses/by/4.0/" "subdocumento" => "rev" "cita" => "Clinics. 2020;75C:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">REVIEW ARTICLE</span>" "titulo" => "Update on the diagnosis and management of COVID-19 in pediatric patients" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig1" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1610 "Ancho" => 1503 "Tamanyo" => 279173 ] ] "descripcion" => array:1 [ "en" => "<p id="spara10" class="elsevierStyleSimplePara elsevierViewall">Flow diagram of invasive mechanical ventilation for COVID-19 patients.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Ana Paula de Carvalho Panzeri Carlotti, Werther Brunow de Carvalho, Cíntia Johnston, Alfredo Elias Gilio, Heloisa Helena de Sousa Marques, Juliana Ferreira Ferranti, Isadora Souza Rodriguez, Artur Figueiredo Delgado" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Ana Paula de Carvalho Panzeri" "apellidos" => "Carlotti" ] 1 => array:2 [ "nombre" => "Werther Brunow" "apellidos" => "de Carvalho" ] 2 => array:2 [ "nombre" => "Cíntia" "apellidos" => "Johnston" ] 3 => array:2 [ "nombre" => "Alfredo Elias" "apellidos" => "Gilio" ] 4 => array:2 [ "nombre" => "Heloisa Helena" "apellidos" => "de Sousa Marques" ] 5 => array:2 [ "nombre" => "Juliana Ferreira" "apellidos" => "Ferranti" ] 6 => array:2 [ "nombre" => "Isadora Souza" "apellidos" => "Rodriguez" ] 7 => array:2 [ "nombre" => "Artur Figueiredo" "apellidos" => "Delgado" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1807593222004495?idApp=UINPBA00004N" "url" => "/18075932/000000750000000C/v1_202211290815/S1807593222004495/v1_202211290815/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1807593222004471" "issn" => "18075932" "doi" => "10.6061/clinics/2020/e2338" "estado" => "S300" "fechaPublicacion" => "2020-01-01" "aid" => "447" "copyright" => "CLINICS" "documento" => "article" "crossmark" => 0 "licencia" => "https://creativecommons.org/licenses/by/4.0/" "subdocumento" => "dis" "cita" => "Clinics. 2020;75C:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:8 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">COMMENTS</span>" "titulo" => "Comments on “Evaluation of the Accuracy of Mammography, Ultrasound and Magnetic Resonance Imaging in Suspect Breast Lesions”" "tienePdf" => "en" "tieneTextoCompleto" => "en" "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Yongyu An" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Yongyu" "apellidos" => "An" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1807593222004471?idApp=UINPBA00004N" "url" => "/18075932/000000750000000C/v1_202211290815/S1807593222004471/v1_202211290815/en/main.assets" ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">COMMENTS ARTICLE</span>" "titulo" => "SARS-CoV-2. Long Distance Airborne Transmission and its Public Health Implications" "tieneTextoCompleto" => true "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Gustavo Silveira Graudenz, Cristiane Degobbi, Paulo Hilario Saldiva" "autores" => array:3 [ 0 => array:4 [ "nombre" => "Gustavo Silveira" "apellidos" => "Graudenz" "email" => array:1 [ 0 => "ggraudenz@prof.unisa.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">I</span>" "identificador" => "aff1" ] 1 => array:2 [ "etiqueta" => "*" "identificador" => "cor1" ] ] ] 1 => array:3 [ "nombre" => "Cristiane" "apellidos" => "Degobbi" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">II</span>" "identificador" => "aff2" ] ] ] 2 => array:3 [ "nombre" => "Paulo Hilario" "apellidos" => "Saldiva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">III</span>" "identificador" => "aff3" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Universidade Santo Amaro (UNISA), Saude do Idoso III. Modulo de ensino - Disciplina: Reumatologia e Imunologia, Sao Paulo, SP, BR" "etiqueta" => "I" "identificador" => "aff1" ] 1 => array:3 [ "entidad" => "Departamento de Microbiologia. Universidade Santo Amaro (UNISA), Sao Paulo, SP, BR" "etiqueta" => "II" "identificador" => "aff2" ] 2 => array:3 [ "entidad" => "Departamento de Patologia. Universidade de Sao Paulo. Hospital das Clinicas (HCFMUSP), Sao Paulo, SP, BR" "etiqueta" => "III" "identificador" => "aff3" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor1" "etiqueta" => "*" "correspondencia" => "Corresponding author." ] ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><p id="para10" class="elsevierStylePara elsevierViewall">By the end of July 2020, more than 15 million confirmed cases of and more than half a million deaths from coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had been recorded. Of these, more than 2.5 million cases and 85,000 deaths were recorded in Brazil. As it is difficult to sustain measures of social isolation, more focused and effective preventive measures against viral transmission are urgently needed to prevent the spread of the disease. Until recently, the World Health Organization (WHO) endorsed only two modes of viral transmission. The first mode is via inhalation of large respiratory droplets generated from coughing, sneezing, or breathing by an infected individual, wherein the infective potential is short-ranged. The second mode is via direct contact with contaminated surfaces (fomites), wherein the virus is carried by the hands to the nose, mouth, or eyes.</p><p id="para20" class="elsevierStylePara elsevierViewall">Considering this, frequent hand washing, maintaining a social distance of 1 m, good respiratory hygiene, and avoiding crowds (no specifications) are considered main preventive measures (<a class="elsevierStyleCrossRef" href="#bib1">1</a>).</p><p id="para30" class="elsevierStylePara elsevierViewall">Until now, COVID-19 has not been considered an airborne disease. The only diseases recognized as belonging to this category are tuberculosis <span class="elsevierStyleItalic">(Mycobacterium tuberculosis)</span>, chicken pox (<span class="elsevierStyleItalic">varicella-zoster virus</span>), measles (<span class="elsevierStyleItalic">Morbillivirus</span>), and invasive aspergillosis (<span class="elsevierStyleItalic">Aspergillus</span> sp.) (<a class="elsevierStyleCrossRef" href="#bib2">2</a>). The category is restricted to diseases transmitted by small viable and infectious particles that are able to travel long distances, stay for long periods in suspension, are strongly influenced by air currents, and are able to penetrate deep into the lungs of individuals who have had no previous direct contact with or have not been in close proximity to an infected individual. Despite some controversies regarding the penetration of particles into the respiratory system, it is widely accepted that small particles with an aerodynamic diameter of less than 10 μm are able to pass the glottic barrier and penetrate up to the thoracic level. Particles ranging from 5 to 10 μm have the potential to transmit disease over both long and short distances, and particles less than 5 μm in diameter can penetrate up to the alveolar level (<a class="elsevierStyleCrossRef" href="#bib3">3</a>). In contrast, particles larger than 20 μm in diameter have a more ballistic behavior, meaning they are more under the influence of gravity than wind currents.</p><p id="para40" class="elsevierStylePara elsevierViewall">The particles generated through breathing, coughing, and sneezing are between 4 and 8 µm in diameter (<a class="elsevierStyleCrossRef" href="#bib4">4</a>). More recent and precise studies that take into account the age-dependent decay process of the particles report that most exhaled particles measure less than 1 µm and are generated during speaking and not only during coughing or sneezing (<a class="elsevierStyleCrossRef" href="#bib5">5</a>). In addition, exhaled particles are not necessarily isolated in muco-salivary droplets. During the exhalation process, multiphase turbulent gas clouds are created.</p><p id="para50" class="elsevierStylePara elsevierViewall">These clouds retain their temperature and humidity and allow the contained droplets to evade evaporation for much longer than isolated droplets can. Under these conditions, the lifetime of a droplet could be considerably extended, by a factor of up to 1000, from a fraction of a second to minutes. As a result, these clouds can carry particles 7 or 8 m away from the infected individual, after which the particles undergo dehydration and aging, resulting in smaller particles that are able to travel even longer distances (<a class="elsevierStyleCrossRef" href="#bib6">6</a>).</p><p id="para60" class="elsevierStylePara elsevierViewall">According to Roy and Milton (<a class="elsevierStyleCrossRef" href="#bib7">7</a>), airborne infections can be largely underestimated because of methodological limitations. They suggest the following classification for airborne diseases:<ul class="elsevierStyleList" id="celist10"><li class="elsevierStyleListItem" id="celistitem10"><span class="elsevierStyleLabel">1.</span><p id="para70" class="elsevierStylePara elsevierViewall">Mandatory: when the pathogen can only be transmitted through the airborne route (<span class="elsevierStyleItalic">e.g.</span>, <span class="elsevierStyleItalic">tuberculosis</span>).</p></li><li class="elsevierStyleListItem" id="celistitem20"><span class="elsevierStyleLabel">2.</span><p id="para80" class="elsevierStylePara elsevierViewall">Preferential: when the pathogen can be transmitted by other routes but the airborne route is the main route (<span class="elsevierStyleItalic">e.g.</span>, measles, smallpox).</p></li><li class="elsevierStyleListItem" id="celistitem30"><span class="elsevierStyleLabel">3.</span><p id="para90" class="elsevierStylePara elsevierViewall">Opportunistic: when the pathogen is mainly transmitted by other routes but can be transmitted by the airborne route under certain circumstances.</p></li></ul></p><p id="para100" class="elsevierStylePara elsevierViewall">Currently, there is no clear evidence of airborne transmission of SARS-CoV-2. This is a matter of intense debate. Its predecessor, SARS-CoviD-1, the agent that caused Severe Acute Respiratory Syndrome (SARS) in Hong Kong in 2003, showed strong evidence of opportunistic airborne transmission in different environments, such as collective housing environments (<a class="elsevierStyleCrossRef" href="#bib8">8</a>), indoor environments such as airplanes (<a class="elsevierStyleCrossRef" href="#bib9">9</a>), and health service institutions (<a class="elsevierStyleCrossRef" href="#bib10">10</a>).</p><p id="para110" class="elsevierStylePara elsevierViewall">Similarly, some researchers considered airborne transmission of another coronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV), which has been described as unable to infect the upper airways but as having a preferential affinity toward the lower airway, with infective particles less than 10 µm in diameter (<a class="elsevierStyleCrossRef" href="#bib11">11</a>).</p><p id="para120" class="elsevierStylePara elsevierViewall">The consideration of airborne transmission of SARS-CoV-2 by the (WHO) was based on evidence from a study by Ong et al. (<a class="elsevierStyleCrossRef" href="#bib12">12</a>) that suggested transmission of SARS-CoV-2 through infected surfaces and contaminated individual protection equipment as well as long distance environment contamination. The negative results from the air samples were interpreted as effective room disinfection and air renovation measures. Despite the air samples testing SARS-CoV-2-negative, samples from the recirculation system tested positive, revealing that small particles were carried over longer distances.</p><p id="para130" class="elsevierStylePara elsevierViewall">Considering this, new studies have been conducted, and evidence of airborne transmission has started increasing. In a hospital designated to treat patients with COVID-19, airborne viruses were detected in sub-micrometric particles and were more concentrated in used protective apparel of health professionals (<a class="elsevierStyleCrossRef" href="#bib13">13</a>). In another study in a hospital treating COVID-19 patients in Nebraska, USA, the largest viral concentrations were detected in the ventilation grills, indirectly indicating long-distance infective particle transportation into the building ventilation system (<a class="elsevierStyleCrossRef" href="#bib14">14</a>). In an experimental study conducted in an aerosol chamber, potentially infective and stable particles lasting for up to 3 h were identified in a controlled contamination experiment using particles with less than 5 microns in diameter (<a class="elsevierStyleCrossRef" href="#bib15">15</a>). Considering the reported evidence and the many similarities among these coronaviruses (SARS-CoV-1, MERS-CoV), it is likely that SARS-CoV-2 is transmitted via the air. However, some questions remain unanswered, for instance, the origin and area as well as the infectious dose and infection rates after exposure to particles smaller than 10 µm (<a class="elsevierStyleCrossRef" href="#bib16">16</a>).</p><p id="para140" class="elsevierStylePara elsevierViewall">Despite the controversies, experts recommend precaution in all indoor environment-related situations. Measures such as increasing air exchange rates, avoiding air recirculation, downwind positioning relative to other individuals, and reducing the number of people sharing the same indoor environment should be considered, among the general measures aimed at reducing the infection risk (<a class="elsevierStyleCrossRef" href="#bib17">17</a>). In health care settings, the Center for Disease Control's recommendations for prevention of airborne transmission include maintaining a negative pressure environment, fine filtering of exhaust air from infected patients' rooms, maintaining high air exchange rates (12 air exchanges per hour), shutting recirculation ducts, and establishing pressure cascades (<a class="elsevierStyleCrossRef" href="#bib2">2</a>) in these settings until further evidence of long distance transmission is obtained</p><p id="para150" class="elsevierStylePara elsevierViewall">Unfortunately, these precautionary measures have not yet been applied in most health care facilities in Brazil. Even when it is not feasible to establish negative pressure or pressure cascades using ventilation systems, a simple alternative could be to use natural ventilation to increase air exchange rates and thus ensure pathogen dilution. It is important to avoid the use of a ventilation system without air exchange such as split systems in these settings. In our scenario, scientific data reinforces that indoor air quality standards for health care in Brazil, the NBR 7256 (<a class="elsevierStyleCrossRef" href="#bib18">18</a>), must be updated to protect health personnel dealing with diseases with a high potential for being contagious, such as COVID-19. Recently, a call for action supported by 239 scientists from different parts of the world was published that indicated that information on warnings and precautionary measures for the control of potential aerial transmission of SARS-CoV-2 should be conveyed by health authorities (<a class="elsevierStyleCrossRef" href="#bib19">19</a>). Considering the risk of airborne transmission of COVID-19 and taking its preventive measures is particularly important at this moment when several countries, including Brazil, are progressively increasing their economic and social activities and gathering people is inevitable. So, it is important to stress the necessity of maximizing air renewing and mandatory use of face masks, not only in health care settings but also in commonly shared indoor environments, like workplaces, schools and public transportation.</p></span>" "pdfFichero" => "main.pdf" "tienePdf" => true "NotaPie" => array:1 [ 0 => array:1 [ "nota" => "<p class="elsevierStyleNotepara" id="cenpara10">No potential conflict of interest was reported.</p>" ] ] "bibliografia" => array:2 [ "titulo" => "REFERENCES" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "cebibsec10" "bibliografiaReferencia" => array:19 [ 0 => array:3 [ "identificador" => "bib1" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => """ WHO \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Scientific brief" "fecha" => "2020" "volumen" => "March" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib2" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2007 Guideline for isolation precautions: Preventing transmission of infectious agents in healthcare settings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => """ JD Siegel \n \t\t\t\t\t\t\t\t """ 1 => """ E Rhinehart \n \t\t\t\t\t\t\t\t """ 2 => """ M Jackson \n \t\t\t\t\t\t\t\t """ 3 => """ L Chiarello \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "In: Hospital-Acquired Infections" "fecha" => "2009" "paginaInicial" => "1" "paginaFinal" => "232" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119119/" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib3" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preventing transmission of pandemic influenza and other viral respiratory diseases: Personal protective equipment for healthcare personnel: Update 2010 [Internet]. 2011 [citado 1 de maio de 2020]. 1-187" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => """ EL Larson \n \t\t\t\t\t\t\t\t """ 1 => """ CT Liverman \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "WWW" => array:1 [ "link" => "Available from: http://www.nap.edu/catalog.php?record_id=13027" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib4" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The numbers and the sites of origin of the droplets expelled during expiratory activities" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => """ JP DUGUID \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Edinb Med J" "fecha" => "1945" "volumen" => "52" "numero" => "11" "paginaInicial" => "385" "paginaFinal" => "401" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21009905" "web" => "Medline" ] ] ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286249/" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib5" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ L Morawska \n \t\t\t\t\t\t\t\t """ 1 => """ GR Johnson \n \t\t\t\t\t\t\t\t """ 2 => """ ZD Ristovski \n \t\t\t\t\t\t\t\t """ 3 => """ M Hargreaves \n \t\t\t\t\t\t\t\t """ 4 => """ K Mengersen \n \t\t\t\t\t\t\t\t """ 5 => """ S Corbett \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Aerosol Sci" "fecha" => "2009" "volumen" => "40" "numero" => "3" "paginaInicial" => "256" "paginaFinal" => "269" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "Available from: http://eprints.qut.edu.au/" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib6" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => """ L Bourouiba \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1001/jama.2020.4756" "Revista" => array:8 [ "tituloSerie" => "JAMA" "fecha" => "2020" "volumen" => "323" "numero" => "18" "paginaInicial" => "1837" "paginaFinal" => "1838" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32215590" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673699123237" "estado" => "S300" "issn" => "01406736" ] ] ] 1 => array:2 [ "doi" => "10.1001/jama.2020.4756" "WWW" => array:1 [ "link" => "Available from: https://jamanetwork.com/journals/jama/article-abstract/2763852" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib7" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Airborne Transmission of Communicable Infection–The Elusive Pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => """ CJ Roy \n \t\t\t\t\t\t\t\t """ 1 => """ DK Milton \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1056/NEJMp048051" "Revista" => array:7 [ "tituloSerie" => "N Engl J Med" "fecha" => "2004" "volumen" => "350" "numero" => "17" "paginaInicial" => "1710" "paginaFinal" => "1712" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15102996" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1056/NEJMp048051" "WWW" => array:1 [ "link" => "Available from: http://www.nejm.org" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib8" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ IT Yu \n \t\t\t\t\t\t\t\t """ 1 => """ Y Li \n \t\t\t\t\t\t\t\t """ 2 => """ TW Wong \n \t\t\t\t\t\t\t\t """ 3 => """ W Tam \n \t\t\t\t\t\t\t\t """ 4 => """ AT Chan \n \t\t\t\t\t\t\t\t """ 5 => """ JH Lee \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa032867" "Revista" => array:7 [ "tituloSerie" => "N Engl J Med" "fecha" => "2004" "volumen" => "350" "numero" => "17" "paginaInicial" => "1731" "paginaFinal" => "1739" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15102999" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1056/NEJMoa032867" "WWW" => array:1 [ "link" => "https://doi.org/10.1056/NEJMoa032867" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib9" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transmission of the Severe Acute Respiratory Syndrome on Aircraft" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ SJ Olsen \n \t\t\t\t\t\t\t\t """ 1 => """ HL Chang \n \t\t\t\t\t\t\t\t """ 2 => """ TY Cheung \n \t\t\t\t\t\t\t\t """ 3 => """ AF Tang \n \t\t\t\t\t\t\t\t """ 4 => """ TL Fisk \n \t\t\t\t\t\t\t\t """ 5 => """ SP Ooi \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa031349" "Revista" => array:7 [ "tituloSerie" => "N Engl J Med" "fecha" => "2003" "volumen" => "349" "numero" => "25" "paginaInicial" => "2416" "paginaFinal" => "2422" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14681507" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1056/NEJMoa031349" "WWW" => array:1 [ "link" => "https://doi.org/10.1056/NEJMoa031349" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib10" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A major outbreak of severe acute respiratory syndrome in Hong Kong" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ N Lee \n \t\t\t\t\t\t\t\t """ 1 => """ D Hui \n \t\t\t\t\t\t\t\t """ 2 => """ A Wu \n \t\t\t\t\t\t\t\t """ 3 => """ P Chan \n \t\t\t\t\t\t\t\t """ 4 => """ P Cameron \n \t\t\t\t\t\t\t\t """ 5 => """ GM Joynt \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa030685" "Revista" => array:7 [ "tituloSerie" => "N Engl J Med" "fecha" => "2003" "volumen" => "348" "numero" => "20" "paginaInicial" => "1986" "paginaFinal" => "1994" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12682352" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1056/NEJMoa030685" "WWW" => array:1 [ "link" => "https://doi.org/10.1056/NEJMoa030685" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib11" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Recognition of aerosol transmission of infectious agents: A commentary" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => """ R Tellier \n \t\t\t\t\t\t\t\t """ 1 => """ Y Li \n \t\t\t\t\t\t\t\t """ 2 => """ BJ Cowling \n \t\t\t\t\t\t\t\t """ 3 => """ JW Tang \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "BMC Infec Dis" "fecha" => "2019" "volumen" => "19" "numero" => "1" "paginaInicial" => "101" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://doi.org/10.1186/s12879-019-3707-y" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib12" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ SWX Ong \n \t\t\t\t\t\t\t\t """ 1 => """ YK Tan \n \t\t\t\t\t\t\t\t """ 2 => """ PY Chia \n \t\t\t\t\t\t\t\t """ 3 => """ TH Lee \n \t\t\t\t\t\t\t\t """ 4 => """ OT Ng \n \t\t\t\t\t\t\t\t """ 5 => """ MSY Wong \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1001/jama.2020.3227" "Revista" => array:7 [ "tituloSerie" => "JAMA" "fecha" => "2020" "volumen" => "323" "numero" => "16" "paginaInicial" => "1610" "paginaFinal" => "1612" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32129805" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1001/jama.2020.3227" "WWW" => array:1 [ "link" => "Available from: https://jamanetwork.com/journals/jama/article-abstract/2762692" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib13" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ Y Liu \n \t\t\t\t\t\t\t\t """ 1 => """ Z Ning \n \t\t\t\t\t\t\t\t """ 2 => """ Y Chen \n \t\t\t\t\t\t\t\t """ 3 => """ M Guo \n \t\t\t\t\t\t\t\t """ 4 => """ Y Liu \n \t\t\t\t\t\t\t\t """ 5 => """ NK Gali \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "bioRxiv" "fecha" => "2020" "volumen" => "86" "numero" => "21" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "Available from: https://doi.org/10.1101/2020.03.08.982637" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib14" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transmission Potential of SARS-CoV-2 in Viral Shedding Observed at the University of Nebraska Medical Center" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ JL Santarpia \n \t\t\t\t\t\t\t\t """ 1 => """ DN Rivera \n \t\t\t\t\t\t\t\t """ 2 => """ V Herrera \n \t\t\t\t\t\t\t\t """ 3 => """ MJ Morwitzer \n \t\t\t\t\t\t\t\t """ 4 => """ H Creager \n \t\t\t\t\t\t\t\t """ 5 => """ GW Santarpia \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "medRxiv" "fecha" => "2020" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "Available from: https://doi.org/10.1101/2020.03.23.20039446" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib15" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => """ N van Doremalen \n \t\t\t\t\t\t\t\t """ 1 => """ T Bushmaker \n \t\t\t\t\t\t\t\t """ 2 => """ DH Morris \n \t\t\t\t\t\t\t\t """ 3 => """ MG Holbrook \n \t\t\t\t\t\t\t\t """ 4 => """ A Gamble \n \t\t\t\t\t\t\t\t """ 5 => """ BN Williamson \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.1056/NEJMc2004973" "Revista" => array:7 [ "tituloSerie" => "N Engl J Med" "fecha" => "2020" "volumen" => "382" "numero" => "16" "paginaInicial" => "1564" "paginaFinal" => "1567" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32182409" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.1056/NEJMc2004973" "WWW" => array:1 [ "link" => "https://doi.org/10.1056/NEJMc2004973" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib16" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Is the coronavirus airborne? Experts can’t agree" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => """ D Lewis \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Nature" "fecha" => "2020" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "Available from: https://www.seme.org/site/docs/covid-19/Lewis_090420_Coronav_airborne_No_experts_agree.pdf" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib17" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => """ H Qian \n \t\t\t\t\t\t\t\t """ 1 => """ X Zheng \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:2 [ "doi" => "10.21037/jtd.2018.01.24" "Revista" => array:7 [ "tituloSerie" => "J Thorac Dis" "fecha" => "2018" "volumen" => "10" "numero" => "Suppl 19" "paginaInicial" => "S2295" "paginaFinal" => "S2304" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30116608" "web" => "Medline" ] ] ] ] 1 => array:2 [ "doi" => "10.21037/jtd.2018.01.24" "WWW" => array:1 [ "link" => "Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072925/7" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib18" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tratamento de ar em estabelecimentos assistenciais de saúde (EAS) - Requisitos para projeto e execução das instalações. ABNT 22" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => """ NBR 7256 \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "WWW" => array:2 [ "link" => "Available from: https://www.google.com/search?q=nbr+7256&rlz=1C5CHFA_enBR694BR694&oq=nbr+7256&aqs=chrome..69i57j0l7.13451j0j8&sourceid=chrome&ie=UTF-8" "fecha" => "2005" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib19" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "It is Time to Address Airborne Transmission of COVID-19" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => """ L Morawska \n \t\t\t\t\t\t\t\t """ 1 => """ DK Milton \n \t\t\t\t\t\t\t\t """ ] ] ] ] ] "host" => array:2 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Clin Infect Dis" "fecha" => "2020" "paginaInicial" => "ciaa939" ] ] 1 => array:1 [ "WWW" => array:1 [ "link" => "https://doi/org/10.1093/cid/ciaa939" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/18075932/000000750000000C/v1_202211290815/S1807593222004483/v1_202211290815/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/18075932/000000750000000C/v1_202211290815/S1807593222004483/v1_202211290815/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1807593222004483?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 5 | 1 | 6 |
2024 October | 41 | 34 | 75 |
2024 September | 46 | 34 | 80 |
2024 August | 47 | 34 | 81 |
2024 July | 37 | 27 | 64 |
2024 June | 40 | 27 | 67 |
2024 May | 32 | 15 | 47 |
2024 April | 43 | 18 | 61 |
2024 March | 40 | 20 | 60 |
2024 February | 42 | 16 | 58 |
2024 January | 34 | 17 | 51 |
2023 December | 13 | 24 | 37 |
2023 November | 14 | 22 | 36 |
2023 October | 14 | 30 | 44 |
2023 September | 12 | 20 | 32 |
2023 August | 25 | 4 | 29 |
2023 July | 14 | 27 | 41 |
2023 June | 18 | 14 | 32 |
2023 May | 1 | 2 | 3 |
2023 April | 2 | 0 | 2 |
2023 March | 4 | 2 | 6 |
2023 February | 2 | 1 | 3 |
2023 January | 3 | 1 | 4 |
2022 December | 16 | 2 | 18 |
2022 November | 3 | 0 | 3 |