was read the article
array:23 [ "pii" => "S1807593222033464" "issn" => "18075932" "doi" => "10.1016/j.clinsp.2022.100145" "estado" => "S300" "fechaPublicacion" => "2023-01-01" "aid" => "100145" "copyright" => "HCFMUSP" "copyrightAnyo" => "2022" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Clinics. 2023;78C:" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S1807593222033440" "issn" => "18075932" "doi" => "10.1016/j.clinsp.2022.100143" "estado" => "S300" "fechaPublicacion" => "2023-01-01" "aid" => "100143" "copyright" => "HCFMUSP" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Clinics. 2023;78C:" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original articles</span>" "titulo" => "LncRNA ZFAS1 contributes to osteosarcoma progression via miR-520b and miR-520e-mediated inhibition of RHOC signaling" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "en" ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0004" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3382 "Ancho" => 2833 "Tamanyo" => 564112 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0004" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara004" class="elsevierStyleSimplePara elsevierViewall">Lnc-ZFAS1 sponges miR-520b and miR-520e in osteosarcoma. (A) The subcellular location of Lnc-ZFAS1 was determined. GAPDH and U6 were respectively determined as the markers of cytoplasm and nucleus. (B) FISH results show Lnc-ZFAS1 (in green) cellular distribution in KHOS cells. (C) Starbase and GSE28423 databases were performed to obtain intersected hsa-miR-520b, hsa-miR-520e and hsa-miR-934. RNA pull-down (D), Luciferase reporter (E) and RIP (F) assays were utilized to explore the binding between Lnc-ZFAS1 with two miRNAs. (G) miR-520b and miR-520e were detected in Lnc-ZFAS1-upregulated U2OS cells and Lnc-ZFAS1-downregulated KHOS cells by qRT-PCR. (H) qRT-PCR was employed to detect the expression of miR-520b and miR-520e in osteosarcoma tissues and normal tissues (n = 8). (I) The correlation analysis between Lnc-ZFAS1 with two miRNAs (*p < 0.05, **p < 0.01).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Xiaofeng Liu, Mingyang Wang, Liwen Zhang, Lei Huang" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Xiaofeng" "apellidos" => "Liu" ] 1 => array:2 [ "nombre" => "Mingyang" "apellidos" => "Wang" ] 2 => array:2 [ "nombre" => "Liwen" "apellidos" => "Zhang" ] 3 => array:2 [ "nombre" => "Lei" "apellidos" => "Huang" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Highlights" "clase" => "author-highlights" "resumen" => "<span id="abss0001" class="elsevierStyleSection elsevierViewall"><p id="spara007" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="celist0001"><li class="elsevierStyleListItem" id="celistitem0001"><span class="elsevierStyleLabel">•</span><p id="para0001" class="elsevierStylePara elsevierViewall">Lnc-ZFAS1 is highly expressed in osteosarcoma.</p></li><li class="elsevierStyleListItem" id="celistitem0002"><span class="elsevierStyleLabel">•</span><p id="para0002" class="elsevierStylePara elsevierViewall">Lnc-ZFAS1 could promote cell proliferation, migration, invasion and EMT <span class="elsevierStyleItalic">in vitro</span>.</p></li><li class="elsevierStyleListItem" id="celistitem0003"><span class="elsevierStyleLabel">•</span><p id="para0003" class="elsevierStylePara elsevierViewall">Lnc-ZFAS1 acted sponger of miR-520b and miR-520e to promote RHOC.</p></li></ul></p></span>" ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1807593222033440?idApp=UINPBA00004N" "url" => "/18075932/000000780000000C/v4_202409020811/S1807593222033440/v4_202409020811/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S1807593223000856" "issn" => "18075932" "doi" => "10.1016/j.clinsp.2023.100249" "estado" => "S300" "fechaPublicacion" => "2023-01-01" "aid" => "100249" "copyright" => "HCFMUSP" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "edi" "cita" => "Clinics. 2023;78C:" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:8 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>" "titulo" => "Pesticide exposure and human health: Toxic legacy" "tienePdf" => "en" "tieneTextoCompleto" => "en" "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Fulvio A. Scorza, Larissa Beltramim, Larissa M. Bombardi" "autores" => array:3 [ 0 => array:2 [ "nombre" => "Fulvio A." "apellidos" => "Scorza" ] 1 => array:2 [ "nombre" => "Larissa" "apellidos" => "Beltramim" ] 2 => array:2 [ "nombre" => "Larissa M." "apellidos" => "Bombardi" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1807593223000856?idApp=UINPBA00004N" "url" => "/18075932/000000780000000C/v4_202409020811/S1807593223000856/v4_202409020811/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original articles</span>" "titulo" => "LIM-domain binding protein 2 was down-regulated by miRNA-96-5p inhibited the proliferation, invasion and metastasis of lung cancer H1299 cells" "tieneTextoCompleto" => true "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Fuying Chu, Xinxin Xu, Yan Zhang, Hua Cai, Jingjing Peng, Yanan Li, Han Zhang, Hongli Liu, Xiang Chen" "autores" => array:9 [ 0 => array:3 [ "nombre" => "Fuying" "apellidos" => "Chu" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn1" ] ] ] 1 => array:3 [ "nombre" => "Xinxin" "apellidos" => "Xu" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn1" ] ] ] 2 => array:3 [ "nombre" => "Yan" "apellidos" => "Zhang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] ] ] 3 => array:3 [ "nombre" => "Hua" "apellidos" => "Cai" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] ] ] 4 => array:3 [ "nombre" => "Jingjing" "apellidos" => "Peng" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 5 => array:3 [ "nombre" => "Yanan" "apellidos" => "Li" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 6 => array:3 [ "nombre" => "Han" "apellidos" => "Zhang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 7 => array:3 [ "nombre" => "Hongli" "apellidos" => "Liu" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0003" ] ] ] 8 => array:4 [ "nombre" => "Xiang" "apellidos" => "Chen" "email" => array:1 [ 0 => "ntchenx0521@163.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0001" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Department of Laboratory Medicine, Nantong First People's Hospital, China" "etiqueta" => "a" "identificador" => "aff0001" ] 1 => array:3 [ "entidad" => "Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China" "etiqueta" => "b" "identificador" => "aff0002" ] 2 => array:3 [ "entidad" => "Department of Laboratory Medicine, Nantong Tumor Hospital, China" "etiqueta" => "c" "identificador" => "aff0003" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0001" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0001" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1186 "Ancho" => 1708 "Tamanyo" => 108033 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">The expressions of LDB2 and miR-96-5p in lung cancer tissues and cell lines. (A‒B) qRT-PCR showed that the expression of LDB2 in lung cancer tissues was significantly lower than that in adjacent tissues, while miR-96-5p was high-regulated in lung cancer tissues; (C) The expression of LDB2 was negatively correlated with miR-96-5p; (D) The expression of LDB2 in normal bronchial epithelial cell line (BEAS-2B) and 5 lung cancer cell lines (SPAC1, A549, H1299, H1975, H1650); (** p < 0.01 and *** p < 0.001).</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0008">Introduction</span><p id="para0008" class="elsevierStylePara elsevierViewall">Lung cancer is the most common cancer with high morbidity and mortality in the world. According to histology classification, it includes Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC). Particularly, NSCLC accounts for more than 85% of lung cancer cases, and the 5-year survival rate of patients remains poor.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a> In recent years, with the development of diagnostic and therapeutic techniques, and the introduction of small molecule targeted drugs and immunotherapy, the effect of treatment in lung cancer has been improved remarkably. However, the overall prognosis of patients remains poor. Therefore, the authors need to research the molecular mechanisms and search the potential diagnostic markers and therapeutic targets for lung cancer.</p><p id="para0009" class="elsevierStylePara elsevierViewall">LDB2, also known as CLIM-1, belongs to the Lim domain binding family and functions as a transcriptional regulatory factor, is widely expressed in a variety of human tissues.<a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a> The LDB family is composed of three members, LDB1, LDB2 and LDB3, which are highly conserved in two homologous domains: an amino-terminal homodimerization Domain (DD) and a carboxyl-terminal LIM Interaction Domain (LID).<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> LDB proteins can form multimeric complexes through DD and mediate long-range promoter-enhancer to form a chromatin loop. LDB proteins lack DNA binding capacity and are thought to be unable to directly be involved in transcriptional regulation. However, by interacting with multiple LIM-Homeodomain (LIMHD) and LIM-Only (LMO) proteins through their LID, LDBs can well be able to regulate transcription. Through these domains, LDB proteins can bring together multiple interacting proteins into high-order large multiprotein complexes that are involved in multiple developmental pathways.<a class="elsevierStyleCrossRef" href="#bib0004"><span class="elsevierStyleSup">4</span></a> LDB1, the homologous protein of LDB2, has been widely explored such as erythroid differentiation, embryogenesis, and cancer development,<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">5-7</span></a> but the biological role of LDB2 bearing 78% identity and 89% similarity to the LDB1 is largely unknown. Recently, the role of LDB2 in cancer has attracted people's attention, but its role in tumors is still controversial. Yu et al.<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a> had demonstrated LDB2 could inhibit proliferation and migration in liver cancer cells. Overexpression of LDB2 remarkably weakened the influence of tumor suppressor factor ERRAC on the viability of CRC cells.<a class="elsevierStyleCrossRef" href="#bib0009"><span class="elsevierStyleSup">9</span></a> Lately, Zhai et al.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">10</span></a> reported that LDB2 was involved in regulating the proliferation of lung cancer cells, but the function of LDB2 in other biologies such as invasion and metastasis needs to be further studied.</p><p id="para0010" class="elsevierStylePara elsevierViewall">MicroRNAs (miRNAs) are endogenous and non-coding single-stranded microRNAs with about 21-23nt in length. MiRNAs can inhibit mRNA translation or promote mRNA degradation by binding to their 3′-Untranslated Region (3′-UTR), and thus inhibit gene expression at the post-transcriptional level.<a class="elsevierStyleCrossRef" href="#bib0011"><span class="elsevierStyleSup">11</span></a> As we all know, hundreds of distinct miRNAs have been found so far. Many studies have shown that miRNAs were abnormally expressed in lung cancer. For example, miR-519d-3p suppressed tumorigenicity and metastasis by inhibiting Bcl-w and HIF-1α in NSCLC.<a class="elsevierStyleCrossRef" href="#bib0012"><span class="elsevierStyleSup">12</span></a> MiRNA-199 expression was down-regulated in LCa and it might inhibit the malignant progression of LCa through interacting with RGS17.<a class="elsevierStyleCrossRef" href="#bib0013"><span class="elsevierStyleSup">13</span></a> MiR-96-5p was reported to participate in the occurrence and development of multiple tumors, including breast cancer,<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a> colon cancer,<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">15</span></a> gastric adenocarcinoma,<a class="elsevierStyleCrossRef" href="#bib0016"><span class="elsevierStyleSup">16</span></a> glioma,<a class="elsevierStyleCrossRef" href="#bib0017"><span class="elsevierStyleSup">17</span></a> and NSCLC.<a class="elsevierStyleCrossRef" href="#bib0018"><span class="elsevierStyleSup">18</span></a> GMDS-AS1 acts as a tumor suppressor gene to upregulate the expression of CYLD via sponging miR-96-5p in lung adenocarcinoma.<a class="elsevierStyleCrossRef" href="#bib0019"><span class="elsevierStyleSup">19</span></a> Previous research have also found that circPTPRA suppressed Epithelial Mesenchymal Transitioning (EMT) and metastasis of NSCLC cells through sponging miR-96-5p, and the circPTPRA/miR-96-5p/RASSF8/E-cadherin axis could be leveraged as a potential treatment avenue in NSCLC.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">20</span></a></p><p id="para0011" class="elsevierStylePara elsevierViewall">In this study, the authors analyzed the relative expression level of LDB2 and miR-96-5p in lung cancer tissues. Results showed that LDB2 was down-regulated and negatively correlated with miR-96-5p expression. The proliferation, invasion, and metastasis of H1299 cells and expressions of cycle‐associated, invasion-associated, apoptosis‐related, and proliferation-related proteins were promoted or inhibited after LDB2 knockdown or overexpression. However, miR-96-5p exerted its function by directly binding to 3′-UTR of LDB2 and regulated expression of LDB2. The miR-96-5p could promote cell proliferation, invasion, and metastasis, and regulate the protein levels of cyclinD1, MMP9, Bcl-2, Bax through ERK1/2 signaling pathway. Therefore, the authors found LDB2 was down-regulated by miRNA-96-5p and inhibited cell proliferation, invasion, and metastasis in lung cancer H1299 cells, these findings might provide a novel target for the diagnosis and treatment of lung cancer.</p></span><span id="sec0002" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0009">Materials and methods</span><span id="sec0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0010">Clinical samples</span><p id="para0012" class="elsevierStylePara elsevierViewall">65 pairs of lung tumor tissues and para-carcinoma tissues involved in this study were obtained by surgical excision from Nantong tumor hospital and Nantong first people's hospital. Before surgery and in surgery, all patients received no radiotherapy or chemotherapy treatment. This investigation was approved by the Ethics Committee of the Nantong tumor hospital and Nantong first people's hospital, and informed consent was obtained from each patient before the research. The Ethics Committee study protocol number is 2020KT048. All collected tissue samples were rinsed with aseptic enzyme-free water and placed in the cryopreservation tube within 30-minutes in vitro. And then there were maintained in liquid nitrogen for subsequent experiments.</p></span><span id="sec0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0011">Cell culture</span><p id="para0013" class="elsevierStylePara elsevierViewall">Five cell lines (A549, SPAC1, H1650, H1299 and H1975) of lung cancer and one human pulmonary epithelial normal cell line (BEAS-2B) were purchased from the Chinese Academy of Sciences Cell Bank (Shanghai, China). Cells were cultured in Roswell Park Memorial Institute-1640 (RPMI-1640) (Gibco, Rockville, MD, USA) with10% fetal bovine serum (FBS) (Gibco, Rockville, MD, USA) in a 37°C, 5% CO<span class="elsevierStyleInf">2</span> incubator.</p></span><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0012">Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR)</span><p id="para0014" class="elsevierStylePara elsevierViewall">Total RNAs of lung cancer tissues and cells were isolated by TRIzol (Invitrogen, Carlsbad, CA, USA). The extracted RNAs were reversely transcribed into cDNA with the PrimeScript RT reagent (TaKaRa, Kusatsu, Japan). qRT-PCR reactions were performed using SYBR Green reagent (TaKaRa, Kusatsu, Japan) by the ABI 7500 Real Time-PCR System (ABI, Foster City, CA, USA). Each experiment was repeated more than 3 times. The relative expression levels of LDB2 to β-actin and miR-96-5p to U6 were calculated by the 2<span class="elsevierStyleSup">−ΔΔCT</span> method, and the formula was used as follows: △△Ct =(Ct <span class="elsevierStyleInf">target gene</span> -C <span class="elsevierStyleInf">β-actin/U6</span>)tumor-tissue -(Ct<span class="elsevierStyleInf">target gene</span>-Ct<span class="elsevierStyleInf">β-actin/U6</span>)para-cancerous tissue. The following primer sequences were used for qRT-PCR reactions: LDB2, F:5’-CGTGCGTCTACTTTGTACTGGG-3’, R:5’-TGTGGTGTGCTGGACATCTTG-3’; β-actin, F: 5’-TCAAGATCATTGCTCCTCCTGAG-3’, R:5’-ACATCTGCTGGAAGGTGGACA-3’; The Bluge-loop<span class="elsevierStyleSup">TM</span> miRNA qRT-PCR Primer Sets (one RT primer and a pair of qRT-PCR primers for each set) specific for miR-96-5p was designed and synthesized by Ruibo Biotechnology company (Guangzhou, China).</p></span><span id="sec0006" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0013">Cell transfection</span><p id="para0015" class="elsevierStylePara elsevierViewall">Negative controls (si-RNA), siRNA containing the LDB2 overexpression and interference sequence, and miR-96-5p mimics, mimics NC, inhibitor, and inhibitor NC were designed and synthesized from Ruibo Biotechnology company (Guangzhou, China). The cells were plated in 6-well plates and siRNA transfections were performed using the manufacturer's instructions of Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). After 24 hours, the transfection efficiency was detected by qRT-PCR and western blot.</p></span><span id="sec0007" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0014">Cell proliferation assay</span><p id="para0016" class="elsevierStylePara elsevierViewall">5×10<span class="elsevierStyleSup">3</span> cells were seeded into 96-well plates. Cell proliferation was detected by CCK-8 assay (Thermo Fisher Scientific, Waltham, MA, USA) after culturing for 0h, 24h, 48h, and 72h. The Optical Density (OD) value of each well at 490 nm absorbance wavelength was measured by an enzyme-labeled instrument (Thermo Fisher Scientific, Waltham, MA, USA). Every experiment was repeated more than 3- times.</p></span><span id="sec0008" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0015">Cell wound healing assay</span><p id="para0017" class="elsevierStylePara elsevierViewall">Cell migration was detected by wound healing assay. The cells were seeded into 6-well plates. The 10 uL tip was used to carefully scratch the bottom of the plates. Subsequently, PBS (Gibco, Rockville, MD, USA) was used to clean twice, and the culture medium with 2.5% low serum was added at 37°C for 24h. The inverted fluorescence microscope (OLYMPUS, Tokyo, Japan) was used to take the pictures of cells, and the Image analysis software Image J was used to calculate areas of cell migration. Migration area (24h) = Black area (0h) - Black area (24h). Migration index = Migration area (24h) / Black area (0h). Every experiment was repeated more than 3-times.</p></span><span id="sec0009" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0016">Cell transwell assay</span><p id="para0018" class="elsevierStylePara elsevierViewall">Cell invasion was detected by transwell assay. 1×10<span class="elsevierStyleSup">4</span>/L cells resuspended in serum-free medium were seeded into the top chamber of the insert, while medium with 20% serum was added in the lower chamber. After incubation for 24h and 48h, the chamber was taken out to fix with 4% paraformaldehyde and stained with crystal violet. The cells on the upper surface of the insert were carefully cleaned with cotton swabs. The stained cells were imaged and calculated by an inverted fluorescence microscope, and 3 fields were randomly selected. Every experiment was repeated more than 3-times.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0017">Luciferase reporter assay</span><p id="para0019" class="elsevierStylePara elsevierViewall">293T cells were seeded into 24-well plates and transferred with pEZX-FR02-LDB2-3’UTR WT and pEZX-FR02-LDB2-3’UTR MUT (GenePharma Co., Ltd., China), along with miR-96-5p mimics or miR-NC following the instructions of Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). After transfection for 48h, luciferase activity was measured by Luc-Pair™ Duo-Luciferase HS Assay Kit (GeneCopoeia, Rockville, Md, USA). Every experiment was repeated more than 3-times.</p></span><span id="sec0011" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0018">Western blot</span><p id="para0020" class="elsevierStylePara elsevierViewall">The total protein was extracted by Radio-Immuno-Precipitation Assay (RIPI) solution and calculated by Bicin-Choninic Acid (BCA) protein assay kit (Pierce, Rockford, IL, USA). The protein was separated by 10% Sodium Dodecyl Sulphate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) (New Cell and Molecular Biotech, Suzhou, China) and transferred to Polyvinylidene Difluoride (PVDF) membranes (Millipore, Billerica, MA, USA). After blocking with 5% nonfat milk, the membranes were incubated with the primary antibodies at 4°C overnight and then incubated with the secondary antibodies at room temperature for 2h. The first antibodies included LDB2 (Abcam, Boston, MA, USA)cyclinD1, MMP9, Bcl-2, Bax, p-ERK1/2 and ERK1/2 (Cell Signalling Technologies, Danvers, MA, USA). Subsequently, the Tris-Buffered Saline and Tween 20 (TBST) buffer were used to wash three times. Protein bands were exposed by Enhanced Chemiluminescence (ECL) (New Cell and Molecular Biotech, Suzhou, China). Every experiment was repeated more than 3-times.</p></span><span id="sec0012" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0019">Statistical analysis</span><p id="para0021" class="elsevierStylePara elsevierViewall">The Statistical Product and Service Solutions (SPSS) 25.0 software and GraphPad Prism version 5.0 software were used for statistical analysis. The normal distribution data were expressed by the means ± standard error of the mean (x ± s) and the intergroup comparison was calculated by independent sample <span class="elsevierStyleItalic">t</span>-test. The non-normal distribution data were expressed by media M (X25% ∼ X75%), and the intergroup comparison was calculated by the Mann-Whitney <span class="elsevierStyleItalic">U</span> test; p < 0.05 was expected to have a significant difference.</p></span></span><span id="sec0013" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0020">Results</span><span id="sec0014" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0021">The expressions of LDB2 and miR-96-5p in lung cancer tissues and cell lines</span><p id="para0022" class="elsevierStylePara elsevierViewall">The authors detected the expressions of LDB2 and miR-96-5p in 65 pairs of lung cancer tissues and their corresponding para-cancerous tissues and cell lines by qRT-PCR. The present findings demonstrated that the LDB2 level in lung cancer tissues was lower than that in adjacent tissues, while miR-96-5p was high-regulated in lung cancer tissues and negatively correlated with LDB2 expression (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a>A‒C). Besides, the expression of LDB2 was markedly lower in lung cancer cells than that in the normal bronchial epithelial cell line BEAS-2B (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a>D). Next, the authors choose the H1299 cell which the expression was at the middle level for subsequent experiments.</p><elsevierMultimedia ident="fig0001"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0022">Knockdown of LDB2 promoted H1299 cell proliferation, invasion and metastasis</span><p id="para0023" class="elsevierStylePara elsevierViewall">To investigate the functional roles of LDB2 in the lung cancer cell, the proliferation, invasion, and metastasis of H1299 cells were detected after transfection with siRNA-NC or siRNA-LDB2. The expression of LDB2 was significantly decreased after transfection with siRNA-LDB2 (<a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a>A‒B), and the proliferation of H1299 cells was promoted after silencing LDB2 (<a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a>C). Next, a wound healing assay revealed that decreased LDB2 expression accelerated migration of H1299 cell (<a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a>D). Moreover, knockdown of LDB2 markedly promoted the invasion of H1299 cell by a transwell assay (<a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a>E). In addition, the authors detected cycle-associated protein (cyclinD1), Matrix Metalloprotease 9 (MMP9), apoptiosis-associated proteins (Bcl-2 and Bax) and phosphorylation of Extracellular Signal-Regulated Kinase (p-ERK1/2) by western blot analysis, the results demonstrated that the protein level of cyclinD1, MMP9, Bcl-2 and p-ERK1/2 were increased while Bax was decreased in LDB2-knockdown H1299 cells (<a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a>F).</p><elsevierMultimedia ident="fig0002"></elsevierMultimedia></span><span id="sec0016" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0023">Overexpression of LDB2 inhibited H1299 cell proliferation, invasion and metastasis</span><p id="para0024" class="elsevierStylePara elsevierViewall">Next, the authors overexpressed LDB2 in H1299 cell (<a class="elsevierStyleCrossRef" href="#fig0003">Fig. 3</a>A‒B). LDB2 overexpression dramatically inhibited the proliferation, migration, and invasion of H1299 cells (<a class="elsevierStyleCrossRef" href="#fig0003">Fig. 3</a>C‒E). Summarily, these results indicate LDB2 plays an important role in regulating the proliferation, migration, and invasion of the lung cancer cell. Moreover, the authors also detected cyclinD1, MMP9, Bcl-2, Bax and p-ERK1/2 by western blot analysis, the results demonstrated that the protein level of cyclinD1, MMP9, Bcl-2 and p-ERK1/2 were decreased while Bax was increased in LDB2-overexpression H1299 cells (<a class="elsevierStyleCrossRef" href="#fig0003">Fig. 3</a>F).</p><elsevierMultimedia ident="fig0003"></elsevierMultimedia></span><span id="sec0017" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0024">MiR-96-5p promoted the proliferation, invasion and metastasis of H1299 cell</span><p id="para0025" class="elsevierStylePara elsevierViewall">The miR-96-5p level was significantly upregulated or downregulated after transfection with the miR-96-5p mimics or inhibitor. Then, the present results suggested that the miR-96-5p mimics dramatically promoted the cell proliferation, invasion and metastasis of H1299 cell, while the miR-96-5p inhibitor suppressed the cell proliferation, invasion and metastasis of H1299 cell (<a class="elsevierStyleCrossRef" href="#fig0004">Fig. 4</a>A‒C). Moreover, the authors also detected cyclinD1, MMP9, Bcl-2, Bax and p-ERK1/2 by western blot analysis, the results demonstrated that the protein level of cyclinD1, MMP9, Bcl-2 and p-ERK1/2 were increased while Bax was decreased after transfection with miR-96-5p mimics. However, as expected, the authors obtained opposite results after transfection with miR-96-5p inhibitor (<a class="elsevierStyleCrossRef" href="#fig0004">Fig. 4</a>D).</p><elsevierMultimedia ident="fig0004"></elsevierMultimedia></span><span id="sec0018" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0025">MiR-96-5p modulated LDB2 expression in H1299 cell</span><p id="para0026" class="elsevierStylePara elsevierViewall">According to the TargetScan and miRanda online database, the authors found a miR-96-5p binding site in the 3’UTR of LDB2 (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 5</a>A). Then, the authors found that LDB2 is a direct target of miR-96-5p by luciferase reporter assay. The results demonstrated that the luciferase activity was decreased in the wild-type group, whereas no significant difference was found in the mutant group (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 5</a>B). Next, the expression of LDB2 was detected by qRT-PCR and western blot after transfection with miR-96-5p mimics or inhibitor (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 5</a>C‒D). All these results demonstrated that LDB2 was a potential direct target of miR-96-5p in H1299 cells.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0019" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0026">MiR-96-5p promoted the proliferation, invasion and metastasis of H1299 cell through regulating LDB2 expression</span><p id="para0027" class="elsevierStylePara elsevierViewall">To investigate whether miR-96-5p regulated the proliferation, invasion, and metastasis of H1299 cells by directly targeting LDB2, the authors co-transfected NC or miR-96-5p mimics with pcDNA 3.1+ or pcDNA-LDB2 into H1299 cell. The decreased protein expression level of LDB2 caused by the miR-96-5p mimics was dramatically restored by LDB2 overexpression (<a class="elsevierStyleCrossRef" href="#fig0006">Fig. 6</a>A). Overexpression of LDB2 abrogated the promoting effect of the miR-96-5p mimics on H1299 cell proliferation, invasion and metastasis (<a class="elsevierStyleCrossRef" href="#fig0006">Fig. 6</a>B‒D). These results validated that miR-96-5p promoted the proliferation, invasion and metastasis of H1299 cell through regulating LDB2 expression. In addition, the authors also detected cyclinD1, MMP9, Bcl-2, Bax and p-ERK1/2 by western blot analysis, the results revealed that the protein level of cyclinD1, MMP9, Bcl-2 and p-ERK1/2 were increased while Bax was decreased after transfection with miR-96-5p mimics. However, overexpression of LDB2 restored the effect of miR-96-5p mimics on protein regulation (<a class="elsevierStyleCrossRef" href="#fig0006">Fig. 6</a>E).</p><elsevierMultimedia ident="fig0006"></elsevierMultimedia></span></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0027">Discussion</span><p id="para0028" class="elsevierStylePara elsevierViewall">Lung cancer is one of the most common malignancies, it has the highest morbidity and mortality of any cancers. The early diagnosis and effective treatment can improve the survival rate of patients.<a class="elsevierStyleCrossRef" href="#bib0021"><span class="elsevierStyleSup">21</span></a> Therefore, it is urgent to find highly sensitive and specific early markers of lung cancer. LDB2 is a highly conserved transcriptional cofactor, it has been suggested that LDB2 may be a negative regulator to inhibit the migration of mouse embryonic fibroblasts by binding Ste20-like Kinase<a class="elsevierStyleCrossRef" href="#bib0022"><span class="elsevierStyleSup">22</span></a> and inhibiting the proliferation of corneal epithelial cells by promoting the expression of non-coding RNA H19.<a class="elsevierStyleCrossRef" href="#bib0023"><span class="elsevierStyleSup">23</span></a> LDB2 was low-expressed in hepatocellar carcinoma, and patients with low LDB2 expression had a poor prognosis. Meanwhile, over-expression of LDB2 in hepatoma cells could significantly inhibit cell proliferation and migration, but the knockdown of LDB2 had the opposite effect. Further study showed that LDB2 could recruit the tumor suppressor protein BRD7 into the promoter of the tumor-promoting protein HEY1 and exert the anti-cancer effect.<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a> In this study, the authors found that LDB2 was under-expressed in lung cancer tissues. Knockdown or overexpression of LDB2 could promote or inhibit the proliferation of lung cancer cells, which was consistent with the results of Zhai's research.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">10</span></a> Further studies had shown that LDB2 could inhibit the invasion and migration of H1299 cells. In liver cancer cells, LDB2 inhibited cell migration and promotes cell apoptosis by up-regulating the expression of Bax and Bid and down-regulating the expression of MMP2 and MMP9.<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a> LDB2 was also found to inhibit cell proliferation by increasing the expression of cell cycle inhibitor p21.<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0023"><span class="elsevierStyleSup">23</span></a> In addition, many studies showed that LDB2 played an important role in inhibiting angiogenesis and development. In the Chorio-Allantoic Membrane (CAM), a highly vascularized tissue, LDB2 could be significantly enriched in vascular endothelial cells and the expression of LDB2 would change with the development of blood vessels.<a class="elsevierStyleCrossRef" href="#bib0024"><span class="elsevierStyleSup">24</span></a> Shang et al. found that transendothelial migration of leukocytes in LDB2-deficient mice was enhanced.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">25</span></a> LDB2 formed a transcription complex with LMO/TAL1/GATA2 and to the promoter of DLL4 to increase its expression and further suppressed sprouting and hyper-dense network formation in human umbilical vein endothelial cells.<a class="elsevierStyleCrossRef" href="#bib0026"><span class="elsevierStyleSup">26</span></a> Tumor angiogenesis is a complex process involving multiple factors, steps, cells, and cytokines. Tumor cells play a key role in tumor angiogenesis. Tumor cells can secrete VEGFA, PGF, TGF-β, and other cytokines under external stimulation. The secreted cytokines can act on endothelial cell receptors and thereby affect the formation of tumor blood vessels.<a class="elsevierStyleCrossRef" href="#bib0027"><span class="elsevierStyleSup">27</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0028"><span class="elsevierStyleSup">28</span></a> In the cornea, epithelial-specific expression of a Dominant Negative (DN) CLIM under the Keratin 14 (K14) Promoter, Gene Ontology (GO) analysis revealed that the downregulated genes were mainly enriched in focal adhesion, TGF-β, and cytokine signaling pathway.<a class="elsevierStyleCrossRef" href="#bib0023"><span class="elsevierStyleSup">23</span></a> Therefore, in the angiogenesis of lung cancer, whether LDB2 directly affects angiogenesis or acts on endothelial cells through the secretion of angiogenic factors by tumor cells needs to be further researched.</p><p id="para0029" class="elsevierStylePara elsevierViewall">In recent years, many molecular targets regulated by miRNAs have been continuously reported. more evidence suggests that miRNAs may be involved in tumorigenesis, development, and metastasis by regulating the target genes related to malignant biological behaviors, such as cell infiltration, proliferation, and apoptosis. MiR-96-5p is located in the human chromosome 7 and regulated gene expression by binding to the 3’non-coding region of target gene mRNA. MiR-96-5p is well-established as an oncogenic miRNA species in several human cancers. For example, miR-96-5p promoted breast cancer migration via activating MEK/ERK signaling.<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a> By down-regulating FOXO3 and CDKN1A, miR-96-5p could promote the proliferation of gastric cancer cells and bladder cancer cells respectively.<a class="elsevierStyleCrossRef" href="#bib0016"><span class="elsevierStyleSup">16</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0029"><span class="elsevierStyleSup">29</span></a> Many studies have shown that miR-96-5p acting as an oncogene may play an important role in the occurrence and development of lung cancer. It was reported that miR-96-5p promoted the proliferation and migration of lung cancer cells in vitro and tumor growth and metastasis in vivo which partially depended on AIMP3-p53 axis.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">30</span></a> Also, miRNA-96-5p could target RECK,<a class="elsevierStyleCrossRef" href="#bib0031"><span class="elsevierStyleSup">31</span></a> FOXO3,<a class="elsevierStyleCrossRef" href="#bib0018"><span class="elsevierStyleSup">18</span></a> RASSF8<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">20</span></a> and SMAD9<a class="elsevierStyleCrossRef" href="#bib0032"><span class="elsevierStyleSup">32</span></a> by binding theirs 3’non-coding region and promote the malignant transformation of lung cancer. In this study, the authors found miR-96-5p was high-regulated in lung cancer tissues and negatively correlated with LDB2 expression. MiR-96-5p exerted its function by directly binding to 3′-UTR of LDB2 and regulated expression of LDB2, and it could promote the proliferation, invasion, and metastasis of H1299 cells. Moreover, the present results revealed that miR‐96-5p/LDB2 could promote cellular behavior's through</p><p id="para0030" class="elsevierStylePara elsevierViewall">ERK1/2 pathway and regulate cell cycle regulator cyclinD1, invasion-associated MMP9, apoptosis‐related Bcl‐2 and Bax expression. All findings suggested that LDB2 was down-regulated by miRNA-96-5p inhibited cell proliferation, invasion, and metastasis in lung cancer H1299 cells, which can provide a new direction for the future diagnosis and treatment of lung cancer.</p></span><span id="sec0021" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0028">Conclusions</span><p id="para0031" class="elsevierStylePara elsevierViewall">In this research, the authors found that the expression of LDB2 was significantly reduced in lung cancer tissues and negatively correlated with miR-96-5p expression. MiR-96-5p may be to promote proliferation, invasion, and metastasis via targeting LDB2 and regulate cellular behaviors through the ERK1/2 signaling pathway in lung cancer.</p></span><span id="sec0022" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0029">Authors’ contributions</span><p id="para0032" class="elsevierStylePara elsevierViewall">Fuying Chu and Xiang Chen conceived and designed this study; Xinxin Xu, Yan Zhang and Hua Cai performed the experiments; Jingjing Peng and Hongli Liu collected important background information; Yanan Li and Han Zhang performed the statistical analysis. Fuying Chu and Xinxin Xu edited the manuscript. All authors read and approved the final manuscript.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres2232360" "titulo" => "Highlights" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abss0001" ] ] ] 1 => array:3 [ "identificador" => "xres2232361" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abss0003" "titulo" => "Objectives" ] 1 => array:2 [ "identificador" => "abss0004" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abss0005" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abss0006" "titulo" => "Conclusion" ] ] ] 2 => array:2 [ "identificador" => "xpalclavsec1869138" "titulo" => "Keywords" ] 3 => array:2 [ "identificador" => "sec0001" "titulo" => "Introduction" ] 4 => array:3 [ "identificador" => "sec0002" "titulo" => "Materials and methods" "secciones" => array:10 [ 0 => array:2 [ "identificador" => "sec0003" "titulo" => "Clinical samples" ] 1 => array:2 [ "identificador" => "sec0004" "titulo" => "Cell culture" ] 2 => array:2 [ "identificador" => "sec0005" "titulo" => "Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR)" ] 3 => array:2 [ "identificador" => "sec0006" "titulo" => "Cell transfection" ] 4 => array:2 [ "identificador" => "sec0007" "titulo" => "Cell proliferation assay" ] 5 => array:2 [ "identificador" => "sec0008" "titulo" => "Cell wound healing assay" ] 6 => array:2 [ "identificador" => "sec0009" "titulo" => "Cell transwell assay" ] 7 => array:2 [ "identificador" => "sec0010" "titulo" => "Luciferase reporter assay" ] 8 => array:2 [ "identificador" => "sec0011" "titulo" => "Western blot" ] 9 => array:2 [ "identificador" => "sec0012" "titulo" => "Statistical analysis" ] ] ] 5 => array:3 [ "identificador" => "sec0013" "titulo" => "Results" "secciones" => array:6 [ 0 => array:2 [ "identificador" => "sec0014" "titulo" => "The expressions of LDB2 and miR-96-5p in lung cancer tissues and cell lines" ] 1 => array:2 [ "identificador" => "sec0015" "titulo" => "Knockdown of LDB2 promoted H1299 cell proliferation, invasion and metastasis" ] 2 => array:2 [ "identificador" => "sec0016" "titulo" => "Overexpression of LDB2 inhibited H1299 cell proliferation, invasion and metastasis" ] 3 => array:2 [ "identificador" => "sec0017" "titulo" => "MiR-96-5p promoted the proliferation, invasion and metastasis of H1299 cell" ] 4 => array:2 [ "identificador" => "sec0018" "titulo" => "MiR-96-5p modulated LDB2 expression in H1299 cell" ] 5 => array:2 [ "identificador" => "sec0019" "titulo" => "MiR-96-5p promoted the proliferation, invasion and metastasis of H1299 cell through regulating LDB2 expression" ] ] ] 6 => array:2 [ "identificador" => "sec0020" "titulo" => "Discussion" ] 7 => array:2 [ "identificador" => "sec0021" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "sec0022" "titulo" => "Authors’ contributions" ] 9 => array:2 [ "identificador" => "xack769864" "titulo" => "Acknowledgments" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2022-05-25" "fechaAceptado" => "2022-11-07" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1869138" "palabras" => array:6 [ 0 => "LDB2" 1 => "miR-96-5p" 2 => "Proliferation" 3 => "Invasion" 4 => "Metastasis" 5 => "Lung cancer" ] ] ] ] "tieneResumen" => true "highlights" => array:2 [ "titulo" => "Highlights" "resumen" => "<span id="abss0001" class="elsevierStyleSection elsevierViewall"><p id="spara007" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="celist0001"><li class="elsevierStyleListItem" id="celistitem0001"><span class="elsevierStyleLabel">•</span><p id="para0002" class="elsevierStylePara elsevierViewall">This is the first time to verify the targeting regulation of miR-96-5p on LDB2.</p></li><li class="elsevierStyleListItem" id="celistitem0002"><span class="elsevierStyleLabel">•</span><p id="para0003" class="elsevierStylePara elsevierViewall">MiR-96-5p/LDB2 regulates cellular behaviors through ERK1/2 signaling pathway in lung cancer H1299 cell.</p></li></ul></p></span>" ] "resumen" => array:1 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abss0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0003">Objectives</span><p id="spara008" class="elsevierStyleSimplePara elsevierViewall">Lung cancer was one of the most common malignancies around the world. It has great significance in to search for the mechanism of occurrence and development of lung cancer. LIM Domain Binding protein 2 (LDB2) belongs to the LIM-domain binding family, it can be used as a binding protein that combined with other transcription factors to form the transcription complex for regulating the expression of target genes. The expression of microRNA-96-5p (miR-96-5p) has been investigated in various tumors. The aim of this study is to investigate the potential role of LDB2 and miR-96-5p in lung cancer.</p></span> <span id="abss0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0004">Methods</span><p id="spara009" class="elsevierStyleSimplePara elsevierViewall">Real-time quantitative PCR was applied to detect the expression of LDB2 and miR-96-5p. The proliferation, invasion, and metastasis of H1299 cells were analyzed by CCK8, transwell, and wound healing assay after LDB2 or miR-96-5p transfection. Luciferase activities assay and western blot were used to reveal the targeted regulation between LDB2 and miR-96-5p.</p></span> <span id="abss0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0005">Results</span><p id="spara010" class="elsevierStyleSimplePara elsevierViewall">Here the authors found LDB2 was down-regulated in lung cancer tissues and negatively correlated with miR-96-5p expression, it could promote or inhibit the proliferation, invasion and metastasis of H1299 cells after LDB2 knockdown or overexpression and regulate the expression of cyclinD1, MMP9, Bcl-2, and Bax via ERK1/2 signaling pathway. Furthermore, miR-96-5p exerted its function by directly binding to 3′-UTR of LDB2 and regulating expression of LDB2. miR-96-5p could promote the proliferation, invasion, and metastasis of H1299 cells.</p></span> <span id="abss0006" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0006">Conclusion</span><p id="spara011" class="elsevierStyleSimplePara elsevierViewall">These findings demonstrate that LDB2 can act as a new regulator to inhibit cell proliferation, invasion, and metastasis via the ERK1/2 signaling pathway, and miR-96-5p may be a potential promising molecular by targeting LDB2 in lung cancer.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abss0003" "titulo" => "Objectives" ] 1 => array:2 [ "identificador" => "abss0004" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abss0005" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abss0006" "titulo" => "Conclusion" ] ] ] ] "NotaPie" => array:1 [ 0 => array:3 [ "etiqueta" => "1" "nota" => "<p class="elsevierStyleNotepara" id="notep0001">These authors contributed equally to this work.</p>" "identificador" => "fn1" ] ] "multimedia" => array:6 [ 0 => array:8 [ "identificador" => "fig0001" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1186 "Ancho" => 1708 "Tamanyo" => 108033 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">The expressions of LDB2 and miR-96-5p in lung cancer tissues and cell lines. (A‒B) qRT-PCR showed that the expression of LDB2 in lung cancer tissues was significantly lower than that in adjacent tissues, while miR-96-5p was high-regulated in lung cancer tissues; (C) The expression of LDB2 was negatively correlated with miR-96-5p; (D) The expression of LDB2 in normal bronchial epithelial cell line (BEAS-2B) and 5 lung cancer cell lines (SPAC1, A549, H1299, H1975, H1650); (** p < 0.01 and *** p < 0.001).</p>" ] ] 1 => array:8 [ "identificador" => "fig0002" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1723 "Ancho" => 1733 "Tamanyo" => 219979 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0002" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara002" class="elsevierStyleSimplePara elsevierViewall">Knockdown of LDB2 promoted H1299 cell proliferation, invasion and metastasis. (A‒B) qRT-PCR and western blot revealed that LDB2 expression was significantly decreased after transfection with siRNA-LDB2 in H1299 cell; (C) CCK8 assay showed that the proliferation of H1299 cell was promoted after silencing LDB2 for 48 and 72 hours; (D) A wound healing assay demonstrated that the migration of H1299 cell was accelerated after silencing LDB2 for 24 hours; (E) A transwell assay indicated that the invasion of H1299 cell was enhanced after silencing LDB2 for 24 and 48 hours. (F) Western blotting assays for the expression of cycle‐associated, invasion-associated, apoptosis‐related and proliferation-related proteins in H1299 cells after transfection with siRNA-LDB2 (* p < 0.05, ** p < 0.01 and *** p < 0.001).</p>" ] ] 2 => array:8 [ "identificador" => "fig0003" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1742 "Ancho" => 1725 "Tamanyo" => 210874 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0003" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara003" class="elsevierStyleSimplePara elsevierViewall">Overexpression of LDB2 inhibited H1299 cell proliferation, invasion and metastasis. (A‒B) qRT-PCR and western blot revealed that LDB2 expression was significantly increased after transfection with oeLDB2 in H1299 cells; (C) Overexpression of LDB2 inhibited H1299 cell proliferation ability as shown by CCK8 assay; (D) A wound healing assay demonstrated that overexpression of LDB2 inhibited H1299 cell migration; (E) A transwell assay indicated that LDB2 overexpression suppressed the invasion of H1299 cell. (F) Western blotting assays for the expression of cycle‐associated, invasion-associated, apoptosis‐related and proliferation-related proteins in H1299 cells after transfection with oeLDB2 (* p < 0.05, ** p < 0.01 and *** p < 0.001).</p>" ] ] 3 => array:8 [ "identificador" => "fig0004" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2064 "Ancho" => 1725 "Tamanyo" => 271064 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0004" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara004" class="elsevierStyleSimplePara elsevierViewall">MiR-96-5p promoted the proliferation, invasion and metastasis of H1299 cell. (A) MiR-96-5p mimics promoted the proliferation of H1299 cell, while miR-96-5p inhibitor inhibited the proliferation of H1299 cell as shown by CCK8 assay; (B) A wound healing assay demonstrated that miR-96-5p mimics accelerated H1299 cell migration, while miR-96-5p inhibitor reduced H1299 cell migration; (C) A transwell assay indicated that miR-96-5p mimics enhanced the invasion of H1299 cell, while miR-96-5p inhibitor decreased the invasion of H1299 cell. (D) Western blotting assays for the expression of cycle‐associated, invasion-associated, apoptosis‐related and proliferation-related proteins in H1299 cells after transfection with miR-96-5p mimics or inhibitor (* p < 0.05, ** p < 0.01 and *** p < 0.001).</p>" ] ] 4 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1447 "Ancho" => 1733 "Tamanyo" => 136492 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara005" class="elsevierStyleSimplePara elsevierViewall">LDB2 is a target of miR-96-5p in H1299 cell. (A) The predicted binding sites of miR-96-5p in the 3’UTR of LDB2; (B) Luciferase reporter assay was used to determine the binding site; (C) The relative mRNA expression of LDB2 was decreased or increased after transfection with miR-96-5p mimics or inhibitor for 24 hours; (D) The expression of LDB2 was decreased or increased after transfection with miR-96-5p mimics or inhibitor for 48 hours (* p < 0.05 and ** p < 0.01).</p>" ] ] 5 => array:8 [ "identificador" => "fig0006" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2593 "Ancho" => 1700 "Tamanyo" => 296468 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0006" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara006" class="elsevierStyleSimplePara elsevierViewall">LDB2 was down-regulated by miRNA-96-5p inhibited proliferation, invasion and metastasis of H1299 cell. (A) The expression of LDB2 was detected by western blot after treating with control, mimics or mimics + LDB2 for H1299 cell; (B) The proliferation ability of control, mimics, or mimics + LDB2 treated H1299 cells was detected by CCK8 assay; (C) The migration ability of control, mimics, or mimics + LDB2 treated H1299 cells was measured by wound healing assay; (D) The invasion ability of control, mimics, or mimics + LDB2 treated H1299 cells was examined by transwell assay. (E) Western blotting assays for the expression of cycle‐associated, invasion-associated, apoptosis‐related and proliferation-related proteins after treatment with control, mimics or mimics + LDB2 for H1299 cell. (* p < 0.05 and *** p < 0.001).</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "cebibsec1" "bibliografiaReferencia" => array:32 [ 0 => array:3 [ "identificador" => "bib0001" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lung Cancer 2020: Epidemiology, etiology, and prevention" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "BC Bade" 1 => "CS Dela Cruz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ccm.2019.10.001" "Revista" => array:7 [ "tituloSerie" => "Clin Chest Med" "fecha" => "2020" "volumen" => "41" "numero" => "1" "paginaInicial" => "1" "paginaFinal" => "24" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32008623" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0002" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L Fagerberg" 1 => "BM Hallstrom" 2 => "P Oksvold" 3 => "C Kampf" 4 => "D Djureinovic" 5 => "J Odeberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/mcp.M113.035600" "Revista" => array:7 [ "tituloSerie" => "Mol Cell Proteomics" "fecha" => "2014" "volumen" => "13" "numero" => "2" "paginaInicial" => "397" "paginaFinal" => "406" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24309898" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0003" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LIM domain binding proteins 1 and 2 have different oligomeric states" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "AJ Cross" 1 => "CM Jeffries" 2 => "J Trewhella" 3 => "JM. Matthews" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jmb.2010.04.006" "Revista" => array:7 [ "tituloSerie" => "J Mol Biol" "fecha" => "2010" "volumen" => "399" "numero" => "1" "paginaInicial" => "133" "paginaFinal" => "144" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20382157" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0004" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LIM homeodomain proteins and associated partners: Then and now" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y Yasuoka" 1 => "M. Taira" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/bs.ctdb.2021.04.003" "Revista" => array:6 [ "tituloSerie" => "Curr Top Dev Biol" "fecha" => "2021" "volumen" => "145" "paginaInicial" => "113" "paginaFinal" => "166" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34074528" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0005" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanisms of enhancer-promoter interactions in higher eukaryotes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "O Kyrchanova" 1 => "P. Georgiev" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/ijms22020671" "Revista" => array:6 [ "tituloSerie" => "Int J Mol Sci" "fecha" => "2021" "volumen" => "22" "numero" => "2" "paginaInicial" => "671" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33445415" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0006" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y Zhao" 1 => "P Flandin" 2 => "D Vogt" 3 => "A Blood" 4 => "E Hermesz" 5 => "H Westphal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ydbio.2013.10.010" "Revista" => array:7 [ "tituloSerie" => "Dev Biol" "fecha" => "2014" "volumen" => "385" "numero" => "1" "paginaInicial" => "94" "paginaFinal" => "106" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24157949" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0007" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LDB1 overexpression is a negative prognostic factor in colorectal cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "SA Garcia" 1 => "A Swiersy" 2 => "P Radhakrishnan" 3 => "V Branchi" 4 => "L Kanth Nanduri" 5 => "B Gyorffy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.18632/oncotarget.12481" "Revista" => array:7 [ "tituloSerie" => "Oncotarget" "fecha" => "2016" "volumen" => "7" "numero" => "51" "paginaInicial" => "84258" "paginaFinal" => "84270" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27713177" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0008" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LDB2 inhibits proliferation and migration in liver cancer cells by abrogating HEY1 expression" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H Yu" 1 => "R Jia" 2 => "L Zhao" 3 => "S Song" 4 => "J Gu" 5 => "H. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.18632/oncotarget.21772" "Revista" => array:7 [ "tituloSerie" => "Oncotarget" "fecha" => "2017" "volumen" => "8" "numero" => "55" "paginaInicial" => "94440" "paginaFinal" => "94449" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29212240" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0009" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Suppression of human colon tumor by EERAC through regulating Notch/DLL4/Hes pathway inhibiting angiogenesis in vivo" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C Yuan" 1 => "C Wu" 2 => "R Xue" 3 => "C Jin" 4 => "C. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Cancer" "fecha" => "2021" "volumen" => "12" "numero" => "19" "paginaInicial" => "5914" "paginaFinal" => "5922" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0010" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LIM-domain binding protein 2 regulated by m(6)A modification inhibits lung adenocarcinoma cell proliferation in vitro" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D Zhai" 1 => "G Wang" 2 => "L Li" 3 => "X Jia" 4 => "G Zheng" 5 => "J. Yin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.12122/j.issn.1673-4254.2021.03.03" "Revista" => array:7 [ "tituloSerie" => "Nan Fang Yi Ke Da Xue Xue Bao" "fecha" => "2021" "volumen" => "41" "numero" => "3" "paginaInicial" => "329" "paginaFinal" => "335" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33849822" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0011" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiRNA biogenesis and regulation of diseases: an overview" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A Vishnoi" 1 => "S. Rani" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/978-1-4939-6524-3_1" "Revista" => array:6 [ "tituloSerie" => "Methods Mol Biol" "fecha" => "2017" "volumen" => "1509" "paginaInicial" => "1" "paginaFinal" => "10" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27826912" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0012" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-519d-3p suppresses tumorigenicity and metastasis by inhibiting Bcl-w and HIF-1alpha in NSCLC" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "JY Choi" 1 => "HJ Seok" 2 => "RK Kim" 3 => "MY Choi" 4 => "SJ Lee" 5 => "IH. Bae" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.omto.2021.06.015" "Revista" => array:6 [ "tituloSerie" => "Mol Ther Oncolytics" "fecha" => "2021" "volumen" => "22" "paginaInicial" => "368" "paginaFinal" => "379" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34553025" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0013" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiRNA-199 inhibits malignant progression of lung cancer through mediating RGS17" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "WZ Su" 1 => "LF. Ren" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.26355/eurrev_201904_17703" "Revista" => array:7 [ "tituloSerie" => "Eur Rev Med Pharmacol Sci" "fecha" => "2019" "volumen" => "23" "numero" => "8" "paginaInicial" => "3390" "paginaFinal" => "3400" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31081094" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0014" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiR-96-5p promotes breast cancer migration by activating MEK/ERK signaling" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "WY Qin" 1 => "SC Feng" 2 => "YQ Sun" 3 => "GQ. Jiang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jgm.3188" "Revista" => array:6 [ "tituloSerie" => "J Gene Med" "fecha" => "2020" "volumen" => "22" "numero" => "8" "paginaInicial" => "e3188" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32196830" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0015" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of the miR-96-5p inhibitor and mimic on the migration and invasion of the SW480-7 colorectal cancer cell line" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "PY He" 1 => "WK Yip" 2 => "MF Jabar" 3 => "N Mohtarrudin" 4 => "NM Dusa" 5 => "HF. Seow" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Oncol Lett" "fecha" => "2019" "volumen" => "18" "numero" => "2" "paginaInicial" => "1949" "paginaFinal" => "1960" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0016" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiRNA-96-5p contributed to the proliferation of gastric cancer cells by targeting FOXO3" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "X He" 1 => "K. Zou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/jb/mvz080" "Revista" => array:7 [ "tituloSerie" => "J Biochem" "fecha" => "2020" "volumen" => "167" "numero" => "1" "paginaInicial" => "101" "paginaFinal" => "108" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31598681" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0017" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long non-coding RNA MEG3 suppresses the growth of glioma cells by regulating the miR-96-5p/MTSS1 signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S Zhang" 1 => "W. Guo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/mmr.2019.10659" "Revista" => array:7 [ "tituloSerie" => "Mol Med Rep" "fecha" => "2019" "volumen" => "20" "numero" => "5" "paginaInicial" => "4215" "paginaFinal" => "4225" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31545491" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0018" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J Li" 1 => "P Li" 2 => "T Chen" 3 => "G Gao" 4 => "X Chen" 5 => "Y Du" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s13277-014-2698-y" "Revista" => array:7 [ "tituloSerie" => "Tumour Biol" "fecha" => "2015" "volumen" => "36" "numero" => "2" "paginaInicial" => "685" "paginaFinal" => "692" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25286764" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0019" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LncRNA GMDS-AS1 inhibits lung adenocarcinoma development by regulating miR-96-5p/CYLD signaling" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M Zhao" 1 => "XF Xin" 2 => "JY Zhang" 3 => "W Dai" 4 => "TF Lv" 5 => "Y. Song" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/cam4.2776" "Revista" => array:7 [ "tituloSerie" => "Cancer Med" "fecha" => "2020" "volumen" => "9" "numero" => "3" "paginaInicial" => "1196" "paginaFinal" => "1208" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31860169" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0020" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S Wei" 1 => "Y Zheng" 2 => "Y Jiang" 3 => "X Li" 4 => "J Geng" 5 => "Y Shen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "EBioMedicine" "fecha" => "2019" "volumen" => "44" "paginaInicial" => "182" "paginaFinal" => "193" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0021" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Non-small cell lung cancer: challenge and improvement of immune drug resistance" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F Kong" 1 => "Z Wang" 2 => "D Liao" 3 => "J Zuo" 4 => "H Xie" 5 => "X Li" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Front Oncol" "fecha" => "2021" "volumen" => "11" ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0022" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Ldb1 and Ldb2 transcriptional cofactors interact with the Ste20-like kinase SLK and regulate cell migration" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "CJ Storbeck" 1 => "S Wagner" 2 => "P O'Reilly" 3 => "M McKay" 4 => "RJ Parks" 5 => "H Westphal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1091/mbc.e08-07-0707" "Revista" => array:7 [ "tituloSerie" => "Mol Biol Cell" "fecha" => "2009" "volumen" => "20" "numero" => "19" "paginaInicial" => "4174" "paginaFinal" => "4182" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19675209" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0023" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cofactors of LIM domains associate with estrogen receptor alpha to regulate the expression of noncoding RNA H19 and corneal epithelial progenitor cell function" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "RH Klein" 1 => "DN Stephens" 2 => "H Ho" 3 => "JK Chen" 4 => "ML Salmans" 5 => "W Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M115.709386" "Revista" => array:7 [ "tituloSerie" => "J Biol Chem" "fecha" => "2016" "volumen" => "291" "numero" => "25" "paginaInicial" => "13271" "paginaFinal" => "13285" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27129775" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0024" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S Javerzat" 1 => "M Franco" 2 => "J Herbert" 3 => "N Platonova" 4 => "AL Peille" 5 => "V Pantesco" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0007856" "Revista" => array:6 [ "tituloSerie" => "PLoS One" "fecha" => "2009" "volumen" => "4" "numero" => "11" "paginaInicial" => "e7856" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19924294" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0025" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lim domain binding 2: a key driver of transendothelial migration of leukocytes and atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "MM Shang" 1 => "HA Talukdar" 2 => "JJ Hofmann" 3 => "C Niaudet" 4 => "HF Asl" 5 => "RK Jain" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/ATVBAHA.113.302709" "Revista" => array:7 [ "tituloSerie" => "Arterioscler Thromb Vasc Biol" "fecha" => "2014" "volumen" => "34" "numero" => "9" "paginaInicial" => "2068" "paginaFinal" => "2077" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24925974" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0026" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LDB2 regulates the expression of DLL4 through the formation of oligomeric complexes in endothelial cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "HJ Choi" 1 => "SS Rho" 2 => "DH Choi" 3 => "YG. Kwon" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.5483/bmbrep.2018.51.1.140" "Revista" => array:7 [ "tituloSerie" => "BMB Rep" "fecha" => "2018" "volumen" => "51" "numero" => "1" "paginaInicial" => "21" "paginaFinal" => "26" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28946938" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0027" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Role of tumor inflammatory microenvironment in lung cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z Tan" 1 => "H Xue" 2 => "Y Sun" 3 => "C Zhang" 4 => "Y Song" 5 => "Y. Qi" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Front Pharmacol" "fecha" => "2021" "volumen" => "12" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0028" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tumor angiogenesis: Current challenges and therapeutic opportunities" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "FH Al-Ostoot" 1 => "S Salah" 2 => "HA Khamees" 3 => "SA. Khanum" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Cancer Treat Res Commun" "fecha" => "2021" "volumen" => "28" ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0029" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Upregulation of microRNA-96 and its oncogenic functions by targeting CDKN1A in bladder cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Z Wu" 1 => "K Liu" 2 => "Y Wang" 3 => "Z Xu" 4 => "J Meng" 5 => "S. Gu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12935-015-0235-8" "Revista" => array:5 [ "tituloSerie" => "Cancer Cell Int" "fecha" => "2015" "volumen" => "15" "paginaInicial" => "107" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26582573" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0030" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L Ding" 1 => "Y Fang" 2 => "Y Li" 3 => "Q Hu" 4 => "M Ai" 5 => "K Deng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jcmm.16344" "Revista" => array:7 [ "tituloSerie" => "J Cell Mol Med" "fecha" => "2021" "volumen" => "25" "numero" => "6" "paginaInicial" => "3019" "paginaFinal" => "3030" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33538115" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0031" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MiR-96 downregulates RECK to promote growth and motility of non-small cell lung cancer cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H Guo" 1 => "Q Li" 2 => "W Li" 3 => "T Zheng" 4 => "S Zhao" 5 => "Z. Liu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11010-014-1966-x" "Revista" => array:7 [ "tituloSerie" => "Mol Cell Biochem" "fecha" => "2014" "volumen" => "390" "numero" => "1-2" "paginaInicial" => "155" "paginaFinal" => "160" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24469470" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0032" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "miR-96 induces cisplatin chemoresistance in non-small cell lung cancer cells by downregulating SAMD9" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L Wu" 1 => "X Pu" 2 => "Q Wang" 3 => "J Cao" 4 => "F Xu" 5 => "LI Xu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/ol.2015.4000" "Revista" => array:7 [ "tituloSerie" => "Oncol Lett" "fecha" => "2016" "volumen" => "11" "numero" => "2" "paginaInicial" => "945" "paginaFinal" => "952" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26893673" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack769864" "titulo" => "Acknowledgments" "texto" => "<p id="para0034" class="elsevierStylePara elsevierViewall">The authors thank all the patients involved in the present study. This study was supported by Nantong Science and Technology Project (grant number:JC2020070 and MS22021001).</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/18075932/000000780000000C/v4_202409020811/S1807593222033464/v4_202409020811/en/main.assets" "Apartado" => array:4 [ "identificador" => "94924" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/18075932/000000780000000C/v4_202409020811/S1807593222033464/v4_202409020811/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1807593222033464?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 6 | 1 | 7 |
2024 October | 35 | 44 | 79 |
2024 September | 49 | 22 | 71 |
2024 August | 58 | 22 | 80 |
2024 July | 48 | 22 | 70 |
2024 June | 48 | 21 | 69 |
2024 May | 75 | 20 | 95 |
2024 April | 71 | 25 | 96 |
2024 March | 57 | 20 | 77 |
2024 February | 69 | 17 | 86 |
2024 January | 94 | 18 | 112 |
2023 December | 83 | 29 | 112 |
2023 November | 31 | 14 | 45 |
2023 October | 60 | 14 | 74 |
2023 September | 27 | 10 | 37 |
2023 August | 34 | 6 | 40 |
2023 July | 24 | 9 | 33 |
2023 June | 19 | 7 | 26 |
2023 May | 2 | 0 | 2 |
2023 April | 4 | 0 | 4 |
2023 March | 6 | 0 | 6 |
2023 February | 7 | 0 | 7 |
2023 January | 7 | 0 | 7 |