metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Daptomicina en el contexto de la resistencia a los antimicrobianos en bacterias ...
Journal Information
Vol. 30. Issue S1.
Daptomicina en las infecciones causadas por bacterias grampositivas
Pages 10-16 (February 2012)
Share
Share
Download PDF
More article options
Vol. 30. Issue S1.
Daptomicina en las infecciones causadas por bacterias grampositivas
Pages 10-16 (February 2012)
Full text access
Daptomicina en el contexto de la resistencia a los antimicrobianos en bacterias grampositivas
Daptomycin in the context of antimicrobial resistance in Gram-positive bacteria
Visits
5951
Francisco Javier Candel González
Servicio de Microbiología Clínica, Hospital Clínico San Carlos, Madrid, España
This item has received
Article information
Resumen

La infección por grampositivos resistentes (GPR) es muy prevalente, sobre todo en el medio hospitalario. El incremento en el uso de glucopéptidos tiene un coste microbiológico: cepas resistentes a vancomicina (escasas), cepas con sensibilidad intermedia, heterorresistencia o tolerancia a glucopéptidos, y cepas sensibles a glucopéptidos pero con mayores concentraciones mínimas inhibitorias, que obligan a aumentar la dosis de vancomicina y su toxicidad. Con la inclusión de linezolid y gracias a su perfil farmacodinámico se han podido tratar con más eficacia infecciones localizadas por GPR en áreas de difusión compleja o tejidos isquémicos, a un escaso coste microbiológico en selección de cepas resistentes. Algo parecido ha sucedido con tigeciclina; su amplio espectro le ha permitido el tratamiento de infecciones complejas mixtas por patógenos resistentes. Sin embargo, su condición de antibióticos bacteriostáticos limita a ambos en el manejo inicial de la bacteriemia, la endocarditis o la infección en huésped inmunocomprometido. Daptomicina constituye una alternativa eficaz frente a estas infecciones graves por GPR, por su alto poder bactericida precoz y por no afectarse por estos fenómenos de heterorresistencia y tolerancia.

Palabras clave:
Daptomicina
Vancomicina
Heterorresistencia
Bacteriemia
Endocarditis
Registro CORE
Staphylococcus aureus
Abstract

Infection by antimicrobial-resistant Gram-positive bacteria (GPB) is highly prevalent, especially in the hospital setting. The increase in the use of glycopeptides has a microbiological cost: vancomycin-resistant strains (scarce), strains with intermediate sensitivity, heteroresistant and glycopeptide-tolerant strains and glycopeptide-sensitive strains but with a higher minimal inhibitory concentration require a higher dose of vancomycin, increasing toxicity. Because of its pharmacodynamics profile, linezolide has allowed more effective treatment of localized GPB infections in areas with complex spread and in ischemic tissues with little cost in terms of the selection of resistant strains. Similarly, because of its broad spectrum, tigecycline can be used to treat complex mixed infections caused by resistant pathogens. However, because linezolide and tigecycline are bacteriostatic agents, their use in the initial management of bacteremia, endocarditis and infection in immunocompromised hosts is limited. Because daptomycin has potent early bactericidal activity and has not been affected by heteroresistance or tolerance, this drug is an effective alternative against these severe GPB infections.

Keywords:
Daptomycin
Vancomycin
Heteroresistance
Bacteremia
Endocarditis
CORE registry
Staphylococcus aureus
Full text is only aviable in PDF
Bibliografía
[1.]
E. Cercenado.
Actualización en las resistencias de las bacterias grampositivas.
Med Clin (Barc), 135 (2010), pp. 10-15
[2.]
J.J. Picazo, C. Betriu, I. Rodríguez-Avial, E. Culebras, F. López, M. Gómez, V.I.R.A. Grupo.
Actividad comparativa de la daptomcina frente a Staphylococcus aureus resistente a meticilina y frente a estafilococos coagulasa negativa.
Enferm Infecc Microbiol Clin, 28 (2010), pp. 13-16
[3.]
M. Sánchez-García, M.A. De la Torre, G. Morales, B. Peláez, M.J. Tolón, S. Domingo, et al.
Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit.
JAMA, 303 (2010), pp. 2260-2264
[4.]
G. Morales, J.J. Picazo, E. Baos, F.J. Candel, A. Arribi, B. Peláez, et al.
Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolidresistant Staphylococcus aureus.
Clin Infect Dis, 50 (2010), pp. 821-825
[5.]
E. Cercenado, M. Marín, R. Insa, E. Bouza.
Emerging linezolid resistance: dissemination of the cfr gene among Staphylococcus aureus, Staphylococcus epidermidis, Enrerococcus faecium and Enterococcus faecalis and inability of the Etest method for detection [abstract C2-1490].
American Society of Microbiology,
[6.]
G. Sakoulas, W. Rose, M.J. Rybak, S. Pillai, J. Alder, R.C. Moellering Jr., et al.
Evaluation of endocarditis caused by methicillin-susceptible Staphylococcus aureus developing nonsusceptibility to daptomycin.
J Clin Microbiol, 46 (2008), pp. 220-224
[7.]
J.J. Picazo, C. Betriu, E. Culebras, I. Rodríguez-Avial, M. Gómez, F. López, VIRA Study Group.
Activity of daptomycin against staphylococci collected from bloodstream infections in Spanish medical centers.
Diagn Microbiol Infect Dis, 64 (2009), pp. 448-451
[8.]
J.J. Picazo, C. Betriu, I. Rodríguez-Avial, E. Culebras, F. López-Fabal, M. Gómez, VIRA Study Group.
Comparative activities of daptomycin and several agents against staphylococcal blood isolates. Glycopeptide tolerance.
Diagn Microbiol Infect Dis, 70 (2011), pp. 373-379
[9.]
E. Baos, F.J. Candel, P. Merino, A. Arenaza, M. Sánchez, J.J. Picazo.
Evolution of linezolid resistance in coagulase-negative staphylococcus strains from the intensive care unit of an university hospital in the last three years [abstract K-1918].
51th Interscience Conference of Antimicrobial Agents and Chemotherapy. Chicago, IL, USA, (2011),
[10.]
I. Spiliopoulou, A. Damani, V. Chini, L. Zerva, F. Kolonitsiou, E.D. Anastassiou, et al.
Linezolid-resistant enterococci in Greece: epidemiological characteristics.
Chemotherapy, 57 (2011), pp. 181-185
[11.]
C.A. Arias, D. Panesso, D.M. McGrath, X. Qin, M.F. Mojica, C. Miller, et al.
Genetic basis for in vivo daptomycin resistance in enterococci.
N Engl J Med, 365 (2011), pp. 892-900
[12.]
F.J. Candel, J. Abarca, J.J. Picazo de la Garza.
Infecciones por Corynebacterium spp. y Bacillus spp.: factores predisponentes, aspectos patogénicos de relevancia clínica y diagnóstica y cuadros clínicos.
Medicine, 10 (2010), pp. 3360-3367
[13.]
R. Fernández-Roblas, H. Adames, N.Z. Martín-de-Hijas, D.G. Almeida, I. Gadea, J. Esteban.
In vitro activity of tigecycline and 10 other antimicrobials against clinical isolates of the genus Corynebacterium.
Int J Antimicrob Agents, 33 (2009), pp. 453-455
[14.]
T. Jones, M.R. Yeaman, G. Sakoulas, S.J. Yang, R.A. Proctor, H.G. Sahl, et al.
Failures in clinical treatment of Staphylococcus aureus Infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding.
Antimicrob Agents Chemother, 52 (2008), pp. 269-278
[15.]
M.I. Morosini, R. Cantón.
Tolerance and heteroresistance in Gram-positive microorganisms.
Med Clin (Barc), 135 (2010), pp. 16-22
[16.]
M.M. Traczewski, B.D. Katz, J.N. Steenbergen, S.D. Brown.
Inhibitory and bactericidal activities of daptomycin, vancomycin, and teicoplanin against methicillin-resistant Staphylococcus aureus isolates collected from 1985 to 2007.
Antimicrob Agents Chemother, 53 (2009), pp. 1735-1738
[17.]
L. Aguilar, M.J. Giménez, J. Barberán.
Glycopeptide heteroresistance and tolerance in hospital grampositive isolates: “invisible” phenomena to the clinician with clinical implications?.
Rev Esp Quimioter, 22 (2009), pp. 173-179
[18.]
S.J. Van Hal, D.L. Paterson, I.B. Gosbell.
Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient--a review of the literature.
Eur J Clin Microbiol Infect Dis, 30 (2011), pp. 603-610
[19.]
I. Raad, H. Hanna, Y. Jiang, T. Dvorak, R. Reitzel, G. Chaiban, et al.
Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillinresistant Staphylococcus bacteremic isolates embedded in biofilm.
Antimicrob Agents Chemother, 51 (2007), pp. 1656-1660
[20.]
J. Parra-Ruiz, C. Vidaillac, W.E. Rose, M.J. Rybak.
Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm.
Antimicrob Agents Chemother, 54 (2010), pp. 4329-4334
[21.]
A.C. Musta, K. Riederer, S. Shemes, P. Chase, J. Jose, L.B. Johnson, et al.
Vancomycin MIC plus heteroresistance and outcome of methicillin-resistant Staphylococcus aureus bacteremia: trends over 11 years.
J Clin Microbiol, 47 (2009), pp. 1640-1644
[22.]
D.I. Hsu, L.K. Hidayat, R. Quist, J. Hindler, A. Karlsson, A. Yusof, et al.
Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections.
Int J Antimicrob Agents, 32 (2008), pp. 378-385
[23.]
M. Dryden, A.T. Andrasevic, M. Bassetti, E. Bouza, J. Chastre, G. Cornaglia, et al.
A European survey of antibiotic management of methicillin-resistant Staphylococcus aureus infection: current clinical opinion and practice.
Clin Microbiol Infect, 16 (2010), pp. 3-30
[24.]
S.J. Van Hal, D.L. Paterson.
Systematic review and meta-analysis of the significance of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates.
Antimicrob Agents Chemother, 55 (2011), pp. 405-410
[25.]
A.H. Thomson, C.E. Staatz, C.M. Tobin, M. Gall, A.M. Lovering.
Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations.
J Antimicrob Chemother, 63 (2009), pp. 1050-1057
[26.]
M. Cruciani, G. Gatti, L. Lazzarini, G. Furlan, G. Broccali, M. Malena, et al.
Penetration of vancomycin into human lung tissue.
J Antimicrob Chemother, 38 (1996), pp. 865-869
[27.]
G. Steinkraus, R. White, L. Friedrich.
Vancomycin MIC creep in non-vancomycinintermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001-05.
J Antimicrob Chemother, 60 (2007), pp. 788-794
[28.]
M. Rybak, B. Lomaestro, J.C. Rotschafer, R. Moellering Jr., W. Craig, M. Billeter, et al.
Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists.
Am J Health Syst Pharm, 66 (2009), pp. 82-98
[29.]
T.P. Lodise, N. Patel, B.M. Lomaestro, K.A. Rodvold, G.L. Drusano.
Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients.
Clin Infect Dis, 49 (2009), pp. 507-514
[30.]
M.M. Fernández de Gatta García, N. Revilla, M.V. Calvo, A. Domínguez-Gil, A. Sánchez Navarro.
Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients.
Intensive Care Med, 33 (2007), pp. 279-285
[31.]
A. Soriano, F. Marco, J.A. Martínez, E. Pisos, M. Almela, V.P. Dimova, et al.
Influence of vancomycin minimum inhibitory concentration on the treatment of methicillinresistant Staphylococcus aureus bacteremia.
Clin Infect Dis, 46 (2008), pp. 193-200
[32.]
G. Sakoulas, P.A. Moise-Broder, J. Schentag, A. Forrest, R.C. Moellering Jr., G.M. Eliopoulos.
Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia.
J Clin Microbiol, 42 (2004), pp. 2398-2402
[33.]
T.P. Lodise, J. Graves, A. Evans, E. Graffunder, M. Helmecke, B.M. Lomaestro, et al.
Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin.
Antimicrob Agents Chemother, 52 (2008), pp. 3315-3320
[34.]
R.G. Wunderink, J. Rello, S.K. Cammarata, R.V. Croos-Dabrera, M.H. Kollef.
Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillinresistant Staphylococcus aureus nosocomial pneumonia.
Chest, 124 (2003), pp. 1789-1797
[35.]
M. Kunkel, J.E. Chastre, M. Kollef, M. Niederman, A.F. Shorr, R.G. Wunderink, et al.
Linezolid vs vancomycin in the treatment of nosocomial pneumonia proven due to methicillin-resistant Staphylococcus aureus [abstract 5047].
48th Annual Meeting. Infectious Diseases Society of America,
[36.]
J.N. Sharpe, E.H. Shively, H.C. Polk Jr..
Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lowerextremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus.
Am J Surg, 189 (2005), pp. 425-428
[37.]
A. Soriano, J. Gómez, L. Gómez, J.R. Azanza, R. Pérez, F. Romero, et al.
Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections.
Eur J Clin Microbiol Infect Dis, 26 (2007), pp. 353-356
[38.]
R. Beer, K.W. Engelhardt, B. Pfausler, G. Broessner, R. Helbok, P. Lackner, et al.
Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains.
Antimicrob Agents Chemother, 51 (2007), pp. 379-382
[39.]
H. Boucher, L.G. Miller, R.R. Razonable.
Serious infections caused by methicillinresistant Staphylococcus aureus.
Clin Infect Dis, 51 (2010), pp. S183-S197
[40.]
M.A. Kosinski, B.A. Lipsky.
Current medical management of diabetic foot infections.
Expert Rev Anti Infect Ther, 8 (2010), pp. 1293-1305
[41.]
Z.A. Kanafani, G.R. Corey.
Daptomycin: a rapidly bactericidal lipopeptide for the treatment of Gram-positive infections.
Expert Rev Anti Infect Ther, 5 (2007), pp. 177-184
[42.]
V. Laganas, J. Alder, J.A. Silverman.
In vitro bactericidal activities of daptomycin against Staphylococcus aureus and Enterococcus faecalis are not mediated by inhibition of lipoteichoic acid biosynthesis.
Antimicrob Agents Chemother, 47 (2003), pp. 2682-2684
[43.]
K.C. Lamp, M.J. Rybak, E.M. Bailey, G.W. Kaatz.
In vitro pharmacodynamic effects of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin.
Antimicrob Agents Chemother, 36 (1992), pp. 2709-2714
[44.]
J.A. Silverman, L.I. Mortin, A.D. Vanpraagh, T. Li, J. Alder.
Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact.
J Infect Dis, 191 (2005), pp. 2149-2152
[45.]
R.D. Arbeit, D. Maki, F.P. Tally, E. Campanaro, B.I. Eisenstein.
Daptomycin 98-01 and 99-01 Investigators. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections.
Clin Infect Dis, 38 (2004), pp. 1673-1681
[46.]
H.S. Sader, D.J. Farrell, R.N. Jones.
Antimicrobial susceptibility of Gram-positive cocci isolated from skin and skin-structure infections in European medical centres.
Int J Antimicrob Agents, 36 (2010), pp. 28-32
[47.]
R.C. Owens Jr., K.C. Lamp, L.V. Friedrich, R. Russo.
Postmarketing clinical experience in patients with skin and skin-structure infections treated with daptomycin.
Am J Med, 12010 (2007), pp. S6-S12
[48.]
A. González-Ruiz, A. Beiras-Fernández, H. Lehmkuhl, R.A. Seaton, J. Loeffler, R.L. Chaves.
Clinical experience with daptomycin in Europe: the first 2.5 years.
J Antimicrob Chemother, 66 (2011), pp. 912-919
[49.]
B. Almirante.
Clinical experience with daptomycin use in Spain. Global findings from EU-CORE database.
Med Clin (Barc), 135 (2010), pp. 23-28
[50.]
R.S. Chamberlain, D.L. Culshaw, B.J. Donovan, K.C. Lamp.
Daptomycin for the treatment of surgical site infections.
Surgery, 146 (2009), pp. 316-324
[51.]
V.G. Fowler Jr., H.W. Boucher, G.R. Corey, E. Abrutyn, A.W. Karchmer, M.E. Rupp, et al.
Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.
N Engl J Med, 355 (2006), pp. 653-665
[52.]
I.M. Gould, R. Cauda, S. Espósito, F. Gudiol, T. Mazzei, J. Garau.
Management of serious meticillin-resistant Staphylococcus aureus infections: what are the limits?.
Int J Antimicrob Agents, 37 (2011), pp. 202-209
[53.]
P.A. Moise, E. Hershberger, M.I. Amodio-Groton, K.C. Lamp.
Safety and clinical outcomes when utilizing high-dose (≥8mg/kg) daptomycin therapy.
Ann Pharmacother, 43 (2009), pp. 1211-1219
[54.]
G. Sakoulas, Y. Golan, K.C. Lamp, L.V. Friedrich, R. Russo.
Daptomycin in the treatment of bacteremia.
Am J Med, 120 (2007), pp. S21-S27
[55.]
D.P. Levine, K.C. Lamp.
Daptomycin in the treatment of patients with infective endocarditis: experience from a registry.
Am J Med, 12010 (2007), pp. S28-S33
[56.]
C. Liu, A. Bayer, S.E. Cosgrove, R.S. Daum, S.K. Fridkin, R.J. Gorwitz, et al.
Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary.
Clin Infect Dis, 52 (2011), pp. 285-292
[57.]
F. Gudiol, J.M. Aguado, A. Pascual, M. Pujol, B. Almirante, J.M. Miró, et al.
Consensus document for the treatment of bacteremia and endocarditis caused by methicillinresistent Staphylococcus aureus. Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica.
Enferm Infecc Microbiol Clin, 27 (2009), pp. 105-115
[58.]
T. Lalani, H.W. Boucher, S.E. Cosgrove, V.G. Fowler, Z.A. Kanafani, G.A. Vigliani, et al.
Outcomes with daptomycin versus standard therapy for osteoarticular infections associated with Staphylococcus aureus bacteraemia.
J Antimicrob Chemother, 61 (2008), pp. 177-182
[59.]
K.C. Lamp, L.V. Friedrich, L. Méndez-Vigo, R. Russo.
Clinical experience with daptomycin for the treatment of patients with osteomielitis.
Am J Med, 12010 (2007), pp. S13-S20
[60.]
J.A. Crompton, D.S. North, S.A. McConnell, K.C. Lamp.
Safety and efficacy of daptomycin in the treatment of osteomyelitis: results from the CORE Registry.
J Chemother, 21 (2009), pp. 414-420
[61.]
E.W. Hall, M.S. Rouse, D.J. Jacofsky, D.R. Osmon, A.D. Hanssen, J.M. Steckelberg, et al.
Release of daptomycin from polymethylmethacrylate beads in a continuous flow chamber.
Diagn Microbiol Infect Dis, 50 (2004), pp. 261-265
[62.]
A. Saleh-Mghir, C. Muller-Serieys, A. Dinh, L. Massias, A.C. Crémieux.
Adjunctive rifampin is crucial to optimizing daptomycin efficacy against rabbit prosthetic joint infection due to methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother, 55 (2011), pp. 4589-4593
[63.]
F. Traunmüller, M.V. Schintler, J. Metzler, S. Spendel, O. Mauric, M. Popovic, et al.
Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections.
J Antimicrob Chemother, 65 (2010), pp. 1252-1257
[64.]
D.A. Rice, L. Méndez-Vigo.
Daptomycin in bone and joint infections: a review of the literature.
Arch Orthop Trauma Surg, 129 (2009), pp. 1495-1504
[65.]
W. Poeppl, S. Tobudic, T. Lingscheid, R. Plasenzotti, N. Kozakowski, H. Lagler, et al.
Daptomycin, fosfomycin, or both for treatment of methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model.
Antimicrob Agents Chemother, 55 (2011), pp. 4999-5003
Copyright © 2012. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos