metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Desarrollo de las resistencias a los antibióticos: causas, consecuencias y su i...
Journal Information
Vol. 28. Issue S4.
Uso prudente de antimicrobianos
Pages 4-9 (November 2010)
Vol. 28. Issue S4.
Uso prudente de antimicrobianos
Pages 4-9 (November 2010)
Full text access
Desarrollo de las resistencias a los antibióticos: causas, consecuencias y su importancia para la salud pública
Development of resistances to antibiotic drugs: causes, consequences and importance to the public health system
Visits
28048
Luis Martínez-Martíneza,b,
Corresponding author
lmartinez@humv.es

Autor para correspondencia.
, Jorge Calvoa
a Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, España
b Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, España
This item has received
Article information
Resumen

La mayoría de las bacterias contienen genes propios que, de forma natural, causan algún tipo de resistencia a los antimicrobianos. Si, como consecuencia de ello, el microorganismo consigue sobrevivir a las concentraciones de antimicrobianos que se alcanzan in vivo, la resistencia adquiere importancia clínica. Los antimicrobianos son capaces de seleccionar individuos o subpoblaciones bacterianas que, de forma natural o adquirida, presentan resistencia a éstos. Las causas de esta resistencia son múltiples, tanto desde el punto de vista genético como bioquímico. Los 2 procesos genéticos claves por los que un microorganismo se hace resistente son la aparición de mutaciones o la adquisición de nuevos genes por transferencia horizontal (fundamentalmente por conjugación, en menor medida por transformación o transducción). Los mecanismos bioquímicos de resistencia incluyen las alteraciones de la permeabilidad, la modificación del antimicrobiano, la modificación, protección o hiperproducción de la diana, la expresión de bombas de expulsión activa y la modificación de ciertas vías metabólicas. La resistencia tiene un impacto múltiple en la asistencia sanitaria: obliga al microbiólogo clínico a disponer de herramientas fiables para reconocer y analizar el problema, disminuye las opciones de tratamiento empírico y dirigido, obliga a emplear antimicrobianos de mayor espectro, contribuye al aumento de la morbimortalidad de causa infecciosa y de los costes de la atención sanitaria, y exige a corto o medio plazo el desarrollo de nuevos antimicrobianos que ayuden a controlar este grave problema.

Palabras clave:
Resistencia
Antimicrobianos
Salud pública
Abstract

Most bacteria contain genes involved in natural resistance to antimicrobial agents. Resistance has clinical importance when the organism is able to survive in the presence of in vivo concentrations of antimicrobial agents. Antimicrobial agents can select individual bacteria or bacterial populations that present natural or acquired resistance to them. Resistance is due to multiple genetic and biochemical causes. Two of the most important genetic processes in bacterial resistance are mutagenesis and the acquisition of new genes by horizontal transfer (usually by conjugation, and to a lesser extent transformation or transduction). Biochemical mechanisms of resistance include decreased permeability, antimicrobial modification, target change, protection or over-production, expression of efflux pumps and modifications of certain metabolic pathways. Resistance impacts the health care system in many ways: it requires that clinical microbiologists have reliable tools to detect and analyse the problem; it results in reduced options for empirical and targeted antimicrobial treatment; it forces the use of broad-spectrum antimicrobials; it increases infectious morbidity and mortality and health expenses; and it demands new antimicrobials to control this serious problem in the short term.

Keywords:
Resistance
Antimicrobial agents
Public health
Full text is only aviable in PDF
Bibliografía
[1.]
S.B. Levy, B. Marshall.
Antibacterial resistance worldwide: causes, challenges and responses.
Nat Med, 12 (2004), pp. S122-S129
[2.]
H.K. Allen, J. Donato, H.H. Wang, K.A. Cloud-Hansen, J. Davies, J. Handelsman.
Call of the wild: antibiotic resistance genes in natural environments.
Nat Rev Microbiol, 4 (2010), pp. 251-259
[3.]
R. Cantón.
Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting.
Clin Microbiol Infect, 15 (2009), pp. 20-25
[4.]
S. Biswas, D. Raoult, J.M. Rolain.
A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis.
Int J Antimicrob Agents, 32 (2008), pp. 207-220
[5.]
D.M. Livermore.
Introduction: the challenge of multiresistance.
Int J Antimicrob Agents, 29 (2007), pp. S1-S7
[6.]
N. Dhar, J.D. McKinney.
Microbial phenotypic heterogeneity and antibiotic tolerance.
Curr Opin Microbiol, 10 (2007), pp. 30-38
[7.]
K. Lewis.
Persister cells dormancy and infectious disease.
Nat Rev Microbiol, 5 (2007), pp. 48-56
[8.]
T. Dörr, K. Lewis, M. Vulić.
SOS response induces persistence to fluoroquinolones in Escherichia coli.
PLoS Genet, 5 (2009), pp. e1000760
[9.]
E. López, M. Elez, I. Matic, J. Blázquez.
Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli.
Mol Microbiol, 64 (2007), pp. 83-93
[10.]
J.W. Beaber, B. Hochhut, M.K. Waldor.
SOS response promotes horizontal dissemination of antibiotic resistance genes.
Nature, 427 (2004), pp. 72-74
[11.]
M. Llosa, F.X. Gomis-Rüth, M. Coll, F. De la Cruz.
Bacterial conjugation: a two-step mechanism for DNA transport.
Mol Microbiol, 45 (2002), pp. 1-8
[12.]
M.N. Alekshun, S.B. Levy.
Molecular mechanisms of antibacterial multidrug resistance.
Cell, 128 (2007), pp. 1037-1050
[13.]
R. Hakenbeck.
Transformation in Streptococcus pneumoniae: mosaic genes and the regulation of competence.
Res Microbiol, 151 (2000), pp. 453-456
[14.]
H. Nikaido.
Molecular basis of bacterial outer membrane permeability revisited.
Microbiol Mol Biol Rev, 67 (2003), pp. 593-656
[15.]
J. Trias, H. Nikaido.
Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 34 (1990), pp. 52-57
[16.]
K. Bush, G.A. Jacoby.
Updated functional classification of beta-lactamases.
Antimicrob Agents Chemother, 54 (2010), pp. 969-976
[17.]
S.I. Martin, K.M. Kaye.
Beta-lactam antibiotics: newer formulations and newer agents.
Infect Dis Clin North Am, 18 (2004), pp. 603-619
[18.]
L.P. Kotra, J. Haddad, S. Mobashery.
Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance.
Antimicrob Agents Chemother, 44 (2000), pp. 3249-3256
[19.]
I.T. Paulsen.
Multidrug efflux pumps and resistance: regulation and evolution.
Curr Opin Microbiol, 6 (2003), pp. 446-451
[20.]
B. Berger-Bachi.
Resistance mechanisms of gram-positive bacteria.
Int J Med Microbiol, 292 (2002), pp. 27-35
[21.]
M.C. Roberts.
Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics.
Mol Biotechnol, 28 (2004), pp. 47-62
[22.]
D.C. Hooper.
Emerging mechanisms of fluoroquinolone resistance.
Emerg Infect Dis, 7 (2001), pp. 337-341
[23.]
L. Martínez-Martínez, M.E. Cano, J.M. Rodríguez-Martínez, J. Calvo, A. Pascual.
Plasmid-mediated quinolone resistance.
Expert Rev Anti-Infect Ther, 6 (2008), pp. 685-711
[24.]
H. Nikaido.
Multidrug resistance in bacteria.
Annu Rev Biochem, 78 (2009), pp. 119-146
[25.]
F. Baquero.
From pieces to patterns: evolutionary engineering in bacterial pathogens.
Nat Rev Microbiol, 2 (2004), pp. 510-518
[26.]
D.I. Andersson, D. Hughes.
Antibiotic resistance and its cost: is it possible to reverse resistance?.
Nat Rev Microbiol, 4 (2010), pp. 260-271
[27.]
L. Martínez-Martínez, F. Fernández, E.J. Perea.
Relationship between haemolysis production and resistance to fluoroquinolones among clinical isolates of Escherichia coli.
J Antimicrob Chemother, 43 (1999), pp. 277-279
[28.]
H. Seppälä, T. Klaukka, J. Vuopio-Varkila, A. Muotiala, H. Helenius, K. Lager, et al.
The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance.
N Engl J Med, 337 (1997), pp. 441-446
[29.]
V.I. Enne, D.M. Livermore, P. Stephens, L.M. Hall.
Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction.
Lancet, 357 (2001), pp. 1325-1328
[30.]
G. Peralta, M.B. Sánchez, J.C. Garrido, I. De Benito, M.E. Cano, L. Martínez-Martínez, et al.
Impact of antibiotic resistance and of adequate empirical antibiotic treatment in the prognosis of patients with Escherichia coli bacteraemia.
J Antimicrob Chemother, 60 (2007), pp. 855-863
[31.]
H.L. Evans, S.N. Lefrak, J. Lyman, R.L. Smith, T.W. Chong, S.T. McElearney, et al.
Cost of Gram-negative resistance.
[32.]
C. Rubio-Terrés, J. Garau, S. Grau, L. Martínez-Martínez, On behalf of the Cast of Resistance Study group.
Cost of bacteraemia caused by methicillin-resistant vs. methicillin-susceptible Staphylococcus aureus in Spain: a retrospective cohort study.
Clin Microbiol Infect, 16 (2010), pp. 722-728
[33.]
J.J. Rahal, C. Urban, S. Segal-Maurer.
Nosocomial antibiotic resistance in multiple gram-negative species: experience at one hospital with squeezing the resistance balloon at multiple sites.
Clin Infect Dis, 34 (2002), pp. 499-503
Copyright © 2010. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos