metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Interacciones farmacológicas en el paciente crítico. ¿Un factor relevante par...
Journal Information
Vol. 29. Issue S2.
Micafungina: nuevos retos y nuevas posibilidades en el tratamiento de la infección fúngica invasora
Pages 33-37 (March 2011)
Share
Share
Download PDF
More article options
Vol. 29. Issue S2.
Micafungina: nuevos retos y nuevas posibilidades en el tratamiento de la infección fúngica invasora
Pages 33-37 (March 2011)
Full text access
Interacciones farmacológicas en el paciente crítico. ¿Un factor relevante para usar micafungina?
Drug interactions in critically-ill patients. An important factor in the use of micafungin?
Visits
4466
José Garnacho-Monteroa,
Corresponding author
jgarnachom@telefonica.net

Autor para correspondencia.
, Francisco Jiménez Parrillab
a Unidad Clínica de Cuidados Críticos y Urgencias, Unidad de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, España
b Unidad Clínica de Cuidados Críticos y Urgencias Pediátricos, Unidad de Cuidados Intensivos Pediátricos, Hospital Universitario Virgen del Rocío, Sevilla, España
This item has received
Article information
Resumen

Actualmente disponemos de 3 grupos de fármacos principales para la prevención y tratamiento de la infección fúngica: polienos (anfotericina B deoxicolato o sus formulaciones lipídicas), azoles (fluconazol, itraconazol, voriconazol o posaconazol) y equinocandinas (caspofungina, micafungina y anidulafungina). Una de las características importantes, además del espectro antifúngico, farmacocinética y efectos adversos, que se valora a la hora de elegir un antifúngico es la ausencia de interacciones farmacológicas significativas. Anfotericina B carece de interacciones, si bien puede ocasionar disfunción renal que puede causar acumulación de los fármacos con metabolismo renal. La nefrotoxicidad es significativamente menor con las formulaciones lipídicas, en especial con la anfotericina B liposomal. Por contra, los azoles modifican el metabolismo de muy diversos fármacos por inhibir su biotransformación o alterar su distribución y eliminación. Tienen un metabolismo hepático a través del citocromo P450 inhibiendo diversas isoenzimas, en especial CYP3A4, que es la principal enzima metabolizadora de fármacos. Además, itraconazol y posaconazol son sustratos e inhibidores de la proteína transportadora glucoproteína-P. Fluconazol es el azol que presenta menor número de interacciones medicamentosas. Las equinocandinas han supuesto un avance en nuestro arsenal terapéutico destacando la seguridad en su empleo, que se debe a la ausencia de efectos adversos graves y al escaso número de interacciones, siendo caspofungina la que presenta un número más elevado de interacciones. Micafungina es una equinocandina que no presenta interacciones relevantes, por lo que no es preciso el ajuste de su dosis en ningún caso y puede emplearse tanto en adultos como en población pediátrica, incluyendo los neonatos.

Palabras clave:
Farmacocinética de antifúngicos
Interacción de fármacos
Micafungina
Equinocandinas
Abstract

Currently there are three main drug groups for the prevention and treatment of fungal infections: polyenes (amphotericin B deoxycholate or its lipid formulations), azoles (fluconazole, itraconazole or posaconazole) and echinocandins (caspofungin, micafungin and anidulafungin). However, a major characteristic to be evaluated when choosing an antifungal agent —apart from antifungal spectrum, pharmacokinetics and adverse effects— is the absence of significant drug interactions. Amphotericin B lacks interactions but may cause renal dysfunction, leading to the accumulation of renally metabolized drugs. Nephrotoxicity is significantly lower with lipid formulations, especially with liposomal amphotericin B. Azoles modify the metabolism of a wide range of drugs by inhibiting their biotransformation or altering their distribution and elimination. These drugs are metabolized in the liver through the P450 cytochrome complex, inhibiting several isoenzymes, especially CYP3A4, the main drug-metabolizing enzyme. Moreover, itraconazole and posaconazole are substrates and inhibitors of the transporter protein, P-glycoprotein. Fluconazole is the azole with the fewest drug-drug interactions. The echinocandins have increased the therapeutic arsenal and a particular feature of these drugs is their safety, due to the absence of severe adverse effects and the scarce number of interactions. The echinocandin with the highest number of interactions is caspofungin. Micafungin is an echinocandin lacking in relevant interactions and consequently its dosage requires no adjustment in any of its indications. This drug can be used both in adults and in the pediatric population, including neonates.

Keywords:
Antifungal pharmacokinetics
Drug interactions
Micafungin
Echinocandins
Full text is only aviable in PDF
Bibliografía
[1.]
C. Lumbreras, M. Lizasoain, J.M. Aguado.
Antifúngicos de uso sistémico.
Enferm Infecc Microbiol Clin, 21 (2003), pp. 366-380
[2.]
D.W. Bates, L. Su, D.T. Yu, G.M. Chertow, D.L. Seger, D.R.J. Gomes, et al.
Mortality and costs of acute renal failure associated with amphotericin B therapy.
Clin Infect Dis, 32 (2001), pp. 686-693
[3.]
J.R. Wingard, P. Kubilis, L. Lee, G. Yee, M. White, L. Walshe, et al.
Clinical significacne of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis.
Clin Infect Dis, 29 (1999), pp. 1402-1407
[4.]
B. Dupont.
Overview of the lipid formulations of amphotericin B.
J Antimicrob Chemother, 49 (2002), pp. 31-36
[5.]
P.O. Gubbins, S. Heldenbrand.
Clinically relevant drug interactions of current antifungal agents.
[6.]
P.O. Gubbins, J.R. Amsden.
Drug–drug interactions of antifungal agents and implications for patient care.
Expert Opin Pharmacother, 6 (2005), pp. 2231-2243
[7.]
K. Venkatakrishnan, L.L. Von Moltke, D.J. Greenblatt.
Effects of the antifungal agents on oxidative drug metabolism: clinical relevance.
Clin Pharmacokinet, 38 (2000), pp. 111-180
[8.]
R.M. Cadle, G.J. Zenon 3rd, M.C. Rodríguez-Barradas, R.J. Hamill.
Fluconazole-induced symptomatic phenytoin toxicity.
Ann Pharmacother, 28 (1994), pp. 191-195
[9.]
J. Papadopoulos, P.L. Smithburger.
Common drug interactions leading to adverse drug events in the intensive care unit: management and pharmacokinetic considerations.
Crit Care Med, 38 (2010), pp. S126-S135
[10.]
D. Panomvana Na Ayudhya, N. Thanompuangseree, S. Tansuphaswadikul.
Effect of rifampicin on the pharmacokinetics of fluconazole in patients with AIDS.
Clin Pharmacokinet, 43 (2004), pp. 725-732
[11.]
J. Fernández Águila, O. Crombert Ramos, I. Billares Álvarez, R. Pons Vázquez.
Resistencia a drogas mediadas por la glicoproteína-P.
Rev Cubana Oncol, 14 (1998), pp. 111-120
[12.]
K. Yasuda, L.B. Lan, D. Sanglard, K. Furuya, J.D. Schuetz, E.G. Schuetz.
Interaction of cytochrome P450 3A inhibitors with P-glycoprotein.
J Pharmacol Exp Ther, 303 (2002), pp. 323-332
[13.]
A.H. Saad, D. DePestel, P. Carver.
Factors influencing the magnitude and clinical significance of drug interactions between azole fungals and select immunosuppressants.
Pharmacotherapy, 26 (2006), pp. 1730-1744
[14.]
L.B. Johnson, C.A. Kauffman.
Voriconazole: a new triazole antifungal agent.
Clin Infect Dis, 36 (2003), pp. 630-637
[15.]
A. Pascual, T. Calandra, S. Bolay, T. Buclin, J. Bille, O. Marchetti.
Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes.
Clin Infect Dis, 46 (2008), pp. 201-211
[16.]
S. Jeong, P.D. Nguyen, Z. Desta.
Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A.
Antimicrob Agents Chemother, 53 (2009), pp. 541-551
[17.]
A.J. Romero, P. Le Pogamp, L.G. Nilsson, N. Wood.
Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant recipients.
Clin Pharmacol Ther, 71 (2002), pp. 226-234
[18.]
P. Krieter, B. Flannery, T. Musick, M. Gohdes, M. Martinho, R. Courtney.
Disposition of posaconazole following single-dose oral administration in healthy subjects.
Antimicrob Agents Chemother, 48 (2004), pp. 3543-3553
[19.]
P.G. Pappas, C.A. Kauffman, D. Andes, D.K. Benjamin Jr, T.F. Calandra, J.E. Edwards Jr, et al.
Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America.
Clin Infect Dis, 48 (2009), pp. 503-535
[20.]
J.E. Bennet.
Echinocandins for candidemia in adults without neutropenia.
N Engl J Med, 355 (2006), pp. 1154-1159
[21.]
A.J. Sucher, E.B. Chahine, H.E. Balcer.
Echinocandins: the newest class of antifungals.
Ann Pharmacother, 43 (2009), pp. 1647-1657
[22.]
J.A. Stone, E.M. Migoya, L. Hickey, G.A. Winchell, P.J. Deutsch, K. Ghosh, et al.
Potential for interactions between caspofungin and nelfinavir or rifampin.
Antimicrob Agents Chemother, 48 (2004), pp. 4306-4314
[23.]
J.A. Stone, X. Xu, G.A. Winchell, P.J. Deutsch, P.G. Pearson, E.M. Migoya, et al.
Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma.
Antimicrob Agents Chemother, 48 (2004), pp. 815-823
[24.]
P. Sandhu, W. Lee, X. Xu, B.F. Leake, M. Yamakazi, J.A. Stone, et al.
Hepatic uptake of the novel antifungal agent caspofungin.
Drug Metab Dispos, 33 (2005), pp. 676-682
[25.]
K.A. Marr, R. Hachem, G. Papanicolaou, J. Somani, J.M. Arduino, C.J. Lipka, et al.
Retrospective study of the hepatic safety profile of patients concomitantly treated with caspofungin and cyclosporin A.
Transpl Infect Dis, 6 (2004), pp. 110-116
[26.]
C. Sanz-Rodríguez, R. Arranz, J.M. Cisneros, P.J. García-Sánchez, M. Jurado, J. López, et al.
Absence of clinically relevant effect of caspofungin on cyclosporin pharmacokinetics.
Swiss Med Wkly, 135 (2005), pp. 658-659
[27.]
S. Holland, J. Stone, P. Wickersham, P. Deutsch, G. Winchell, M. Herney, et al.
Drug interactions between caspofungin and tacrolimus.
Program and Abstracts of the 41th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy,
[28.]
D.W. Denning.
Echinocandin antifungal drugs.
Lancet, 362 (2003), pp. 1142-1151
[29.]
J.A. Dowell, M. Stogniew, D. Krause, T. Henkel, I.E. Weston.
Assessment of the safety and pharmacokinetics of anidulafungin when administered with cyclosporine.
J Clin Pharmacol, 45 (2005), pp. 227-233
[30.]
B.D. Brielmaier, E. Casabar, C.M. Kutzeborn, P.S. Mckinnon, D.J. Ritchie.
Early clinical esperience with anidulafungin at a large tertiary care medical center.
Pharmacotherapy, 28 (2008), pp. 64-73
[31.]
J.R. Hurren, S.L. Davis, JA. Vázquez.
What is the risk of disulfiram-like reaction with anidulafungin and metronidazole administration?.
47th Interscience Conference on Antimicrobial Agents and Chemotheraphy Annual Meeting,
[32.]
M.F. Hebert, D.K. Blough, R.W. Townsend, M. Allison, D. Buell, J. Keirns, et al.
Concomitant tacrolimus and mica-fungin pharmacokinetics in healthy volunteers.
J Clin Pharmacol, 45 (2005), pp. 1018-1024
[33.]
M.F. Hebert, R.W. Townsend, S. Austin, G. Balan, D.K. Blough, D. Buell, et al.
Concomitant cyclosporine and micafungin pharmacokinetics in healthy volunteers.
J Clin Pharmacol, 45 (2005), pp. 954-960
[34.]
G. Krishna, D. Vickery, L. Ma.
Effect of posaconazole on pharmacokinetics (PK) of caspofungin and micafungin [abstract no. A-015].
48th Interscience Conference on Antimicrobial Agents and Chemotherapy and. 46th Annual Meeting of the Infectious Diseases Society of America,
[35.]
Y. Muraki, T. Iwamoto, Y. Kagawa, H. Sakurai, M. Usui, S. Isaji, et al.
The impact of total bilirubin on plasma micafungin levels in living-donor liver transplantation recipients with severe liver dysfunction.
Biol Pharm Bull, 32 (2009), pp. 750-754
[36.]
S. Shimoeda, S. Ohta, H. Kobayashi, H. Saitou, A. Kubota, S. Yamato, et al.
Analysis of the blood level of micafungin involving patients with haematological diseases: new findings regarding combination therapy witht acrolimus.
Biol Pharm Bull, 28 (2005), pp. 477-480
[37.]
T. Sakaeda, K. Iwaki, M. Kakumoto, M. Nishikawa, T. Niwa, J.S. Jin, et al.
Effect of micafungin on cytochrome P450 3A4 and multidrug resistance protein 1 activities, and its comparison with azole antifungal drugs.
J Pharm Pharmacol, 57 (2005), pp. 759-764
[38.]
G. Krishna, D. Vickery, L. Ma, X. Yu, C. Noren, E. Power, et al.
Lack of pharmacokinetic drug interaction between oral posaconazole and caspofungin or micafungin.
J Clin Pharmacol, (2010),
[39.]
M. Kawada, N. Fukuoka, M. Kondo, K. Okazaki, T. Kusaka, K. Kawada, et al.
Pharmacokinetics of prophylactic micafungin in very-low-birth-weight infants.
Pediatr Infect Dis J, 28 (2009), pp. 840-842
[40.]
D.K. Benjamin Jr, P.B. Smith, A. Arrieta, L. Castro, P.J. Sánchez, D. Kaufman, et al.
Safety and pharmacokinetics of repeat-dose micafungin in young infants.
Clin Pharmacol Ther, 87 (2010), pp. 93-99
[41.]
P.B. Smith, T.J. Walsh, W. Hope, A. Arrieta, A. Takada, L.L. Kovanda, et al.
Pharmacokinetics of an elevated dosage of micafungin in premature neonates.
Pediatr Infect Dis J, 28 (2009), pp. 412-415
[42.]
F. Queiroz-Telles, E. Berezin, G. Leverger, A. Freire, A. Van der Vyver, T. Chotpitayasunondh, Micafungin Invasive Candidiasis Study Group, et al.
Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: substudy of a randomized double-blind trial.
Pediatr Infect Dis J, 27 (2008), pp. 820-826
Copyright © 2011. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos