metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Toxicogenética del tratamiento antirretroviral (I): lipodistrofia, alteraciones...
Journal Information
Vol. 26. Issue S6.
Farmacogenética en la infección por el VIH
Pages 18-23 (May 2008)
Share
Share
Download PDF
More article options
Vol. 26. Issue S6.
Farmacogenética en la infección por el VIH
Pages 18-23 (May 2008)
Full text access
Toxicogenética del tratamiento antirretroviral (I): lipodistrofia, alteraciones metabólicas y arteriosclerosis
Toxicogenetics of antiretroviral treatment (1): Lipodystrophy, metabolic perturbations and atherosclerosis
Visits
3036
M. del Mar Gutiérrez Maciáa, M. Gracia Mateo Garcíaa, Francesc Vidal Marsalb, Pere Domingo Pedrola,
Corresponding author
pdomingo@santpau.es
pere.domingo@uab.cat

Correspondencia: Unidad de Enfermedades Infecciosas. Hospital de la Santa Creu i Sant Pau. Mas Casanovas, 90. 08025 Barcelona. España.
a Unidad de Enfermedades Infecciosas. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona. España
b Hospital Universitari Joan XXIII. Universitat Rovira i Virgili. Tarragona. España
This item has received
Article information

Entre los efectos adversos del tratamiento antirretroviral, probablemente el más trascendente sea la toxicidad metabólica y sobre el tejido adiposo por sus eventuales consecuencias a largo plazo en términos de riesgo cadiovascular. Dado que no todos los pacientes tratados con fármacos antirretrovirales la presentan, se ha postulado que debe existir una predisposición genética. La información actualmente disponible es, a menudo, no concordante.

Se ha demostrado de forma consistente que los polimorfismos en los genes que codifican para las apolipoproteínas A5, C3 y E, para las proteínas transportadoras de ésteres de colesterol (CETP), y en el cassette de enlace a ATP tipo A1 (ABCA1), modulan la generación de la dislipidemia secundaria al tratamiento antirretroviral, especialmente si éste contiene inhibidores de la proteasa (IP). En cuanto a los polimorfismos de la proteína de unión al elemento regulador de esteroles tipo 1 (SREBP1), no existen evidencias concordantes. En el caso de la redistribución de la grasa corporal o lipodistrofia, se ha estudiado si mutaciones en el ADN mitocondrial modulan el riesgo de aparición, con resultados no concluyentes. Se ha descartado de forma rotunda la existencia de mutaciones en el gen de la lamina. Se han investigado los polimorfismos de genes que codifican para citocinas proinflamatorias, incluyendo el factor de necrosis tumoral alfa (TNF-α), la interleucina 1 beta (IL-1β) y la interleucina 6 (IL-6), con evidencias contradictorias en el caso del TNF-α, negativas en el caso de la IL-6 y datos que sugieren una asociación positiva en el caso de la IL-1β. Por otra parte, los polimorfismos en el gen que codifica el factor derivado de células de la estroma-1 (SDF-1) y la proteína quimioatractiva de monocitos-1 (MCP-1) se han relacionado con la presencia de arteriosclerosis subclínica en pacientes infectados por el VIH-1 que reciben tratamiento antirretroviral.

Palabras clave:
Dislipidemia
Lipodistrofia
Arteriosclerosis
Polimorfismo
Apolipopropteínas
TNF-α
IL-1β
Inflamación
Citocinas
SDF-1
MCP-1

Among the adverse effects attributed to antiretroviral therapy, one of the most striking is probably the appearance of the lipodystrophy syndrome and its associated metabolic derangements, given its potential long-term effect as a cardiovascular risk factor. Since not all patients who receive antiretroviral drugs experience these adverse effects, a host genetic predisposition has been postulated. However, currently available data on this issue is inconclusive and preliminary.

It has been consistently demonstrated that polymorphisms in the genes that encode for apolipoproteins A5, C3 and E, for the cholesterol ester transporter proteins (CETP), and in the ATP binding cassette type A1 (ABCA1) influence the development of dyslipidemia in patients treated with antiretroviral drugs, particularly if the therapeutic regimen includes protease inhibitors. Data on the effect of polymorphisms in the sterol regulatory ester binding protein type 1 (SREBP1) are inconsistent.

The effect of mitochondrial DNA mutations on the risk of lipodystrophy has been assessed, with inconclusive data. No polymorphisms in the lamin A gene have been detected. Investigations have assessed the effect of diverse polymorphisms in the genes that encode for several proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin-1-beta (IL-1β) and interleukin-6 (IL-6). The results show inconsistent data in the case of TNF-α, no association in the case of IL-6, and preliminary positive associations in IL-1β.

In contrast, polymorphisms in the genes encoding for stromal derived factor 1 (SDF-1) and for monocyte chemoattractant protein 1 (MCP-1) have been shown to influence the development of subclinical atherosclerosis in HIV-1-infected patients treated with antiretroviral drugs.

Key words:
Dyslipidemia
Lipodystrophy
Atherosclerosis
Polymorphism
Apolipoproteins
TNF-α
IL-1β
Inflammation
Cytokines
SDF-1
MCP-1
Full text is only aviable in PDF
Bibliografía
[1.]
A. Mocroft, S. Vella, T.L. Benfield, et al.
Changing patterns of mortality across Europe in patients infected with HIV-1: EuroSIDA Study Group.
Lancet, 352 (1998), pp. 1725-1730
[2.]
A. Mocroft, B. Ledergerber, C. Katlama.
Decline in the AIDS and death rates in the EuroSIDA study: an observational study.
Lancet, 362 (2003), pp. 22-29
[3.]
S.A. Bozzette, C.F. Ake, H.K. Tam, et al.
Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection.
N Engl Med, 348 (2003), pp. 702-710
[4.]
M. Mary-Krause, L. Cotte, A. Simon, et al.
Increased risk of myocardial infarction with duration of protease inhibitor therapy in HIV-infected men.
[5.]
N. Friis-Moller, C.A. Sabin, R. Weber, et al.
Combination antirretroviral therapy and the risk of myocardial infarction.
N Engl J Med, 349 (2003), pp. 1993-2003
[6.]
S. Grinspoon, A. Carr.
Cardiovascular risk and body-fat abnormalities in HIV-infected adults.
N Engl J Med, 352 (2005), pp. 48-62
[7.]
N. Friis-Moller, P. Reiss, C.A. Sabin.
Class of antirretroviral drugs and the risk of myocardial infarction.
N Engl J Med, 356 (2007), pp. 1723-1735
[8.]
E.J. Phillips.
The Pharmacogenomics of antirretroviral therapy.
Curr Opin HIV AIDS, 1 (2006), pp. 249-256
[9.]
S. Mallal, E. Phillips.
The introduction of pharmacogenetic screening to HIV clinical practice- Potencial benefits and challenges.
Eur Infect Dis, 1 (2007), pp. 13-18
[10.]
P.E. Tarr, A. Telenti.
Toxicogenetics of antirretroviral therapy: genetic factors that contribute to metabolic complications.
Antiviral Therapy, 12 (2007), pp. 999-1013
[11.]
A. Telenti, D.B. Goldstein.
Genomics meets HIV-1.
Nature, 4 (2004), pp. 865-872
[12.]
The International HapMap Consortium.
A haplotype map of the human genome.
Nature, 437 (2005), pp. 1299-1320
[13.]
A.T. Hattersley, M.I. McCarthy.
What makes a good genetic association study?.
Lancet, 366 (2005), pp. 1315-1323
[14.]
M. Arnedo, P. Taffé, R. Sahli, et al.
Contribution of 20 single nucleotide polymorphisms of 13 genes to dyslipidemia associated with antirretroviral therapy.
Pharmacogenetics Genomics, 17 (2007), pp. 755-764
[15.]
H.M. Colhoun, P.M. McKeigue, S.G. Davey.
Problems of reporting genetic associations with complex outcomes.
Lancet, 361 (2003), pp. 865-872
[16.]
N.B. Freimer, C. Sabatti.
Guidelines for association studies in Human Molecular Genetics.
Hum Mol Genet, 14 (2005), pp. 2481-2483
[17.]
Executive summary of the third report of the National Cholesterol Education Program (NECP).
Expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III).
JAMA, 285 (2001), pp. 2486-2497
[18.]
M. Guardiola, R. Ferré, J. Salazar, et al.
Protease inhibitor -associated dyslipidemia in HIV-infected patients is strongly influenced by the APOA5-1131T>C gene variation.
Clin Chemistry, 52 (2006), pp. 1914-1919
[19.]
J. Fauvel, E. Bonnet, J.B. Ruidavets, et al.
An interaction between apo C-III variants and protease inhibitors contributes to high triglyceride/low HDL levels in treated HIV patients.
AIDS, 15 (2001), pp. 2397-2406
[20.]
P.E. Tarr, P. Taffe, G. Bleiber, et al.
Modeling the influence of APOC3, APOE and TNF polymorphisms on the risk of antirretroviral therapy-associated lipid disorders.
J Infect Dis, 191 (2005), pp. 1419-1426
[21.]
A.S. Foulkes, D.A. Whol, I. Frank, et al.
Associations among race/ethnicity, ApoC-III genotypes, and lipids in HIV-1-infected individuals on antirretroviral therapy.
[22.]
A.R. Miserez, P.Y. Muller, L. Barella, et al.
A single-nucleotide polymorphism in the sterol-regulatory element-binding protein 1c gene is predictive of HIV-related hyperlipoproteinaemia.
AIDS, 15 (2001), pp. 2045-2049
[23.]
F.G. Schaap, P.C. Rensen, P.J. Voshol, et al.
APOAV reduces plasma tryglicerides by inhibiting very low density lipoprotein-trygliceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis.
J Biol Chem, 279 (2004), pp. 27941-27947
[24.]
W.W. Li, M.M. Dammerman, J.D. Smith, et al.
Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia.
J Clin Invest, 96 (1995), pp. 2601-2605
[25.]
R.W. Mahley, S.C. Rall Jr.
Apolipoprotein E: far more than a lipid transport protein.
Annu Rev Genomics Hum Genet, 1 (2000), pp. 507-537
[26.]
G. Behrens, H.H. Schmidt, M. Stoll, et al.
ApoE genotype and protease-inhibitor-associated hyperlipidaemia.
[27.]
R.K. Lister, M. Youle, D.R. Nair, et al.
Latent dysbetalipoproteinaemia precipitated by HIV-protease-inhibitors.
Lancet, 353 (1999), pp. 1678
[28.]
M. Caron, M. Auclair, C. Vigouroux, et al.
The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance.
Diabetes, 50 (2001), pp. 1378-1388
[29.]
A. Yang, M.S. King, L. Han, et al.
Lack of correlation between SREBP1 genotype and hyperlipidemia in individuals treated with highly active antirretroviral therapy.
AIDS, 17 (2003), pp. 2142-2143
[30.]
A. Carr, S. Emery, M. Law, et al.
An objective case definition of lipodystrophy in HIV-infected adults: a case-control study.
Lancet, 361 (2003), pp. 726-735
[31.]
A. Carr, K. Samaras, S. Burton, et al.
A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors.
AIDS, 12 (1998), pp. F51-F58
[32.]
J.C. Lo, K. Mulligan, V.W. Tai, et al.
«Buffalo hump» in men with HIV-1 infection.
[33.]
K.D. Miller, E. Jones, J.A. Yanovski, et al.
Visceral abdominal-fat accumulation associated with the use of indinavir.
[34.]
E. Martinez, A. Mocroft, M.A. Garcia-Viejo, et al.
Risk of lipodystrophy in HIV-1 infected patients treated with protease inhibitors: a prospective cohort study.
[35.]
T. Saint-Marc, M. Partisani, I. Poizot-Martin, et al.
A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside analogue therapy.
AIDS, 13 (1999), pp. 1657-1667
[36.]
S.A. Mallal, M. John, C.B. Moore, et al.
Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection.
AIDS, 14 (2000), pp. 1309-1316
[37.]
V. Joly, P. Flandre, V. Meiffredy, et al.
Increased risk of lipoatrophy under stavudine in HIV-1-infected patients: results of a substudy from a comparative trial.
AIDS, 16 (2002), pp. 2447-2454
[38.]
P.W. Mallon, J. Miller, D.A. Cooper, et al.
Prospective evaluation on the effects of antirretroviral therapy on body composition in HIV-1 infected men starting therapy.
[39.]
D. Nolan, E. Hammond, A. Martin, et al.
Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy.
[40.]
O. Miro, S. Lopez, E. Martinez, et al.
Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antirretrovirals.
Clin Infect Dis, 39 (2004), pp. 710-716
[41.]
M.G. Zaera, O. Miro, E. Pedrol, et al.
Mitochondrial involvement in antirretroviral therapy-related lipodystrophy.
AIDS, 15 (2001), pp. 1643-1651
[42.]
C.M. Shikuma, N. Hu, C. Milne, et al.
Mitochondrial DNA decrease in subcutaneous adipose tissue of HIV-infected individuals with peripheral lipoatrophy.
AIDS, 15 (2001), pp. 1801-1809
[43.]
U.A. Walker, M. Bickel, S.I. Lutke Volksbeck, et al.
Evidence of nucleoside analogue reverse transcriptase inhibitor-associated genetic and structural defects of mitochondria in adipose tissue of HIV-infected patients.
J Acquir Immune Defic Syndr, 29 (2002), pp. 117-121
[44.]
A.M. Martin, E. Hammond, D. Nolan, et al.
Accumulation of mitochondrial mutations in human immunodeficientcy virus-infected patients treated with nucleoside-analogue reverse-transcriptase inhibitors.
Am J Hum Genet, 72 (2003), pp. 549-560
[45.]
A. Garg.
Acquired and inherited lipodystrophies.
N Engl J Med, 350 (2004), pp. 1220-1234
[46.]
M.G. Dunnigan, M.A. Cochrane, A. Kelly, et al.
Familial lipoatrophic diabetes with dominant transmission: a new syndrome.
Q J Med, 43 (1974), pp. 33-48
[47.]
A. Garg, R.M. Peshock, J.L. Fleckenstein.
Adipose tissue distribution pattern in patients qith familial partial lipodystrophy (Dunnigan variety).
J Clin Endocrinol Metab, 84 (1999), pp. 170-174
[48.]
S. Shackleton, D.J. Lloyd, S.N. Jackson, et al.
LMNA, encoding lamin A/C, is mutated in partial lipodystrophy.
Nat Genet, 24 (2000), pp. 153-156
[49.]
D.J. Lloyd, R.C. Trembath, S. Shackleton.
A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies.
Hum Mol Genet, 11 (2002), pp. 769-777
[50.]
M. Caron, M. Auclair, H. Sterlingot, et al.
Some HIV protease inhibitors alter lamin A/C maduration and stability, SREBP-1 nuclear localization and adipocyte differentiation.
AIDS, 17 (2003), pp. 2437-2444
[51.]
P. Domingo, M. Baiget, J.A. Arroyo, et al.
Absence of mutations in exon 8 of the gene in combination antirretroviral therapy-associated partial lipodystrophy.
J Acquir Immune Defic Syndr, 30 (2002), pp. 457-458
[52.]
E. Ledru, N. Christeff, O. Patey, et al.
Alteration of tumor necrosis factor-alpha T-cell homeostasis following potent antirretroviral therapy: contribution to the development of human immunodeficiency virus-associated lipodystrophy syndrome.
Blood, 95 (2000), pp. 3191-3198
[53.]
J.A. Johnson, J.B. Albu, E.S. Engelson, et al.
Increased systemic and adipose tissue cytokines in patients with HIV-associated lipodystrophy.
Am J Physiol Endocrinol Metab, 286 (2004), pp. E261-E271
[54.]
B. Maher, A. Alfirevic, F.J. Vilar, et al.
TNF-alfa promoter region gene polymorphisms in HIV-positive patients with lipodystrophy.
AIDS, 16 (2002), pp. 2013-2018
[55.]
D. Nolan, C. Moore, A. Castley, et al.
Tumour necrosis factor-alpha gene - 238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy.
[56.]
Asensi V, Rego C, Montes AH, et al. IL-1b (+3954C/T) polymorphism could protect HIV-infected patients on HAART against the lipodystrophic syndrome. Gen Med. (En prensa.)
[57.]
Saumoy M, Lopez-Dupla M, Broch M, et al. A study of the IL-6 system in HIV-1-infected patients with combination antirretroviral therapy-related fat redistribution syndromes. AIDS. (En prensa.)
[58.]
R. Ross.
Atherosclerosis: an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[59.]
J. Danesh, R. Collins, R. Peto.
Chronic infections and coronary heart disease: is there a link?.
[60.]
B. Coll, C. Alonso-Villaverde, S. Parra, et al.
The stromal derived factor-1 mutated allele (SDF1-3’A) is associated with a lower incidence of atherosclerosis in HIV-infected patients.
AIDS, 19 (2005), pp. 1877-1883
[61.]
B. Coll, S. Parra, C. Alonso-Villaverde, et al.
HIV-infected patients with lipodystrophy have higher rates of carotid atherosclerosi: the role of monocyte chemoattractant protein-1.
Cytokine, 34 (2006), pp. 51-55
[62.]
C. Alonso Villaverde, B. Coll, S. Parra, et al.
Atherosclerosis in patients infected with HIV is influenced by a mutant monocyte chemoattractant protein-1 allele.
Circulation, 110 (2004), pp. 2204-2209
[63.]
S. Abi-Younes, A. Sauty, F. Mach, et al.
The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques.
Circ Res, 86 (2000), pp. 131-138
[64.]
G. Simmons, J. Reeves, S. Hibbitts, et al.
Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands.
Immunol Rev, 177 (2000), pp. 112-126
[65.]
A. Soriano, C. Martinez, F. Garcia, et al.
Plasma stromal cell-derived factor (SDF)-1 levels, SDF1-3’A genotype, and expression of CXCR4 on T lymphocytes: their impact on resistance to human immunodeficiency virus type 1 infection and its progression.
J Infect Dis, 186 (2002), pp. 922-931
[66.]
A.R.L. Gear, D. Camerini.
Platelet chemokines and chemokine receptors: linking hemostasis, inflammation and host defence.
Microcirculation, 10 (2003), pp. 335-350
[67.]
K.H. Han, R.K. Tangirala, S.R. Green, et al.
Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes: a regulatory role for plasma LDL.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 1983-1991
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos