metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Farmacogenética de la respuesta al tratamiento antirretroviral
Información de la revista
Vol. 26. Núm. S6.
Farmacogenética en la infección por el VIH
Páginas 10-17 (mayo 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S6.
Farmacogenética en la infección por el VIH
Páginas 10-17 (mayo 2008)
Acceso a texto completo
Farmacogenética de la respuesta al tratamiento antirretroviral
The pharmacogenetics of response to antiretroviral therapy
Visitas
2717
Sonia Rodríguez-Nóvoaa,
Autor para correspondencia
sonia_r_novoa@hotmail.com

Correspondencia: Unidad de Farmacología Clínica. Hospital Carlos III. Silesio Delgado, 10. 28029 Madrid. España.
, Vicente Soriano Vázquezb
a Unidad de Farmacología Clínica. Hospital Carlos III. Madrid. España
b Departamento de Enfermedades Infecciosas. Hospital Carlos III. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Existe una elevada variabilidad interindividual en las concentraciones plasmáticas de la mayoría de antirretrovirales, que puede condicionar diferencias en la tasa de respuesta y toxicidad. Entre los factores determinantes de esta exposición variable a los antivirales figuran diferencias en el metabolismo, interacciones por el uso de varias medicaciones, problemas en la adherencia al tratamiento, enfermedades subyacentes y factores genéticos del huésped.

La farmacogenética es la disciplina que analiza las bases genéticas de la variación interindividual en la biodisponibilidad y respuesta a los fármacos. Su objetivo es proporcionar las bases para una individualización de la terapia. Entre los factores genéticos asociados de alguna forma con la respuesta al tratamiento antirretroviral se encuentran aquellos que directa o indirectamente afectan a las concentraciones plasmáticas de los antivirales. Es el caso de las proteínas de transporte de los fármacos y las enzimas metabolizadoras. Por otro lado se encuentran factores relacionados con el huésped que influyen en la respuesta antiviral, como las interleucinas y el complejo mayor de histocompatibilidad. En el presente capítulo se analizan los marcadores genéticos más relevantes asociados con la respuesta al tratamiento antirretroviral.

Palabras clave:
VIH
Tratamiento antirretroviral
Farmacogenética

The plasma concentrations of most antiretroviral drugs show wide interindividual variability, which may lead to differences in response rate and toxicity. Among the factors determining this variable exposure to antiviral drugs are differences in metabolism, interactions due to the use of concomitant medication, problems in treatment adherence, underlying diseases, and host genetic factors. Pharmacogenetics analyzes the genetic bases of interindividual variation in the bioavailability and response to drugs. The aim is to establish the foundations for individualized therapy. Among the genetic factors that are in some way involved in antiretroviral treatment response are those that directly or indirectly affect antiviral plasma concentrations, as is the case of drug transport proteins and metabolizing enzymes. Some host factors also influence antiviral response, such as interleukins and major histocompatibility complex. The present article analyzes the most important genetic markers associated with antiretroviral treatment response.

Key words:
HIV
Antiretroviral treatment
Pharmacogenetics
El Texto completo está disponible en PDF
Bibliografía
[1.]
T. Lang, K. Klein, J. Fischer, A. Nüssler, P. Neuhaus, U. Hofmann, et al.
Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver.
Pharmacogenetics, 11 (2001), pp. 399-415
[2.]
B. Ward, J. Gorski, D. Jones, S. Hall, D. Flockhart, Z. Desta.
The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity.
J Pharmacol Exp Ther, 306 (2003), pp. 287-300
[3.]
D. Haas, H. Ribaudo, R. Kim, C. Tierney, G. Wilkinson, R. Gulick, et al.
Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study.
AIDS, 18 (2004), pp. 2391-2400
[4.]
S. Rodríguez-Nóvoa, P. Barreiro, A. Rendón, I. Jimenez-Nácher, J. González-Lahoz, V. Soriano.
Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects.
Clin Infect Dis, 40 (2005), pp. 1358-1361
[5.]
S. Taylor, S. Allen, S. Fidler, D. White, S. Gibbons, J. Fox, et al.
Stop Study: After discontinuation of efavirenz, plasma concentrations may persist for 2 weeks of longer.
11th Conference on Retroviruses and Opportunistic Infections,
[6.]
A. Saitoh, C. Fletcher, R. Brundage, C. Alvero, T. Fenton, K. Hsia, et al.
Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism.
J Acquir Immune Defic Syndr, 45 (2007), pp. 280-285
[7.]
D. Haas, L. Smeaton, R. Shafer, G. Robbins, G. Morse, L. Labbe, et al.
Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an Adult Aids Clinical Trials Group Study.
J Infect Dis, 192 (2005), pp. 1931-1942
[8.]
J. Fellay, C. Marzolini, E. Meaden, D. Back, T. Buclin, J. Chave, et al.
Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study.
[9.]
Z. Brumme, W. Dong, K. Chan, R. Hogg, J. Montaner, M. O'Shaughnessy, et al.
Influence of polymorphisms within the CXCR1 and MDR-1 genes on initial antiretroviral therapy response.
[10.]
P. Anderson, J. Lamba, C. Aquilante, E. Schuetz, C. Fletcher.
Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study.
J Acquir Immune Defic Syndr, 42 (2006), pp. 441-449
[11.]
A. Saitoh, K. Singh, C. Powell, T. Fenton, C. Fletcher, R. Brundage, et al.
A MDR1-3435 variant is associated with higher plasma nelfinavir levels and more rapid virologic response in HIV-1 infected children.
AIDS, 19 (2005), pp. 371-380
[12.]
M. Nasi, V. Borghi, M. Pinti, C. Bellodi, E. Lugli, S. Maffei, et al.
MDR1 C3435T genetic polymorphism does not influence the response to antiretroviral therapy in drug-naive HIV-positive patients.
AIDS, 17 (2003), pp. 1696-1698
[13.]
R. Winzer, P. Langmann, M. Zilly, F. Tollmann, J. Schubert, H. Klinker, et al.
No influence of the P-glycoprotein polymorphisms MDR1 G2677T/A and C3435T on the virological and immunological response in treatment naive HIV-positive patients.
Ann Clin Microbiol Antimicrob, 4 (2005), pp. 3-9
[14.]
Y. Feng, C. Broder, P. Kennedy, E. Berger.
HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.
Science, 272 (1996), pp. 872-877
[15.]
Y. Huang, W. Paxton, S. Wolinsky, A. Neumann, L. Zhang, T. He, et al.
The role of a mutant CCR5 allele in HIV-1 transmission and disease progression.
Nat Med, 2 (1996), pp. 1240-1243
[16.]
R. Liu, W. Paxton, S. Choe, D. Ceradini, S. Martin, R. Horuk, et al.
Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection.
Cell, 86 (1996), pp. 367-377
[17.]
T. O’Brien, C. Winkler, M. Dean, J. Nelson, M. Carrington, N. Michael, et al.
HIV-1 infection in a man homozygous for CCR5 delta 32.
Lancet, 349 (1997), pp. 1219
[18.]
J. Ioannidis, P. Rosenberg, J. Goedert, L. Ashton, T. Benfield, S. Buchbinder, et al.
Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3’A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data.
Ann Intern Med, 135 (2001), pp. 782-795
[19.]
Y. Barber, C. Rubio, E. Fernández, M. Rubio, J. Fibla.
Host genetic background at CCR5 chemokine receptor and vitamin D receptor loci and HIV type 1 disease progression among HIV-seropositive injection drug users.
J Infect Dis, 184 (2001), pp. 1279-1288
[20.]
T. O’Brien, D. McDermott, J. Ioannidis, M. Carrington, P. Murphy, D. Havlir, et al.
Effect of chemokine receptor gene polymorphisms on the response to potent antiretroviral therapy.
AIDS, 14 (2000), pp. 821-826
[21.]
F. Wit, R. van Rij, G. Weverling, J. Lange, H. Schuitemaker.
CC chemokine receptor 5 delta32 and CC chemokine receptor 2 64I polymorphisms do not influence the virologic and immunologic response to antiretroviral combination therapy in HIV type 1-infected patients.
J Infect Dis, 186 (2002), pp. 1726-1732
[22.]
J. Bogner, B. Lutz, H. Klein, C. Pollerer, U. Troendle, F. Goebel.
Association of highly active antiretroviral therapy failure with chemokine receptor 5 wild type.
[23.]
Z. Brumme, B. Henrick, C. Brumme, R. Hogg, J. Montaner, R. Harrigan.
Association of the CCR5delta32 mutation with clinical response and >5-year survival following initiation of first triple antiretroviral regimen.
Antivir Ther, 10 (2005), pp. 849-853
[24.]
J. Ioannidis, T. O’Brien, P. Rosenberg, D. Contopoulos-Ioannidis, J. Goedert.
Genetic effects on HIV disease progression.
Nat Med, 4 (1998), pp. 536
[25.]
M. Smith, M. Dean, M. Carrington.
Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression.
Science, 277 (1997), pp. 959-965
[26.]
S. Faure, M. Lee, T. Keller, P. ten Dijke, M. Whitman.
Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development.
Development, 127 (2000), pp. 2917-2931
[27.]
J. McCune, M. Hanley, D. Cesar, R. Halvorsen, R. Hoh, D. Schmidt, et al.
Factors influencing T-cell turnover in HIV-1-seropositive patients.
J Clin Invest, 105 (2000), pp. R1-R8
[28.]
K. Schluns, W. Kieper, S. Jameson, L. Lefrançois.
Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo.
Nat Immunol, 5 (2000), pp. 426-432
[29.]
H. Kanegane, G. Tosato.
Activation of naive and memory T cells by interleukin-15.
Blood, 88 (1996), pp. 230-235
[30.]
A. Vella, S. Dow, T. Potter, J. Kappler, P. Marrack.
Cytokine-induced survival of activated T cells in vitro and in vivo.
Proc Natl Acad Sci USA, 95 (1998), pp. 3810-3815
[31.]
D. Leung, S. Morefield, D. Willerford.
Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo.
J Immunol, 164 (2000), pp. 3527-3534
[32.]
D. Haas, D. Geraghty, J. Andersen, J. Mar, A. Motsinger, R. D’Aquila, et al.
Immunogenetics of CD4 lymphocyte count recovery during antiretroviral therapy: An AIDS Clinical Trials Group study.
J Infect Dis, 194 (2006), pp. 1098-1107
[33.]
P. Price, I. James, S. Fernandez, M. French.
Alleles of the gene encoding IL-1 alpha may predict control of plasma viremia in HIV-1 patients on highly active antiretroviral therapy.
AIDS, 8 (2004), pp. 1495-1501
[34.]
R. Dominici, M. Cattaneo, G. Malferrari, D. Archi, C. Mariani, L. Grimaldi, et al.
Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1 alpha.
Immunogenetics, 54 (2002), pp. 82-86
[35.]
Z. Brumme, C. Brumme, C. Chui, T. Mo, B. Wynhoven, C. Woods, et al.
Effects of human leukocyte antigen class I genetic parameters on clinical outcomes and survival after initiation of highly active antiretroviral therapy.
J Infect Dis, 195 (2007), pp. 1694-1704
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.eimc.2022.03.011
No mostrar más