metricas
covid
Buscar en
Gastroenterología y Hepatología (English Edition)
Toda la web
Inicio Gastroenterología y Hepatología (English Edition) The application of artificial intelligence in improving colonoscopic adenoma det...
Journal Information
Vol. 46. Issue 3.
Pages 203-213 (March 2023)
Share
Share
Download PDF
More article options
Vol. 46. Issue 3.
Pages 203-213 (March 2023)
Review
The application of artificial intelligence in improving colonoscopic adenoma detection rate: Where are we and where are we going
Aplicación de inteligencia artificial para mejorar la tasa de detección endoscópica de adenomas: dónde estamos y hacia dónde vamos
Peiling Gana,1, Peiling Lia,1, Huifang Xiaa,1, Xian Zhoua, Xiaowei Tanga,b,
Corresponding author
solitude5834@hotmail.com

Corresponding author.
a Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
b Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (2)
Abstract

Colorectal cancer (CRC) is one of the common malignant tumors in the world. Colonoscopy is the crucial examination technique in CRC screening programs for the early detection of precursor lesions, and treatment of early colorectal cancer, which can reduce the morbidity and mortality of CRC significantly. However, pooled polyp miss rates during colonoscopic examination are as high as 22%. Artificial intelligence (AI) provides a promising way to improve the colonoscopic adenoma detection rate (ADR). It might assist endoscopists in avoiding missing polyps and offer an accurate optical diagnosis of suspected lesions. Herein, we described some of the milestone studies in using AI for colonoscopy, and the future application directions of AI in improving colonoscopic ADR.

Keywords:
Artificial intelligence
Adenoma detection rate
Convolutional neural networks
Computer-aided diagnosis
Resumen

El cáncer colorrectal (CCR) es uno de los tumores malignos más comunes del mundo. La colonoscopia es la técnica de examen crucial en los programas de detección del CCR para la detección temprana de lesiones precursoras y el tratamiento del cáncer colorrectal precoz, pudiendo reducir su morbilidad y mortalidad de manera significativa. Sin embargo, las tasas de pérdida de pólipos agrupadas durante el examen colonoscópico son tan altas como el 22%. La inteligencia artificial (IA) proporciona una forma prometedora de mejorar la tasa de detección de adenomas colonoscópicos (ADR). Podría ayudar a los endoscopistas a evitar la pérdida de pólipos y ofrecer un diagnóstico óptico preciso de las lesiones sospechosas. En este documento, revisamos algunos de los principales estudios sobre el uso de IA en colonoscopia y las perspectivas futuras en la mejora de la ADR colonoscópica.

Palabras clave:
Inteligencia artificial
Tasa de detección de adenomas
Redes neuronales convolucionales
Diagnóstico asistido por ordenador

Article

These are the options to access the full texts of the publication Gastroenterología y Hepatología (English Edition)
Subscriber
Subscriber

If you already have your login data, please click here .

If you have forgotten your password you can you can recover it by clicking here and selecting the option “I have forgotten my password”
Subscribe
Subscribe to

Gastroenterología y Hepatología (English Edition)

Purchase
Purchase article

Purchasing article the PDF version will be downloaded

Price 19.34 €

Purchase now
Contact
Phone for subscriptions and reporting of errors
From Monday to Friday from 9 a.m. to 6 p.m. (GMT + 1) except for the months of July and August which will be from 9 a.m. to 3 p.m.
Calls from Spain
932 415 960
Calls from outside Spain
+34 932 415 960
E-mail
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.gastre.2019.11.003
No mostrar más