covid
Buscar en
Inmunología
Toda la web
Inicio Inmunología Activación alternativa del macrófago: La diversidad en las respuestas de una c...
Journal Information
Vol. 26. Issue 2.
Pages 73-86 (April - June 2007)
Share
Share
Download PDF
More article options
Vol. 26. Issue 2.
Pages 73-86 (April - June 2007)
Full text access
Activación alternativa del macrófago: La diversidad en las respuestas de una célula de la inmunidad innata ante la complejidad de los eventos de su ambiente
Alternative macrophage activation: the diversity of one cell involved in innate immunity in response to its environmental complexity
Visits
43099
M.A. Duque Correa, M. Rojas López
Corresponding author
mrojasl@une.net.co

Correspondence to: Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia, Cra 53 No. 61-30, Medellín, Colombia. Tel.: +57 4 210 6461, Fax: +57 4 210 64 51.
Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
This item has received
Article information
Resumen

Los macrófagos son una de las poblaciones celulares más pleiotrópicas del sistema inmune. Ellos son efectores de la respuesta innata y están involucrados en el inicio y la regulación de las respuestas adaptativas. Esta revisión describe cómo la definición seminal de la activación del macrófago (AM) evolucionó hasta el desarrollo de un modelo de dos clases de macrófagos activados. Los macrófagos activados clásicamente (M1) inducidos por IFN-γ y/o TNF-α muestran un fenotipo tipo Th1, son efectores proinflamatorios y tienen funciones bactericidas, mientras que los macrófagos activados alternativamente (M2), que incluye por lo menos tres fenotipos diferentes solapados (M2a, b, c), exhiben un fenotipo tipo Th2 y están involucrados en la resolución de la inflamación y la curación del tejido. Aunque este modelo clasifica los fenotipos de activación observados, es importante considerar que subestima la complejidad in vivo, donde existe una alta diversidad de estados de macrófagos activados que emergen en respuesta a diferentes estímulos y ambientes, son influenciados por su heterogeneidad y conforman un continuum de activación.

Profundizando acerca de los mecanismos que definen estos fenotipos, será posible entender mejor la influencia y el papel de los macrófagos activados alternativamente en las respuestas inmunes reguladas por ellos y en la patogénesis de diferentes enfermedades asociadas con el desarrollo de este grupo de macrófagos.

Palabras clave:
Activación del Macrófago
Complejos Inmunes
Factor Transformante del Crecimiento
Glucocorticoides
Interleucina-4
Interleucina-10
Interleucina-13
Activación Clásica
Activación Alternativa
Abstract

Macrophages are one of the most pleiotropic cell populations of the immune system. They are effectors of the innate response and are involved in the initiation and regulation of the adaptative responses. This review depicts how the seminal definition of macrophage activation evolved until the development of a model of two major classes of activated macrophages. Classically activated macrophages (M1) induced by IFN-γ and/or TNF-α show a Th1-like phenotype, are pro-inflammatory effectors and have bactericidal functions, while alternatively activated macrophages (M2), that include at least three different overlapping phenotypes, (M2a, b and c), are generated by different mediators, exhibit a Th2-like phenotype and are involved in the resolution of inflammation and wound healing. Although this model classifies the observed phenotypes of activation, it is important to keep in mind that it underestimates the complexity of the situation in vivo, where a high diversity of macrophage activated stages, emerging in response to different stimulus and environments, are influenced by this heterogeneity and conform an activation continuum.

Getting insights about the mechanisms that might define those phenotypes, it will be possible to better understand the influence and role of alternatively activated macrophages in the immune responses regulated by them and in the pathogenesis of different diseases associated with the development of this group of macrophages.

Key words:
Macrophage Activation
Glucocorticoids
Immune Complexes
Interleukin-13
Interleukin-4
Interleukin-10
Transforming Growth Factor
Alternative Activation
Classical Activation
Full text is only aviable in PDF
References
[1.]
Turpin JA, López-Berestein G. Differentiation, maturation, and activation of monocytes and macrophages: functional activity is controled by a continuum of maduration. 1993:71–99.
[2.]
M.S. Rutherford, A. Witsell, L.B. Schook.
Mechanisms generating functionally heterogeneous macrophages: Chaos revisited.
J Leukoc Biol, 53 (1993), pp. 602-618
[3.]
G.B. Mackaness.
Cellular resistance to infection.
J Exp Med, 116 (1962), pp. 381-406
[4.]
G.B. Mackaness.
The immunological basis of acquired cellular resistance.
J Exp Med, 120 (1964), pp. 105-120
[5.]
R.J. North.
The concept of the activated macrophage.
J Immunol, 121 (1978), pp. 806-809
[6.]
Metchnikoff E. Lectures in the Comparative Pathology of Inflammation. London: 1893.
[7.]
E. Kondo, K. Kanai.
Phospholipid distribution pattern in uninduced (resident) and casein-induced mouse peritoneal cells.
Jpn J Med Sci Biol, 30 (1977), pp. 269-273
[8.]
Z.A. Cohn.
Activation of mononuclear phagocytes: fact, fancy, and future.
J Immunol, 121 (1978), pp. 813-816
[9.]
M.L. Karnovsky, J.K. Lazdins.
Biochemical criteria for activated macrophages.
J Immunol, 121 (1978), pp. 809-813
[10.]
M.A. Fink.
The Macrophage in Neoplasia.
Academic Press, (1977),
[11.]
S. Gordon.
Macrophage neutral proteinases chronic inflammation.
Ann N Y Acad Sci, 278 (1976), pp. 176-189
[12.]
G.C. Hard.
Some biochemical aspects of the immune macrophage.
Br J Exp Pathol, 51 (1970), pp. 97-105
[13.]
K. Saito, E. Suter.
Lysosomal acid hydrolases in mice infected with BCG.
J Exp Med, 121 (1965), pp. 727-738
[14.]
M.L. Karnovsky, J. Lazdins, S.R. Simons.
Metabolism of activated mononuclear phagocytes of rest and during phagocytosis, pp. 423
[15.]
J.L. Pace, S.W. Russell, B.A. Torres, H.M. Johnson, P.W. Gray.
Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing.
J Immunol, 130 (1983), pp. 2011-2013
[16.]
L.P. Svedersky, C.V. Benton, W.H. Berger, E. Rinderknecht, R.N. Harkins, M.A. Palladino.
Biological and antigenic similarities of murine interferon-gamma and macrophage-activating factor.
J Exp Med, 159 (1984), pp. 812-827
[17.]
C.A. Nacy, S.L. James, W.R. Benjamin, J.J. Farrar, W.T. Hockmeyer, M.S. Meltzer.
Activation of macrophages for microbicidal and tumoricidal effector functions by soluble factors from EL-4, a continuous T cell line.
Infect Immun, 40 (1983), pp. 820-824
[18.]
C.F. Nathan, H.W. Murray, M.E. Wiebe, B.Y. Rubin.
Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity.
J Exp Med, 158 (1983), pp. 670-689
[19.]
T.Y. Basham, T.C. Merigan.
Recombinant interferon-gamma increases HLA-DR synthesis and expression.
J Immunol, 130 (1983), pp. 1492-1494
[20.]
D.P. King, P.P. Jones.
Induction of Ia and H-2 antigens on a macrophage cell line by immune interferon.
J Immunol, 131 (1983), pp. 315-318
[21.]
P.S. Steeg, R.N. Moore, H.M. Johnson, J.J. Oppenheim.
Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity.
J Exp Med, 156 (1982), pp. 1780-1793
[22.]
R.D. Schreiber.
Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity.
Contemp Top Immunobiol, 13 (1984), pp. 171-198
[23.]
R.D. Stout, J. Suttles.
Functional plasticity of macrophages: reversible adaptation to changing microenvironments.
J Leukoc Biol, 76 (2004), pp. 509-513
[24.]
R. Peck.
Gamma interferon induces monocyte killing of Listeria monocytogenes by an oxygen-dependent pathway; alpha-or beta-interferons by oxygen-independent pathways.
J Leukoc Biol, 46 (1989), pp. 434-440
[25.]
K. Hori, M.J. Ehrke, K. Mace, E. Mihich.
Effect of recombinant tumor necrosis factor on tumoricidal activation of murine macrophages: synergism between tumor necrosis factor and gamma-interferon.
Cancer Res, 47 (1987), pp. 5868-5874
[26.]
K.F. Mace, M.J. Ehrke, K. Hori, D.L. Maccubbin, E. Mihich.
Role of tumor necrosis factor in macrophage activation and tumoricidal activity.
Cancer Res, 48 (1988), pp. 5427-5432
[27.]
D.O. Adams, T.A. Hamilton.
Molecular transductional mechanisms by which IFN gamma and other signals regulate macrophage development.
Immunol Rev, 97 (1987), pp. 5-27
[28.]
M. Belosevic, C.E. Davis, M.S. Meltzer, C.A. Nacy.
Regulation of activated macrophage antimicrobial activities Identification of lymphokines that cooperate with IFN-gamma for induction of resistance to infection.
J Immunol, 141 (1988), pp. 890-896
[29.]
J.M. Shaw, W.S. Futch Jr., L.B. Schook.
Induction of macrophage antitumor activity by acetylated low density lipoprotein containing lipophilic muramyl tripeptide.
Proc Natl Acad Sci U S A, 85 (1988), pp. 6112-6116
[30.]
R.D. Stout.
Macrophage activation by T cells: cognate and noncognate signals.
Curr Opin Immunol, 5 (1993), pp. 398-403
[31.]
R.D. Stout, J. Suttles.
T cell signaling of macrophage function in inflammatory disease.
Front Biosci, 2 (1997), pp. d197-d206
[32.]
C. Bogdan, Y. Vodovotz, C. Nathan.
Macrophage deactivation by interleukin 10.
J Exp Med, 174 (1991), pp. 1549-1555
[33.]
C. Bogdan, J. Paik, Y. Vodovotz, C. Nathan.
Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10.
J Biol Chem, 267 (1992), pp. 23301-23308
[34.]
P.H. Hart, G.F. Vitti, D.R. Burgess, G.A. Whitty, D.S. Piccoli, J.A. Hamilton.
Potential antiinflammatory effects of interleukin 4: Suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2.
Proc Natl Acad Sci U S A, 86 (1989), pp. 3803-3807
[35.]
M.R. de Waal, J. Abrams, B. Bennett, C.G. Figdor, J.E. de Vries.
Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.
J Exp Med, 174 (1991), pp. 1209-1220
[36.]
D.F. Fiorentino, A. Zlotnik, T.R. Mosmann, M. Howard, A. O’Garra.
IL-10 inhibits cytokine production by activated macrophages.
J Immunol, 147 (1991), pp. 3815-3822
[37.]
A. Ding, C.F. Nathan, J. Graycar, R. Derynck, D.J. Stuehr, S. Srimal.
Macrophage deactivating factor and transforming growth factorsbeta 1 -beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma.
J Immunol, 145 (1990), pp. 940-944
[38.]
B.J. Nelson, P. Ralph, S.J. Green, C.A. Nacy.
Differential susceptibility of activated macrophage cytotoxic effector reactions to the suppressive effects of transforming growth factor-beta 1.
J Immunol, 146 (1991), pp. 1849-1857
[39.]
S. Tsunawaki, M. Sporn, A. Ding, C. Nathan.
Deactivation of macrophages by transforming growth factor-beta.
Nature, 334 (1988), pp. 260-262
[40.]
S. Becker, E.G. Daniel.
Antagonistic and additive effects of IL-4 and interferon-gamma on human monocytes and macrophages: effects on Fc receptors HLA-D antigens, and superoxide production.
Cell Immunol, 129 (1990), pp. 351-362
[41.]
T.L. Gerrard, D.R. Dyer, H.S. Mostowski.
IL-4 and granulocytemacrophage colony-stimulating factor selectively increase HLADR and HLA-DP antigens but not HLA-DQ antigens on human monocytes.
J Immunol, 144 (1990), pp. 4670-4674
[42.]
H. Cao, R.G. Wolff, M.S. Meltzer, R.M. Crawford.
Differential regulation of class II MHC determinants on macrophages by IFN-gamma and IL-4.
J Immunol, 143 (1989), pp. 3524-3531
[43.]
R.M. Crawford, D.S. Finbloom, J. Ohara, W.E. Paul, M.S. Meltzer.
B cell stimulatory factor-1 (interleukin 4) activates macrophages for increased tumoricidal activity and expression of Ia antigens.
J Immunol, 139 (1987), pp. 135-141
[44.]
A. Zlotnik, M. Fischer, N. Roehm, D. Zipori.
Evidence for effects of interleukin 4 (B cell stimulatory factor 1) on macrophages: enhancement of antigen presenting ability of bone marrow-derived macrophages.
J Immunol, 138 (1987), pp. 4275-4279
[45.]
M. Stein, S. Keshav, N. Harris, S. Gordon.
Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation.
J Exp Med, 176 (1992), pp. 287-292
[46.]
A. D’Andrea, X. Ma, M. Aste-Amezaga, C. Paganin, G. Trinchieri.
Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production.
J Exp Med, 181 (1995), pp. 537-546
[47.]
S. Gordon.
Alternative activation of macrophages.
Nat Rev Immunol, 3 (2003), pp. 23-35
[48.]
M. Cella, M. Salio, Y. Sakakibara, H. Langen, I. Julkunen, A. Lanzavecchia.
Maturation, activation, and protection of dendritic cells induced by double-stranded RNA.
J Exp Med, 189 (1999), pp. 821-829
[49.]
A.M. Krieg.
CpG motifs in bacterial DNA and their immune effects.
Annu Rev Immunol, 20 (2002), pp. 709-760
[50.]
W. Chen, U. Syldath, K. Bellmann, V. Burkart, H. Kolb.
Human 60-kDa heat-shock protein: a danger signal to the innate immune system.
J Immunol, 162 (1999), pp. 3212-3219
[51.]
A. Kol, A.H. Lichtman, R.W. Finberg, P. Libby, E.A. Kurt-Jones.
Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells.
J Immunol, 164 (2000), pp. 13-17
[52.]
P.A. Svensson, A. Asea, M.C. Englund, M.A. Bausero, M. Jernas, O. Wiklund, et al.
Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages.
Atherosclerosis, 185 (2006), pp. 32-38
[53.]
S. Goerdt, C.E. Orfanos.
Other functions, other genes: alternative activation of antigen-presenting cells.
Immunity, 10 (1999), pp. 137-142
[54.]
T. Katakura, M. Miyazaki, M. Kobayashi, D.N. Herndon, F. Suzuki.
CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages.
J Immunol, 172 (2004), pp. 1407-1413
[55.]
A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica.
Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.
Trends Immunol, 23 (2002), pp. 549-555
[56.]
A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati.
The chemokine system in diverse forms of macrophage activation and polarization.
Trends Immunol, 25 (2004), pp. 677-686
[57.]
D.M. Mosser.
The many faces of macrophage activation.
J Leukoc Biol, 73 (2003), pp. 209-212
[58.]
C. Bogdan, C. Nathan.
Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10.
Ann N Y Acad Sci, 685 (1993), pp. 713-739
[59.]
R. Lang, D. Patel, J.J. Morris, R.L. Rutschman, P.J. Murray.
Shaping gene expression in activated and resting primary macrophages by IL-10.
J Immunol, 169 (2002), pp. 2253-2263
[60.]
L. Williams, G. Jarai, A. Smith, P. Finan.
IL-10 expression profiling in human monocytes.
J Leukoc Biol, 72 (2002), pp. 800-809
[61.]
V. Kodelja, C. Muller, O. Politz, N. Hakij, C.E. Orfanos, S. Goerdt.
Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern.
J Immunol, 160 (1998), pp. 1411-1418
[62.]
A.A. te Velde, R.J. Huijbens, J.E. de Vries, C.G. Figdor.
IL-4 decreases Fc gamma R membrane expression and Fc gamma R-mediated cytotoxic activity of human monocytes.
J Immunol, 144 (1990), pp. 3046-3051
[63.]
D.J. Conrad, H. Kuhn, M. Mulkins, E. Highland, E. Sigal.
Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase.
Proc Natl Acad Sci U S A, 89 (1992), pp. 217-221
[64.]
P.H. Hart, G.A. Whitty, D.R. Burgess, M. Croatto, J.A. Hamilton.
Augmentation of glucocorticoid action on human monocytes by interleukin-4.
Lymphokine Res, 9 (1990), pp. 147-153
[65.]
D.L. Cheung, P.H. Hart, G.F. Vitti, G.A. Whitty, J.A. Hamilton.
Contrasting effects of interferon-gamma and interleukin-4 on the interleukin-6 activity of stimulated human monocytes.
Immunology, 71 (1990), pp. 70-75
[66.]
A. Gratchev, J. Kzhyshkowska, J. Utikal, S. Goerdt.
Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages.
Scand J Immunol, 61 (2005), pp. 10-17
[67.]
A. Gratchev, J. Kzhyshkowska, K. Kothe, I. Muller-Molinet, S. Kannookadan, J. Utikal, et al.
Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals.
Immunobiology, 211 (2006), pp. 473-486
[68.]
J.A. Van Ginderachter, K. Movahedi, G.G. Hassanzadeh, S. Meerschaut, A. Beschin, G. Raes, et al.
Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion.
Immunobiology, 211 (2006), pp. 487-501
[69.]
W. Noel, G. Raes, G.G. Hassanzadeh, P. De Baetselier, A. Beschin.
Alternatively activated macrophages during parasite infections.
Trends Parasitol, 20 (2004), pp. 126-133
[70.]
A. Gratchev, P. Guillot, N. Hakiy, O. Politz, C.E. Orfanos, K. Schledzewski, et al.
Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3.
Scand J Immunol, 53 (2001), pp. 386-392
[71.]
T.D. Mueller, J.L. Zhang, W. Sebald, A. Duschl.
Structure, binding, and antagonists in the IL-4/IL-13 receptor system.
Biochim Biophys Acta, 1592 (2002), pp. 237-250
[72.]
G.K. Hershey.
IL-13 receptors and signaling pathways: an evolving web.
J Allergy Clin Immunol, 111 (2003), pp. 677-690
[73.]
D. Hebenstreit, G. Wirnsberger, J. Horejs-Hoeck, A. Duschl.
Signaling mechanisms, interaction partners, and target genes of STAT6.
Cytokine Growth Factor Rev, 17 (2006), pp. 173-188
[74.]
T.A. Hamilton, Y. Ohmori, J. Tebo.
Regulation of chemokine expression by antiinflammatory cytokines.
Immunol Res, 25 (2002), pp. 229-245
[75.]
D. Hebenstreit, G. Wirnsberger, J. Horejs-Hoeck, A. Duschl.
Signaling mechanisms, interaction partners, and target genes of STAT6.
Cytokine Growth Factor Rev, 17 (2006), pp. 173-188
[76.]
P.H. Hart, C.S. Bonder, J. Balogh, H.L. Dickensheets, R.P. Donnelly, J.J. Finlay-Jones.
Differential responses of human monocytes and macrophages to IL-4 and IL-13.
J Leukoc Biol, 66 (1999), pp. 575-578
[77.]
C.J. Scotton, F.O. Martinez, M.J. Smelt, M. Sironi, M. Locati, A. Mantovani, et al.
Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13.
J Immunol, 174 (2005), pp. 834-845
[78.]
G. Cosentino, E. Soprana, C.P. Thienes, A.G. Siccardi, G. Viale, D. Vercelli.
IL-13 down-regulates CD14 expression and TNF-alpha secretion in normal human monocytes.
J Immunol, 155 (1995), pp. 3145-3151
[79.]
M.R. de Waal, C.G. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennett, J. Culpepper, et al.
Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10.
J Immunol, 151 (1993), pp. 6370-6381
[80.]
A.A. te Velde, F. Rousset, C. Peronne, J.E. de Vries, C.G. Figdor.
IFNalpha and IFN-gamma have different regulatory effects on IL-4-induced membrane expression of Fc epsilon RIIb and release of soluble Fc epsilon RIIb by human monocytes.
J Immunol, 144 (1990), pp. 3052-3059
[81.]
H. Cao, R.G. Wolff, M.S. Meltzer, R.M. Crawford.
Differential regulation of class II MHC determinants on macrophages by IFN-gamma and IL-4.
J Immunol, 143 (1989), pp. 3524-3531
[82.]
L.J. Montaner, R.P. da Silva, J. Sun, S. Sutterwala, M. Hollinshead, D. Vaux, et al.
Type 1 and type 2 cytokine regulation of macrophage endocytosis: differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10.
J Immunol, 162 (1999), pp. 4606-4613
[83.]
J.A. Willment, H.H. Lin, D.M. Reid, P.R. Taylor, D.L. Williams, S.Y. Wong, et al.
Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide.
J Immunol, 171 (2003), pp. 4569-4573
[84.]
C. Buechler, M. Ritter, E. Orso, T. Langmann, J. Klucken, G. Schmitz.
Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli.
J Leukoc Biol, 67 (2000), pp. 97-103
[85.]
G. Raes, L. Brys, B.K. Dahal, J. Brandt, J. Grooten, F. Brombacher, et al.
Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation.
J Leukoc Biol, 77 (2005), pp. 321-327
[86.]
S. Ichii, Y. Imai, T. Irimura.
Initial steps in lymph node metastasis formation in an experimental system: possible involvement of recognition by macrophage C-type lectins.
Cancer Immunol Immunother, 49 (2000), pp. 1-9
[87.]
K. Kawakami, K. Yamamoto, S. Toyoshima, T. Osawa, T. Irimura.
Dual function of macrophage galactose/N-acetylgalactosaminespecific lectins: glycoprotein uptake and tumoricidal cellular recognition.
Jpn J Cancer Res, 85 (1994), pp. 744-749
[88.]
M. Okano, A.R. Satoskar, K. Nishizaki, D.A. Harn Jr..
Lacto-Nfucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response.
J Immunol, 167 (2001), pp. 442-450
[89.]
F. Colotta, F. Re, M. Muzio, R. Bertini, N. Polentarutti, M. Sironi, et al.
Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4.
Science, 261 (1993), pp. 472-475
[90.]
F. Colotta, F. Re, M. Muzio, N. Polentarutti, A. Minty, D. Caput, et al.
Interleukin-13 induces expression and release of interleukin-1 decoy receptor in human polymorphonuclear cells.
J Biol Chem, 269 (1994), pp. 12403-12406
[91.]
F. Colotta, S. Saccani, J.G. Giri, S.K. Dower, J.E. Sims, M. Introna, et al.
Regulated expression and release of the IL-1 decoy receptor in human mononuclear phagocytes.
J Immunol, 156 (1996), pp. 2534-2541
[92.]
H.L. Dickensheets, R.P. Donnelly.
IFN-gamma and IL-10 inhibit induction of IL-1 receptor type I and type II gene expression by IL- 4 and IL-13 in human monocytes.
J Immunol, 159 (1997), pp. 6226-6233
[93.]
A. Mantovani, M. Locati, A. Vecchi, S. Sozzani, P. Allavena.
Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines.
Trends Immunol, 22 (2001), pp. 328-336
[94.]
E. Vannier, L.C. Miller, C.A. Dinarello.
Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist.
Proc Natl Acad Sci U S A, 89 (1992), pp. 4076-4080
[95.]
E. Vannier, M.R. de Waal, A. Salazar-Montes, J.E. de Vries, C.A. Dinarello.
Interleukin-13 (IL-13) induces IL-1 receptor antagonist gene expression and protein synthesis in peripheral blood mononuclear cells: inhibition by an IL-4 mutant protein.
Blood, 87 (1996), pp. 3307-3315
[96.]
C. Chizzolini, R. Rezzonico, C. De Luca, D. Burger, J.M. Dayer.
Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1 (MMP-1) while decreasing MMP-9 production by granulocyte-macrophage colony-stimulating factor-differentiated human monocytes.
J Immunol, 164 (2000), pp. 5952-5960
[97.]
T.J. Standiford, R.M. Strieter, S.W. Chensue, J. Westwick, K. Kasahara, S.L. Kunkel.
IL-4 inhibits the expression of IL-8 from stimulated human monocytes.
J Immunol, 145 (1990), pp. 1435-1439
[98.]
J. Major, J.E. Fletcher, T.A. Hamilton.
IL-4 pretreatment selectively enhances cytokine and chemokine production in lipopolysaccharidestimulated mouse peritoneal macrophages.
J Immunol, 168 (2002), pp. 2456-2463
[99.]
J. Kzhyshkowska, S. Mamidi, A. Gratchev, E. Kremmer, C. Schmuttermaier, L. Krusell, et al.
Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway.
Blood, 107 (2006), pp. 3221-3228
[100.]
G. Raes, P. De Baetselier, W. Noel, A. Beschin, F. Brombacher, G.G. Hassanzadeh.
Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages.
J Leukoc Biol, 71 (2002), pp. 597-602
[101.]
J. Kzhyshkowska, A. Gratchev, S. Goerdt.
Stabilin-1, a homeostatic scavenger receptor with multiple functions.
J Cell Mol Med, 10 (2006), pp. 635-649
[102.]
D.C. Webb, A.N. McKenzie, P.S. Foster.
Expression of the Ym2 lectinbinding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: identification of a novel allergy-associated protein.
J Biol Chem, 276 (2001), pp. 41969-41976
[103.]
J.S. Welch, L. Escoubet-Lozach, D.B. Sykes, K. Liddiard, D.R. Greaves, C.K. Glass.
TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism.
J Biol Chem, 277 (2002), pp. 42821-42829
[104.]
P. Loke, M.G. Nair, J. Parkinson, D. Guiliano, M. Blaxter, J.E. Allen.
IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype.
BMC Immunol, 3 (2002), pp. 7
[105.]
M.G. Nair, D.W. Cochrane, J.E. Allen.
Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro.
Immunol Lett, 85 (2003), pp. 173-180
[106.]
W. Noel, G. Hassanzadeh, G. Raes, B. Namangala, I. Daems, L. Brys, et al.
Infection stage-dependent modulation of macrophage activation in Trypanosoma congolense-resistant and -susceptible mice.
Infect Immun, 70 (2002), pp. 6180-6187
[107.]
N.C. Chang, S.I. Hung, K.Y. Hwa, I. Kato, J.E. Chen, C.H. Liu, et al.
A macrophage protein Ym1, transiently expressed during inflammation is a novel mammalian lectin.
J Biol Chem, 276 (2001), pp. 17497-17506
[108.]
Y.J. Sun, N.C. Chang, S.I. Hung, A.C. Chang, C.C. Chou, C.D. Hsiao.
The crystal structure of a novel mammalian lectin Ym1, suggests a saccharide binding site.
J Biol Chem, 276 (2001), pp. 17507-17514
[109.]
J. Kzhyshkowska, A. Gratchev, J.H. Martens, O. Pervushina, S. Mamidi, S. Johansson, et al.
Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors.
J Leukoc Biol, 76 (2004), pp. 1151-1161
[110.]
D.P. Andrew, M.S. Chang, J. McNinch, S.T. Wathen, M. Rihanek, J. Tseng, et al.
STCP-1 (MDC) CC chemokine acts specifically on chronically activated Th2 lymphocytes and is produced by monocytes on stimulation with Th2 cytokines IL-4 and IL-13.
J Immunol, 161 (1998), pp. 5027-5038
[111.]
R. Bonecchi, S. Sozzani, J.T. Stine, W. Luini, G. D’Amico, P. Allavena, et al.
Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses.
Blood, 92 (1998), pp. 2668-2671
[112.]
T. Imai, M. Nagira, S. Takagi, M. Kakizaki, M. Nishimura, J. Wang, et al.
Selective recruitment of CCR4-bearing Th2 cells toward antigenpresenting cells by the CC chemokines thymus and activationregulated chemokine and macrophage-derived chemokine.
Int Immunol, 11 (1999), pp. 81-88
[113.]
R. Bonecchi, F. Facchetti, S. Dusi, W. Luini, D. Lissandrini, M. Simmelink, et al.
Induction of functional IL-8 receptors by IL-4 and IL-13 in human monocytes.
J Immunol, 164 (2000), pp. 3862-3869
[114.]
K. Watanabe, P.J. Jose, S.M. Rankin.
Eotaxin-2 generation is differentially regulated by lipopolysaccharide and IL-4 in monocytes and macrophages.
J Immunol, 168 (2002), pp. 1911-1918
[115.]
L. Gu, S. Tseng, R.M. Horner, C. Tam, M. Loda, B.J. Rollins.
Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1.
Nature, 404 (2000), pp. 407-411
[116.]
S.L. Abramson, J.I. Gallin.
IL-4 inhibits superoxide production by human mononuclear phagocytes.
J Immunol, 144 (1990), pp. 625-630
[117.]
M. Lehn, W.Y. Weiser, S. Engelhorn, S. Gillis, H.G. Remold.
IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-gamma.
J Immunol, 143 (1989), pp. 3020-3024
[118.]
P.H. Hart, D.R. Burgess, G.F. Vitti, J.A. Hamilton.
Interleukin-4 stimulates human monocytes to produce tissue-type plasminogen activator.
Blood, 74 (1989), pp. 1222-1225
[119.]
G. Szabo, C.L. Miller-Graziano.
Induction and regulation of monocyte procoagulant activity.
Transplantation, 50 (1990), pp. 301-309
[120.]
J.T. Huang, J.S. Welch, M. Ricote, C.J. Binder, T.M. Willson, C. Kelly, et al.
Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase.
Nature, 400 (1999), pp. 378-382
[121.]
C. Jiang, A.T. Ting, B. Seed.
PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.
Nature, 391 (1998), pp. 82-86
[122.]
M. Ricote, A.C. Li, T.M. Willson, C.J. Kelly, C.K. Glass.
The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation.
Nature, 391 (1998), pp. 79-82
[123.]
L. Brys, A. Beschin, G. Raes, G.H. Ghassabeh, W. Noel, J. Brandt, et al.
Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection.
J Immunol, 174 (2005), pp. 6095-6104
[124.]
X.Y. Yang, L.H. Wang, K. Mihalic, W. Xiao, T. Chen, P. Li, et al.
Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor gamma activated by macrophage-derived 12/15-lipoxygenase ligands.
J Biol Chem, 277 (2002), pp. 3973-3978
[125.]
M. Ricote, J.S. Welch, C.K. Glass.
Regulation of macrophage gene expression by the peroxisome proliferator-activated receptorgamma.
Horm Res, 54 (2000), pp. 275-280
[126.]
T. Liu, H. Jin, M. Ullenbruch, B. Hu, N. Hashimoto, B. Moore, et al.
Regulation of found in inflammatory zone 1 expression in bleomycininduced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6.
J Immunol, 173 (2004), pp. 3425-3431
[127.]
M.M. Mentink-Kane, A.W. Cheever, R.W. Thompson, D.M. Hari, N.B. Kabatereine, B.J. Vennervald, et al.
IL-13 receptor alpha 2 downmodulates granulomatous inflammation and prolongs host survival in schistosomiasis.
Proc Natl Acad Sci U S A, 101 (2004), pp. 586-590
[128.]
V. Bronte, P. Serafini, A. Mazzoni, D.M. Segal, P. Zanovello.
L-arginine metabolism in myeloid cells controls T-lymphocyte functions.
Trends Immunol, 24 (2003), pp. 302-306
[129.]
V. Bronte, P. Zanovello.
Regulation of immune responses by Larginine metabolism.
Nat Rev Immunol, 5 (2005), pp. 641-654
[130.]
I.M. Corraliza, G. Soler, K. Eichmann, M. Modolell.
Arginase induction by suppressors of nitric oxide synthesis (IL-4 IL-10 and PGE2) in murine bone-marrow-derived macrophages.
Biochem Biophys Res Commun, 206 (1995), pp. 667-673
[131.]
M. Munder, K. Eichmann, J.M. Moran, F. Centeno, G. Soler, M. Modolell.
Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells.
J Immunol, 163 (1999), pp. 3771-3777
[132.]
C.P. Jenkinson, W.W. Grody, S.D. Cederbaum.
Comparative properties of arginases.
Comp Biochem Physiol B Biochem Mol Biol, 114 (1996), pp. 107-132
[133.]
G.J. Southan, C. Szabo, C. Thiemermann.
Inhibition of the induction of nitric oxide synthase by spermine is modulated by aldehyde dehydrogenase.
Biochem Biophys Res Commun, 203 (1994), pp. 1638-1644
[134.]
M. Zhang, T. Caragine, H. Wang, P.S. Cohen, G. Botchkina, K. Soda, et al.
Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response.
J Exp Med, 185 (1997), pp. 1759-1768
[135.]
M. Munder, K. Eichmann, M. Modolell.
Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype.
J Immunol, 160 (1998), pp. 5347-5354
[136.]
G. Raes, B.R. Van den, P. De Baetselier, G.H. Ghassabeh, C. Scotton, M. Locati, et al.
Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells.
J Immunol, 174 (2005), pp. 6561-6562
[137.]
C.D. Mills, K. Kincaid, J.M. Alt, M.J. Heilman, A.M. Hill.
M-1/M-2 macrophages and the Th1/Th2 paradigm.
J Immunol, 164 (2000), pp. 6166-6173
[138.]
M.L. Corcoran, W.G. Stetler-Stevenson, P.D. Brown, L.M. Wahl.
Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes.
J Biol Chem, 267 (1992), pp. 515-519
[139.]
D. Torocsik, H. Bardos, L. Nagy, R. Adany.
Identification of factor XIII-A as a marker of alternative macrophage activation.
Cell Mol Life Sci, 62 (2005), pp. 2132-2139
[140.]
S. Fichtner-Feigl, W. Strober, K. Kawakami, R.K. Puri, A. Kitani.
IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis.
Nat Med, 12 (2006), pp. 99-106
[141.]
M. Kaviratne, M. Hesse, M. Leusink, A.W. Cheever, S.J. Davies, J.H. McKerrow, et al.
IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent.
J Immunol, 173 (2004), pp. 4020-4029
[142.]
C.G. Lee, R.J. Homer, Z. Zhu, S. Lanone, X. Wang, V. Koteliansky, et al.
Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1).
J Exp Med, 194 (2001), pp. 809-821
[143.]
E. Song, N. Ouyang, M. Horbelt, B. Antus, M. Wang, M.S. Exton.
Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts.
Cell Immunol, 204 (2000), pp. 19-28
[144.]
M.H. Wang, G.W. Cox, T. Yoshimura, L.A. Sheffler, A. Skeel, E.J. Leonard.
Macrophage-stimulating protein inhibits induction of nitric oxide production by endotoxin- or cytokine-stimulated mouse macrophages.
J Biol Chem, 269 (1994), pp. 14027-14031
[145.]
A.C. Morrison, P.H. Correll.
Activation of the stem cell-derived tyrosine kinase/RON receptor tyrosine kinase by macrophagestimulating protein results in the induction of arginase activity in murine peritoneal macrophages.
J Immunol, 168 (2002), pp. 853-860
[146.]
J. Pesce, M. Kaviratne, T.R. Ramalingam, R.W. Thompson, J.F. Urban Jr., A.W. Cheever, et al.
The IL-21 receptor augments Th2 effector function and alternative macrophage activation.
J Clin Invest, 116 (2006), pp. 2044-2055
[147.]
C.F. Anderson, D.M. Mosser.
Cutting edge: biasing immune responses by directing antigen to macrophage Fc gamma receptors.
J Immunol, 168 (2002), pp. 3697-3701
[148.]
C.F. Anderson, D.M. Mosser.
A novel phenotype for an activated macrophage: the type 2 activated macrophage.
J Leukoc Biol, 72 (2002), pp. 101-106
[149.]
J.S. Gerber, D.M. Mosser.
Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors.
J Immunol, 166 (2001), pp. 6861-6868
[150.]
J.S. Gerber, D.M. Mosser.
Stimulatory and inhibitory signals originating from the macrophage Fcgamma receptors.
Microbes Infect, 3 (2001), pp. 131-139
[151.]
F.S. Sutterwala, G.J. Noel, R. Clynes, D.M. Mosser.
Selective suppression of interleukin-12 induction after macrophage receptor ligation.
J Exp Med, 185 (1997), pp. 1977-1985
[152.]
F.S. Sutterwala, G.J. Noel, P. Salgame, D.M. Mosser.
Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I.
J Exp Med, 188 (1998), pp. 217-222
[153.]
T.R. Ramalingam, R.M. Reiman, T.A. Wynn.
Exploiting worm and allergy models to understand Th2 cytokine biology.
Curr Opin Allergy Clin Immunol, 5 (2005), pp. 392-398
[154.]
J.P. Edwards, X. Zhang, K.A. Frauwirth, D.M. Mosser.
Biochemical and functional characterization of three activated macrophage populations.
J Leukoc Biol, 80 (2006), pp. 1298-1307
[155.]
G.S. Ashcroft.
Bidirectional regulation of macrophage function by TGF-beta.
Microbes Infect, 1 (1999), pp. 1275-1282
[156.]
N. McCartney-Francis, D. Mizel, H. Wong, L. Wahl, S. Wahl.
TGFbeta regulates production of growth factors and TGF-beta by human peripheral blood monocytes.
Growth Factors, 4 (1990), pp. 27-35
[157.]
S.M. Wahl, D.A. Hunt, L.M. Wakefield, N. McCartney-Francis, L.M. Wahl, A.B. Roberts, et al.
Transforming growth factor type beta induces monocyte chemotaxis growth factor production.
Proc Natl Acad Sci U S A, 84 (1987), pp. 5788-5792
[158.]
S.M. Wahl, N. McCartney-Francis, J.B. Allen, E.B. Dougherty, S.F. Dougherty.
Macrophage production of TGF-beta and regulation by TGF-beta.
Ann N Y Acad Sci, 593 (1990), pp. 188-196
[159.]
G.R. Welch, H.L. Wong, S.M. Wahl.
Selective induction of Fc gamma RIII on human monocytes by transforming growth factor-beta.
J Immunol, 144 (1990), pp. 3444-3448
[160.]
M. Turner, D. Chantry, M. Feldmann.
Transforming growth factor beta induces the production of interleukin 6 by human peripheral blood mononuclear cells.
Cytokine, 2 (1990), pp. 211-216
[161.]
V.A. Fadok, D.L. Bratton, A. Konowal, P.W. Freed, J.Y. Westcott, P.M. Henson.
Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.
J Clin Invest, 101 (1998), pp. 890-898
[162.]
J. Warwick-Davies, D.B. Lowrie, P.J. Cole.
Selective deactivation of human monocyte functions by TGF-beta.
J Immunol, 155 (1995), pp. 3186-3193
[163.]
S.M. Wahl.
Transforming growth factor beta: the good, the bad, and the ugly.
J Exp Med, 180 (1994), pp. 1587-1590
[164.]
S. Yano, H. Yanagawa, Y. Nishioka, N. Mukaida, K. Matsushima, S. Sone.
T helper 2 cytokines differently regulate monocyte chemoattractant protein-1 production by human peripheral blood monocytes and alveolar macrophages.
J Immunol, 157 (1996), pp. 2660-2665
[165.]
L.M. Williams, G. Ricchetti, U. Sarma, T. Smallie, B.M. Foxwell.
Interleukin-10 suppression of myeloid cell activation--a continuing puzzle.
Immunology, 113 (2004), pp. 281-292
[166.]
V. Kodelja, C. Muller, O. Politz, N. Hakij, C.E. Orfanos, S. Goerdt.
Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern.
J Immunol, 160 (1998), pp. 1411-1418
[167.]
J.A. Hedrick, A. Helms, A. Vicari, A. Zlotnik.
Characterization of a novel CC chemokine HCC-4, whose expression is increased by interleukin-10.
Blood, 91 (1998), pp. 4242-4247
[168.]
B. Moser, P. Loetscher.
Lymphocyte traffic control by chemokines.
Nat Immunol, 2 (2001), pp. 123-128
[169.]
G. Penton-Rol, M. Cota, N. Polentarutti, W. Luini, S. Bernasconi, A. Borsatti, et al.
Up-regulation of CCR2 chemokine receptor expression and increased susceptibility to the multitropic HIV strain 89.6 in monocytes exposed to glucocorticoid hormones.
J Immunol, 163 (1999), pp. 3524-3529
[170.]
S. Sozzani, S. Ghezzi, G. Iannolo, W. Luini, A. Borsatti, N. Polentarutti, et al.
Interleukin 10 increases CCR5 expression and HIV infection in human monocytes.
J Exp Med, 187 (1998), pp. 439-444
[171.]
K.W. Moore, M.R. de Waal, R.L. Coffman, A. O’Garra.
Interleukin-10 and the interleukin-10 receptor.
Annu Rev Immunol, 19 (2001), pp. 683-765
[172.]
X. Hu, W.P. Li, C. Meng, L.B. Ivashkiv.
Inhibition of IFN-gamma signaling by glucocorticoids.
J Immunol, 170 (2003), pp. 4833-4839
[173.]
N. Berkman, M. John, G. Roesems, P.J. Jose, P.J. Barnes, K.F. Chung.
Inhibition of macrophage inflammatory protein-1 alpha expression by IL-10 Differential sensitivities in human blood monocytes and alveolar macrophages.
J Immunol, 155 (1995), pp. 4412-4418
[174.]
B. Sherry, M. Espinoza, K.R. Manogue, A. Cerami.
Induction of the chemokine beta peptides, MIP-1 alpha and MIP-1 beta, by lipopolysaccharide is differentially regulated by immunomodulatory cytokines gamma-IFN.
IL-10, IL-4, and TGF-beta. Mol Med, 4 (1998), pp. 648-657
[175.]
M. Kitamura.
Identification of an inhibitor targeting macrophage production of monocyte chemoattractant protein-1 as TGF-beta 1.
J Immunol, 159 (1997), pp. 1404-1411
[176.]
D.M. Wiseman, P.J. Polverini, D.W. Kamp, S.J. Leibovich.
Transforming growth factor-beta (TGF beta) is chemotactic for human monocytes and induces their expression of angiogenic activity.
Biochem Biophys Res Commun, 157 (1988), pp. 793-800
[177.]
D. Berrebi, S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet- Delbos, et al.
Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10.
Blood, 101 (2003), pp. 729-738
[178.]
C. Buelens, F. Willems, A. Delvaux, G. Pierard, J.P. Delville, T. Velu, et al.
Interleukin-10 differentially regulates B7-1 (CD80) B7-2 (CD86) expression on human peripheral blood dendritic cells.
Eur J Immunol, 25 (1995), pp. 2668-2672
[179.]
C.H. Chang, M. Furue, K. Tamaki.
B7-1 expression of Langerhans cells is up-regulated by proinflammatory cytokines, and is downregulated by interferon-gamma or by interleukin-10.
Eur J Immunol, 25 (1995), pp. 394-398
[180.]
A.A. te Velde, M.R. de Waal, R.J. Huijbens, J.E. de Vries, C.G. Figdor.
IL-10 stimulates monocyte Fc gamma R surface expression and cytotoxic activity. Distinct regulation of antibody-dependent cellular cytotoxicity by IFN-gamma, IL-4, and IL-10.
J Immunol, 149 (1992), pp. 4048-4052
[181.]
M. Kruger, L. Coorevits, T.P. De Wit, M. Casteels-Van Daele, J.G. Van De Winkel, J.L. Ceuppens.
Granulocyte-macrophage colonystimulating factor antagonizes the transforming growth factorbeta- induced expression of Fc gamma RIII (CD16) on human monocytes.
Immunology, 87 (1996), pp. 162-167
[182.]
O. Politz, A. Gratchev, P.A. McCourt, K. Schledzewski, P. Guillot, S. Johansson, et al.
Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues.
Biochem J, 362 (2002), pp. 155-164
[183.]
K. Schledzewski, M. Falkowski, G. Moldenhauer, P. Metharom, J. Kzhyshkowska, R. Ganss, et al.
Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+ CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis.
J Pathol, 209 (2006), pp. 67-77
[184.]
B. Bauvois, D. Rouillard, J. Sanceau, J. Wietzerbin.
IFN-gamma and transforming growth factor-beta 1 differently regulate fibronectin and laminin receptors of human differentiating monocytic cells.
J Immunol, 148 (1992), pp. 3912-3919
[185.]
S.M. Wahl, J.B. Allen, B.S. Weeks, H.L. Wong, P.E. Klotman.
Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes.
Proc Natl Acad Sci U S A, 90 (1993), pp. 4577-45781
[186.]
C. Leveque, S. Grafte, J. Paysant, A. Soutif, B. Lenormand, M. Vasse, et al.
Regulation of interleukin 3 receptor alpha chain (IL-3R alpha) on human monocytes by interleukin (IL)-4, IL-10 IL-13, and transforming growth factor beta (TGF-beta).
Cytokine, 10 (1998), pp. 487-490
[187.]
L. Martinez-Pomares, D.M. Reid, G.D. Brown, P.R. Taylor, R.J. Stillion, S.A. Linehan, et al.
Analysis of mannose receptor regulation by IL- 4 IL-10, and proteolytic processing using novel monoclonal antibodies.
J Leukoc Biol, 73 (2003), pp. 604-613
[188.]
P. Hogger, J. Dreier, A. Droste, F. Buck, C. Sorg.
Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteinerich family (CD163).
J Immunol, 161 (1998), pp. 1883-1890
[189.]
D.J. Schaer, F.S. Boretti, G. Schoedon, A. Schaffner.
Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of glucocorticoids.
Br J Haematol, 119 (2002), pp. 239-243
[190.]
P. Philippidis, J.C. Mason, B.J. Evans, I. Nadra, K.M. Taylor, D.O. Haskard, et al.
Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery.
[191.]
G. Grutz.
New insights into the molecular mechanism of interleukin-10-mediated immunosuppression.
J Leukoc Biol, 77 (2005), pp. 3-15
[192.]
P.A. Pioli, K.E. Goonan, K. Wardwell, P.M. Guyre.
TGF-beta regulation of human macrophage scavenger receptor CD163 is Smad3- dependent.
J Leukoc Biol, 76 (2004), pp. 500-508
[193.]
E.A. Brown, H.A. Dare, C.B. Marsh, M.D. Wewers.
The combination of endotoxin and dexamethasone induces type II interleukin 1 receptor (IL-1r II) in monocytes: a comparison to interleukin 1 beta (IL-1 beta) and interleukin 1 receptor antagonist (IL-1ra).
Cytokine, 8 (1996), pp. 828-836
[194.]
F. Colotta, S. Saccani, J.G. Giri, S.K. Dower, J.E. Sims, M. Introna, et al.
Regulated expression and release of the IL-1 decoy receptor in human mononuclear phagocytes.
J Immunol, 156 (1996), pp. 2534-2541
[195.]
D.A. Joyce, J.H. Steer, A. Kloda.
Dexamethasone antagonizes IL-4 and IL-10-induced release of IL-1RA by monocytes but augments IL-4- IL-10-, and TGF-beta-induced suppression of TNF-alpha release.
J Interferon Cytokine Res, 16 (1996), pp. 511-517
[196.]
P.W. Yu, L.A. Schuler, M. Kehrli, L. Mattocks, B.J. Nonnecke, C.J. Czuprynski.
Effects of dexamethasone treatment on IL-1 receptor mRNA levels in vivo.
J Leukoc Biol, 62 (1997), pp. 401-404
[197.]
M. Turner, D. Chantry, P. Katsikis, A. Berger, F.M. Brennan, M. Feldmann.
Induction of the interleukin 1 receptor antagonist protein by transforming growth factor-beta.
Eur J Immunol, 21 (1991), pp. 1635-1639
[198.]
S.M. Wahl, G.L. Costa, M. Corcoran, L.M. Wahl, A.E. Berger.
Transforming growth factor-beta mediates IL-1-dependent induction of IL-1 receptor antagonist.
J Immunol, 150 (1993), pp. 3553-3560
[199.]
D.A. Joyce, D.P. Gibbons, P. Green, J.H. Steer, M. Feldmann, F.M. Brennan.
Two inhibitors of pro-inflammatory cytokine release, interleukin-10 and interleukin-4, have contrasting effects on release of soluble p75 tumor necrosis factor receptor by cultured monocytes.
Eur J Immunol, 24 (1994), pp. 2699-2705
[200.]
P. Perrier, F.O. Martinez, M. Locati, G. Bianchi, M. Nebuloni, G. Vago, et al.
Distinct transcriptional programs activated by interleukin- 10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine CXC chemokine ligand 13.
J Immunol, 172 (2004), pp. 7031-7042
[201.]
S. Lacraz, L.P. Nicod, R. Chicheportiche, H.G. Welgus, J.M. Dayer.
IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes.
J Clin Invest, 96 (1995), pp. 2304-2310
[202.]
G. Wu, S.M. Morris Jr..
Arginine metabolism: nitric oxide beyond.
Biochem J, 336 (1998), pp. 1-17
[203.]
J. Savill, I. Dransfield, C. Gregory, C. Haslett.
A blast from the past: clearance of apoptotic cells regulates immune responses.
Nat Rev Immunol, 2 (2002), pp. 965-975
[204.]
R.E. Voll, M. Herrmann, E.A. Roth, C. Stach, J.R. Kalden, I. Girkontaite.
Immunosuppressive effects of apoptotic cells.
Nature, 390 (1997), pp. 350-351
[205.]
C.G. Freire-de-Lima, D.O. Nascimento, M.B. Soares, P.T. Bozza, H.C. Castro- Faria-Neto, F.G. de Mello, et al.
Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages.
Nature, 403 (2000), pp. 199-203
[206.]
M.L. Huynh, V.A. Fadok, P.M. Henson.
Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation.
J Clin Invest, 109 (2002), pp. 41-50
Copyright © 2007. Sociedad Española de Inmunología
Download PDF
Article options