metricas
covid
Buscar en
Neurología (English Edition)
Toda la web
Inicio Neurología (English Edition) Neurobiology and neurogenetics of dyslexia
Journal Information
Vol. 25. Issue 9.
Pages 563-581 (January 2010)
Share
Share
Download PDF
More article options
Vol. 25. Issue 9.
Pages 563-581 (January 2010)
Full text access
Neurobiology and neurogenetics of dyslexia
Neurobiología y neurogenética de la dislexia
Visits
1918
A. Benítez-Burraco
Departamento de Filología Española, Área de Lingüística, Facultad de Filología, Universidad de Oviedo, Oviedo, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract
Introduction

Dyslexia is a learning disability in which reading (but not any other) impairment is the most prominent symptom. There seems to be a high comorbidity among dyslexia and other learning disabilities, such as SLI, SSD or ADHD.

Development

The nulear deficit in dyslexia appears to correspond to an impairment in phonological processing. Structural and functional studies in dyslexic readers converge to indicate the presence of malformations in the brain areas corresponding to the reading systems, but also a failure of these systems to function properly during reading. Genes linked (or associated) to dyslexia have been shown to be involved in neuronal migration and axon guidance during the formation of the cortex. In the developing cerebral neocortex of rats, local loss of function of most of these genes not only results in abnormal neuronal migration and neocortical and hippocampal malformations, but also in deficits related to auditory processing and learning. While the structural malformations resemble neuronal migration abnormalities observed in the brains of individuals with developmental dyslexia, processing/learning deficits also resemble deficits described in individuals affected by the disease.

Conclusions

On the whole, dyslexia seems to be on a continuum with typical reading at different biological levels (genetic, biochemical, physiological, cognitive). Furthermore, certain elements belonging to some of these levels (mainly -some of the-genes linked or associated to the disease, but also -some of the-neuronal structures whose development is regulated by these genes) would simultaneously belong to those of other cognitive abilities, which give rise to diseases of a different nature (i.e. non-dyslexic impairments) when they are impaired

Keywords:
Animal models
Comorbidity
Dyslexia
Neurobiology
Neurogenetics
Resumen
Introducción

La dislexia es un trastorno cognitivo que lleva aparejada una competencia lectora reducida y que suele ser comórbido con otros que tienen como característica distintiva un déficit en la capacidad de aprendizaje y de adquisición de competencias específicas (fundamentalmente, trastorno específico del lenguaje, de los sonidos del habla o por déficit de atención e hiperactividad).

Desarrollo

En el caso de la dislexia, el déficit nuclear parece corresponderse con una disfunción del componente fonológico de la memoria de trabajo verbal. El cerebro de los individuos disléxicos presenta diversos tipos de malformaciones estructurales, así como patrones anómalos de actividad cerebral durante las tareas de lectura y deletreo, que conciernen, entre otras, a las áreas que integran el dispositivo de procesamiento cuya actividad se ha asociado con estas actividades en la población no disléxica. Los genes identificados hasta la fecha cuya mutación parece constituir un componente causal (o un factor de riesgo) significativo en relación con el trastorno codifican proteínas que intervienen en la regulación de la migración de determinados linajes neuronales o del proceso de axonogénesis. La disminución del grado de expresión de los correspondientes genes ortólogos produce en el cerebro de los organismos modelo del trastorno alteraciones estructurales y funcionales semejantes a las observadas en los individuos disléxicos. Dichas alteraciones originan, a su vez, déficit auditivos y cognitivos que recapitulan satisfactoriamente los descritos en dichos individuos.

Conclusiones

En conjunto, resulta plausible la hipótesis de que la dislexia vendría a ser, en diferentes niveles de complejidad biológica (genético, bioquímico, fisiológico, cognitivo), y en mayor o menor grado, un extremo del continuo de desarrollo que representa la capacidad de lectura en la población general; al mismo tiempo, algunos de los elementos que integran estos niveles (en particular —varios de—, los genes relacionados con el trastorno, así como —algunas de— las estructuras neuronales cuyo desarrollo está regulado, en buena medida, por los programas que conforman dichos genes) podrían formar parte simultáneamente de los correspondientes a otras capacidades cognitivas, cuya disfunción da lugar a trastornos de diferente naturaleza clínica.

Palabras clave:
Comorbilidad
Dislexia
Neurobiología
Neurogenética
Modelos animales
Full text is only aviable in PDF
References
[1.]
G. Lyon, S. Shaywitz, B. Shaywitz.
A definition of dyslexia.
Ann Dyslexia, 53 (2003), pp. 1-14
[2.]
B.A. Shaywitz, J. Fletcher, S.E. Shaywitz.
Defining and classifying learning disabilities and attention-deficit/hyperactivity disorder.
J Child Neurol, 10 (1995), pp. S50-S57
[3.]
S.E. Shaywitz, B.A. Shaywitz.
Dyslexia (Specific Reading Disability).
Biol Psychiatry, 57 (2005), pp. 1301-1309
[4.]
S. Shaywitz, R. Morris, B. Shaywitz.
The Education of dyslexic children from childhood to young adulthood.
Annu Rev Psychol, 59 (2008), pp. 451-475
[5.]
H. Stevenson, J. Stigler, G. Lucker, S. Lee, C. Hsu, S. Kitamura.
Reading disabilities: the case of Chinese Japanese, and English.
Child Dev, 53 (1982), pp. 1164-1181
[6.]
M. Caravolas.
The nature and causes of dyslexia in different languages.
Blackwell, (2005),
[7.]
S. Shaywitz, M. Escobar, B. Shaywitz, J. Fletcher, R. Makuch.
Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability.
N Engl J Med, 326 (1992), pp. 145-150
[8.]
R.K. Olson, H. Forsberg, B. Wise.
Genes, environment and the development of orthographic skills.
The varieties of orthographic knowledge, I: theoretical and developmental issues, pp. 27-71
[9.]
F. Ramus.
Genes, brain, and cognition: a roadmap for the cognitive scientist.
Cognition, 101 (2006), pp. 247-269
[10.]
S. Paracchini, T. Scerri, A.P. Monaco.
The genetic lexicon of dyslexia.
Annu Rev Genomics Hum Genet, 8 (2007), pp. 57-79
[11.]
M. Habib.
The neurological basis of developmental dyslexia: an overview and working hypothesis.
Brain, 123 (2000), pp. 2373-2399
[12.]
F. Ramus, S. Rosen, S.C. Dakin, B.L. Day, J.M. Castellote, S. White, et al.
Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults.
Brain, 126 (2003), pp. 841-865
[13.]
E. Temple, R.A. Poldrack, A. Protopapas, S. Nagarajan, T. Salz, P. Tallal, et al.
Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI.
Proc Nat Acad Sci U S A, 97 (2000), pp. 13907-13912
[14.]
W.J. Lovegrove, A. Bowling, D. Badcock, M. Blackwood.
Specific reading disability: differences in contrast sensitivity as a function of spatial frequency.
Science, 210 (1980), pp. 439-440
[15.]
S.E. Gathercole, A.D. Baddeley.
Working memory and language.
Lawrence Erlbaum Associates, (1993),
[16.]
A. Baddeley.
Working memory.
Science, 255 (1992), pp. 556-559
[17.]
J.E. Desmond, J.D. Gabrieli, A.D. Wagner, B.L. Ginier, G.H. Glover.
Lobular patterns of cerebellar activation in verbal working memory and finger tapping tasks as revealed by functional MRI.
J Neurosci, 17 (1997), pp. 9675-9685
[18.]
M.S. Livingstone, G.D. Rosen, F.W. Drislane, A.M. Galaburda.
Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia.
Proc Natl Acad Sci U S A, 88 (1991), pp. 7943-7947
[19.]
J. Stein, V. Walsh.
To see but not to read: the magnocellular theory of dyslexia.
Trends Neurosci, 20 (1997), pp. 147-152
[20.]
S.E. Shaywitz, B.A. Shaywitz, K.R. Pugh, R.K. Fulbright, R.T. Constable, W.E. Mencl, et al.
Functional disruption in the organization of the brain for reading in dyslexia.
Proc Nat Acad Sci U S A, 95 (1998), pp. 2636-2641
[21.]
S.A. Brady, D.P. Shankweiler.
Phonological processes in literacy.
Lawrence Erlbaum, (1991),
[22.]
B. Horwitz, J.M. Rumsey, B.C. Donohue.
Functional connectivity of the angular gyrus in normal reading and dyslexia.
Proc Natl Acad Sci U S A, 95 (1998), pp. 8939-8944
[23.]
B.A. Shaywitz, S.E. Shaywitz, K.R. Pugh, W.E. Mencl, R.K. Fulbright, P. Skudlarski, et al.
Disruption of posterior brain systems for reading in children with developmental dyslexia.
Biol Psychiatry, 52 (2002), pp. 101-110
[24.]
L. Cohen, S. Lehericy, F. Chochon, C. Lemer, S. Rivaud, S. Dehaene.
Language-specific tuning of visual cortex? Functional properties of the visual word form area.
Brain, 125 (2002), pp. 1054-1060
[25.]
B.D. McCandliss, L. Cohen, S. Dehaene.
The visual word form area: expertise for reading in the fusiform gyrus.
Trends Cogn Sci, 7 (2003), pp. 293-299
[26.]
B.L. Schlaggar, B.D. McCandliss.
Development of neural systems for reading.
Annu Rev Neurosci, 30 (2007), pp. 475-503
[27.]
K.R. Pugh, W.E. Mencl, A.R. Jenner, L. Katz, S.J. Frost, J.R. Lee, et al.
Neurobiological studies of reading and reading disability.
J Commun Disord, 34 (2001), pp. 479-492
[28.]
S.E. Blumstein.
Phonological aspects of aphasia.
Acquired aphasia, pp. 157-185
[29.]
R.C. Martin, S.D. Breedin, M.F. Damian.
The relation of phoneme discrimination, lexical access, and short-term memory: a case study and interactive activation account.
Brain Lang, 70 (1999), pp. 437-482
[30.]
J.E. Desmond, J.A. Fiez.
Neuroimaging studies of the cerebellum: language, learning and memory.
Trends Cogn Sci, 2 (1998), pp. 355-360
[31.]
H.B.M. Uylings, L.I. Malofeeva, I.N. Bogolepova, K. Amunts, K. Zilles.
Broca's language area from a neuroanatomical and developmental perspective.
Neurocognition of language processing, pp. 319-336
[32.]
E. Kaan, L.A. Stowe.
Storage and computation in the brain: a neuroimaging perspective.
Storage and computation in the language faculty, pp. 257-298
[33.]
Y. Grodzinsky.
The neurology of syntax: Language use without Broca's area.
Behav Brain Sci, 23 (2000), pp. 1-71
[34.]
A.M. Galaburda, G.F. Sherman, G.D. Rosen, F. Aboitiz, N. Geschwind.
Developmental dyslexia: four consecutive patients with cortical anomalies.
Ann Neurol, 18 (1985), pp. 222-233
[35.]
P. Humphreys, W.E. Kaufmann, A.M. Galaburda.
Developmental dyslexia in women: neuropathological findings in three patients.
Ann Neurol, 2 (1990), pp. 727-738
[36.]
A.M. Galaburda, T.L. Kemper.
Cytoarchitectonic abnormalities in developmental dyslexia: a case study.
Ann Neurol, 6 (1979), pp. 94-100
[37.]
D.K. Sokol, M.R. Golomb, K.S. Carvalho, M. Edwards-Brown.
Reading impairment in the neuronal migration disorder of periventricular nodular heterotopia.
Neurology, 66 (2006), pp. 294
[38.]
T. Klingberg, M. Hedehus, E. Temple, T. Salz, J.D. Gabrieli, M.E. Moseley, et al.
Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging.
Neuron, 25 (2000), pp. 493-500
[39.]
G.K. Deutsch, R.F. Dougherty, R. Bammer, W.T. Siok, J.D. Gabrieli, B. Wandell.
Children's reading performance is correlated with white matter structure measured by diffusion tensor imaging.
Cortex, 41 (2005), pp. 354-363
[40.]
C. Pernet, J. Andersson, E. Paulesu, J.F. Demonet.
When all hypotheses are right: A multifocal account of dyslexia.
Hum Brain Mapp, 30 (2009), pp. 2278-2292
[41.]
J.-F. Démonet, M.J. Taylor, Y. Chaix.
Developmental dyslexia.
Lancet, 363 (2004), pp. 1451-1460
[42.]
M. Eckert.
Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies.
Neuroscientist, 10 (2004), pp. 362-371
[43.]
E. Paulesu, J.-F. Demonet, F. Fazio, E. McCrory, V. Chanoine, N. Brunswick, et al.
Dyslexia: cultural diversity and biological unity.
Science, 291 (2001), pp. 2165-2167
[44.]
J.M. Maisog, E.R. Einbinder, D.L. Flowers, P.E. Turkeltaub, G.F. Eden.
A meta-analysis of functional neuroimaging studies of dyslexia.
Ann N Y Acad Sci, 1145 (2008), pp. 237-259
[45.]
F. Cao, T. Bitan, J.R. Booth.
Effective brain connectivity in children with reading difficulties during phonological processing.
Brain Lang, 107 (2008), pp. 91-101
[46.]
S. Shaywitz, B. Shaywitz, R. Fulbright, P. Skudlarski, W. Mencl, R.T. Constable.
Neural systems for compensation and persistence: young adult outcome of childhood reading disability.
Biol Psychiatry, 54 (2003), pp. 25-33
[47.]
K. Nakamura, S. Dehaene, A. Jobert, D. Le Bihan, S. Kouider.
Subliminal convergence of kanji and kana words: further evidence for functional parcellation of the posterior temporal cortex in visual word perception.
J Cogn Neurosci, 17 (2005), pp. 954-960
[48.]
W.T. Siok, Z. Niu, Z. Jin, C.A. Perfetti, L.H. Tan.
A structuralfunctional basis for dyslexia in the cortex of Chinese readers.
Proc Natl Acad Sci U S A, 105 (2008), pp. 5561-5566
[49.]
C. Francks, I.L. MacPhie, A.P. Monaco.
The genetic basis of dyslexia.
Lancet Neurol, 1 (2002), pp. 483-490
[50.]
E. Temple, G.K. Deutsch, R.A. Poldrack, S.L. Miller, P. Tallal, M.M. Merzenich, et al.
Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI.
Proc Nat Acad Sci U S A, 100 (2003), pp. 2860-2865
[51.]
M.M. Merzenich, W.M. Jenkins, P. Johnston, C. Schreiner, S.L. Miller, P. Tallal.
Temporal processing deficits of language -learning impaired children ameliorated by training.
Science, 271 (1996), pp. 76-80
[52.]
P. Tallal, S.L. Miller, G. Bedi, G. Byma, X. Wang, S.S. Nagarajan, et al.
Language comprehension in language -learning impaired children improved with acoustically modified speech.
Science, 271 (1996), pp. 81-83
[53.]
R.K. Olson, H. Datta, J. Gayan, J.C. DeFries.
A behavioral-genetic analysis of reading disabilities and component processes.
Converging methods for understanding reading and dyslexia, pp. 133-155
[54.]
T.D. Gould, I.I. Gottesman.
Psychiatric endophenotypes and the development of valid animal models.
Genes Brain Behav, 5 (2006), pp. 113-119
[55.]
J.C. DeFries, D.W. Fulker, M.C. Labuda.
Evidence for a genetic aetiology in reading disability of twins.
Nature, 329 (1987), pp. 537-540
[56.]
J. Gayan, H. Forsberg, R.K. Olson.
Genetic influences of subtypes of dyslexia.
Behav Genet, 24 (1994), pp. 513
[57.]
J. Stevenson, P. Graham, G. Fredman, V. McLoughlin.
A twin study of genetic influences on reading and spelling ability and disability.
J Child Psych Psychol, 28 (1987), pp. 229-247
[58.]
J.M. Rumsey, B. Horwitz, B.C. Donohue, K. Nace, J.M. Maisog, P. Andreason.
Phonological and orthographic components of word recognition: a PET-rCBF study.
Brain, 120 (1997), pp. 739-759
[59.]
B. Hohnen, J. Stevenson.
The structure of genetic influences on general cognitive, language, phonological and reading abilities.
Dev Psychol, 35 (1999), pp. 590-603
[60.]
R.D. Tiu, S.J. Wadsworth, R.K. Olson, J.C. DeFries.
Causal models of reading disability: a twin study.
Twin Res, 7 (2004), pp. 275-283
[61.]
S. Paracchini, C.D. Steer, L.L. Buckingham, A.P. Morris, S. Ring, T. Scerri, et al.
Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population.
Am J Psychiatry, 165 (2008), pp. 1576-1584
[62.]
B.F. Pennington, J.W. Gilger, D. Pauls, S.A. Smith, S.D. Smith, J.C. DeFries.
Evidence for major gene transmission of developmental dyslexia.
JAMA, 266 (1991), pp. 1527-1534
[63.]
N.H. Chapman, W.H. Raskind, J.B. Thomson, V.W. Berninger, E.M. Wijsman.
Segregation analysis of phenotypic components of learning disabilities II. Phonological decoding.
Am J Med Genet B Neuropsychiatr Genet, 121 (2003), pp. 60-70
[64.]
J.C. DeFries, M. Alarcon, R.C. Olson.
Genetic aetiologies of reading and spelling deficits: developmental differences.
Dyslexia: biology, cognition and intervention, pp. 20-37
[65.]
L.R. Cardon, J.L. Bell.
Association study designs for complex diseases.
Nat Rev Genet, 2 (2001), pp. 91-99
[66.]
C.J. Gibson, J.R. Gruen.
The human lexinome: genes of language and reading.
J Commun Disord, 41 (2008), pp. 409-420
[67.]
A. Benítez-Burraco.
¿Hasta qué punto son específicos los trastornos específicos del lenguaje? Implicaciones para una caracterización biológica de la facultad lingüística humana.
Ludus Vitalis, XVI (2009), pp. 101-134
[68.]
R. Plomin, M.J. Owen, P. McGuffin.
The genetic basis of complex human behaviors.
Science, 264 (1994), pp. 1733-1739
[69.]
E. Lander, L. Kruglyak.
Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results.
Nat Genet, 11 (1995), pp. 241-247
[70.]
H.A. Hofmann.
Functional genomics of neural and behavioral plasticity.
J Neurobiol, 54 (2003), pp. 272-282
[71.]
S.E. Fisher.
Tangled webs: tracing the connections between genes and cognition.
Cognition, 101 (2006), pp. 270-297
[72.]
J. Williams, M.C. O’Donovan.
The genetics of developmental dyslexia.
Eur J Hum Genet, 4 (2006), pp. 681-689
[73.]
E.L. Grigorenko, F.B. Wood, M.S. Meyer, L.A. Hart, W.C. Speed, A. Shuster, et al.
Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15.
Am J Hum Genet, 60 (1997), pp. 27-39
[74.]
G. Schulte-Korne, T. Grimm, M.M. Nothen, B. Muller-Myhsok, S. Cichon, I.R. Vogt, et al.
Evidence for linkage of spelling disability to chromosome 15.
Am J Hum Genet, 63 (1998), pp. 279-280
[75.]
D.W. Morris, L. Robinson, D. Turic, M. Duke, V. Webb, C. Milham, et al.
Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q.
Hum Molec Genet, 9 (2000), pp. 843-848
[76.]
M. Taipale, N. Kaminen, J. Nopola-Hemmi, T. Haltia, B. Myllyluoma, H. Lyytinen, et al.
A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain.
Proc Natl Acad Sci U S A, 100 (2003), pp. 11553-11558
[77.]
G.L. Blatch, M. Lässle.
The tetratricopeptide repeat: a structural motif mediating protein-protein interactions.
[78.]
I. Tapia-Páez, K. Tammimies, S. Massinen, A.L. Roy, J. Kere.
The complex of TFII-I PARP1, and SFPQ proteins regulates the DYX1C1 gene implicated in neuronal migration and dyslexia.
FASEB J, 22 (2008), pp. 3001-3009
[79.]
G.D. Rosen, J. Bai, Y. Wang, C.G. Fiondella, S.W. Threlkeld, J.J. LoTurco, et al.
Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations.
Cereb Cortex, 17 (2007), pp. 2562-2572
[80.]
Y. Wang, M. Paramasivam, A. Thomas, J. Bai, N. Kaminen-Ahola, J. Kere, et al.
DYX1C1 functions in neuronal migration in developing neocortex.
Neuroscience, 143 (2006), pp. 515-522
[81.]
S.W. Threlkeld, M.M. McClure, J. Bai, Y. Wang, J.J. LoTurco, G.D. Rosen, et al.
Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1.
Brain Res Bull, 71 (2007), pp. 508-514
[82.]
M. Cammarota, L.R.M. Bevilaqua, P. Ardenghi, G. Paratcha, M. Levi de Stein, I. Izquierdo, et al.
Learning-associated activation of nuclear MAPK CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade.
Mol Brain Res, 76 (2000), pp. 36-46
[83.]
D.E. Berman.
Modulation of taste-induced Elk-1 activation by identified neurotransmitter systems in the insular cortex of the behaving rat.
Neurobiol Learn Mem, 79 (2003), pp. 122-130
[84.]
C. Marino, A. Citterio, R. Giorda, A. Facoetti, G. Menozzi, L. Vanzin, et al.
Association of short-term memory with a variant within DYX1C1 in developmental dyslexia.
Genes Brain Behav, 6 (2007), pp. 640-646
[85.]
F. Dahdouh, H. Anthoni, I. Tapia-Páez, M. Peyrard-Janvid, G. Schulte-Körne, A. Warnke, et al.
Further evidence for DYX1C1 as a susceptibility factor for dyslexia.
Psychiatr Genet, 19 (2009), pp. 59-60
[86.]
E.L. Grigorenko.
The first candidate gene for dyslexia: Turning the page of a new chapter of research.
Proc Natl Acad Sci U S A, 100 (2003), pp. 11190-11192
[87.]
S.E. Fisher, A.J. Marlow, J. Lamb, E. Maestrini, D.F. Williams, A.J. Richardson, et al.
A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia.
Am J Hum Genet, 64 (1999), pp. 146-156
[88.]
J. Gayan, S.D. Smith, S.S. Cherny, L.R. Cardon, D.W. Fulker, A.M. Brower, et al.
Quantitative-trait locus for specific language and reading deficits on chromosome 6p.
Am J Hum Genet, 64 (1999), pp. 157-164
[89.]
A.J. Marlow, S.E. Fisher, C. Francks, I.L. MacPhie, S.S. Cherny, A.J. Richardson, et al.
Use of multivariate linkage analysis for dissection of a complex cognitive trait.
Am J Hum Genet, 72 (2003), pp. 561-570
[90.]
K.E. Deffenbacher, J.B. Kenyon, D.M. Hoover, R.K. Olson, B.F. Pennington, J.C. DeFries, et al.
Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses.
Hum Genet, 115 (2004), pp. 128-138
[91.]
H. Meng, S.D. Smith, K. Hager, M. Held, J. Liu, R.K. Olson, et al.
DCDC2 is associated with reading disability and modulates neuronal development in the brain.
Proc Nat Acad Sci U S A, 102 (2005), pp. 17053-17058
[92.]
M.A. Laing, S. Coonrod, B.T. Hinton, J.W. Downie, R. Tozer, M.A. Rudnicki, et al.
Male sexual dysfunction in mice bearing targeted mutant alleles of the PEA3 ets gene.
Mol Cell Biol, 20 (2000), pp. 9337-9345
[93.]
I.A. Graef, F. Wang, F. Charron, L. Chen, J. Neilson, M. Tessier-Lavigne, et al.
Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons.
Cell, 113 (2003), pp. 657-670
[94.]
F. Francis, A. Koulakoff, D. Boucher, P. Chafey, B. Schaar, M.C. Vinet, et al.
Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons.
Neuron, 23 (1999), pp. 247-256
[95.]
V. Des Portes, J.M. Pinard, P. Billuart, M.C. Vinet, A. Koulakoff, A. Carrie, et al.
A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome.
Cell, 92 (1998), pp. 51-60
[96.]
T.J. Burbridge, Y. Wang, A.J. Volz, V.J. Peschansky, L. Lisann, A.M. Galaburda, et al.
Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat.
Neuroscience, 152 (2008), pp. 723-733
[97.]
J. Schumacher, H. Anthoni, F. Dahdouh, I.R. Konig, A.M. Hillmer, N. Kluck, et al.
Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia.
Am J Hum Genet, 78 (2006), pp. 52-60
[98.]
A. Wilcke, J. Weissfuss, H. Kirsten, G. Wolfram, J. Boltze, P. Ahnert.
The role of gene DCDC2 in German dyslexics.
Ann Dyslexia, 59 (2009), pp. 1-11
[99.]
C. Francks, S. Paracchini, S.D. Smith, A.J. Richardson, T.S. Scerri, L.R. Cardon, et al.
A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States.
Am J Hum Genet, 75 (2004), pp. 1046-1058
[100.]
N. Cope, D. Harold, G. Hill, V. Moskvina, J. Stevenson, P. Holmans, et al.
Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia.
Am J Hum Genet, 76 (2005), pp. 581-591
[101.]
E.R. Londin, H. Meng, J.R. Gruen.
A transcription map of the 6p22.3 reading disability locus identifying candidate genes.
BMC Genomics, 4 (2003), pp. 25
[102.]
S. Paracchini, A. Thomas, S. Castro, C. Lai, M. Paramasivam, Y. Wang, et al.
The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration.
Hum Mol Genet, 15 (2006), pp. 1659-1666
[103.]
A. Velayos-Baeza, C. Toma, S. Paracchini, A.P. Monaco.
The dyslexia-associated gene KIAA0319 encodes highly N-and O-glycosylated plasma membrane and secreted isoforms.
Hum Mol Genet, 17 (2008), pp. 859-871
[104.]
A. Velayos-Baeza, C. Toma, S. Da Roza, S. Paracchini, A.P. Monaco.
Alternative splicing in the dyslexia-associated gene KIAA0319.
Mamm Genome, 18 (2007), pp. 627-634
[105.]
D. Harold, S. Paracchini, T. Scerri, M. Dennis, N. Cope, G. Hill, et al.
Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia.
Mol Psychiatry, 11 (2006), pp. 1085-1091
[106.]
M. Luciano, P.A. Lind, D.L. Duffy, A. Castles, M.J. Wright, G.W. Montgomery, et al.
A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability.
Biol Psychiatry, 62 (2007), pp. 811-817
[107.]
K.U. Ludwig, D. Roeske, J. Schumacher, G. Schulte-Körne, I.R. König, A. Warnke, et al.
Investigation of interaction between DCDC2 and KIAA0319 in a large German dyslexia sample.
J Neural Transm, 115 (2008), pp. 1587-1589
[108.]
S.E. Fisher, C. Francks.
Genes, cognition and dyslexia: learning to read the genome.
Trends Cogn Sci, 10 (2006), pp. 250-257
[109.]
T. Fagerheim, P. Raeymaekers, F.E. Tonnessen, M. Pedersen, L. Tranebjaerg, H.A. Lubs.
A new gene (DYX3) for dyslexia is located on chromosome 2.
J Med Genet, 36 (1999), pp. 664-669
[110.]
N. Kaminen, K. Hannula-Jouppi, M. Kestila, P. Lahermo, K. Muller, M. Kaaranen, et al.
A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32.
J Med Genet, 40 (2003), pp. 340-345
[111.]
W.H. Raskind, R.P. Igo, N.H. Chapman, V.W. Berninger, J.B. Thomson, M. Matsushita, et al.
A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency.
Mol Psychiatry, 10 (2005), pp. 699-711
[112.]
C. Francks, S.E. Fisher, R.K. Olson, B.F. Pennington, S.D. Smith, J.C. Defries, et al.
Fine mapping of the chromosome 2p12–16 dyslexia susceptibility locus: quantitative association analysis and positional candidate genes SEMA4F and OTX1.
Psychiatric Genet, 12 (2002), pp. 35-41
[113.]
H. Anthoni, M. Zucchelli, H. Matsson, et al.
A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia.
Hum Mol Genet, 16 (2007), pp. 667-677
[114.]
N. Kenmochi, T. Suzuki, T. Uechi, M. Magoori, M. Kuniba, S. Higa, et al.
The human mitochondrial ribosomal protein genes: mapping of 54 genes to the chromosomes and implications for human disorders.
Genomics, 77 (2001), pp. 65-70
[115.]
M. Takimoto, P. Mao, G. Wei, H. Yamazaki, T. Miura, A.C. Johnson, et al.
Molecular analysis of the GCF gene identifies revisions to the cDNA and amino acid sequences.
Biochim Biophys Acta, 1447 (1999), pp. 125-131
[116.]
T.L. Petryshen, B.J. Kaplan, M.F. Liu, N. Schmill de French, R. Tobias, M.L. Hughes, et al.
Evidence for a susceptibility locus on chromosome 6q influencing phonological coding dyslexia.
Am J Med Genet, 105 (2001), pp. 507-517
[117.]
K. Hannula-Jouppi, N. Kaminen-Ahola, M. Taipale, R. Eklund, J. Nopola-Hemmi, H. Kaariainen, et al.
The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.
[118.]
L.M. McGrath, S.D. Smith, B.F. Pennington.
Breakthroughs in the search for dyslexia candidate genes.
Trends Mol Med, 12 (2006), pp. 333-341
[119.]
T. Kidd, K. Brose, K.J. Mitchell, R.D. Fetter, M. Tessier-Lavigne, C.S. Goodman, et al.
Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors.
Cell, 92 (1998), pp. 05-15
[120.]
A. Bagri, O. Marin, A.S. Plump, J. Mak, S.J. Pleasure, J.L.R. Rubenstein, et al.
Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain.
Neuron, 33 (2002), pp. 233-248
[121.]
E. Stein, M. Tessier-Lavigne.
Hierarchical organization of guidance receptors: silencing of netrin attraction by Slit through a Robo/DCC receptor complex.
Science, 291 (2001), pp. 1928-1938
[122.]
J. Nopola-Hemmi, B. Myllyluoma, T. Haltia, M. Taipale, V. Ollikainen, T. Ahonen, et al.
A dominant gene for developmental dyslexia on chromosome 3.
J Med Genet, 38 (2001), pp. 658-664
[123.]
L.D. Shriberg, J.B. Tomblin, J.L. McSweeny.
Prevalence of speech delay in 6-year-old children and comorbidity with language impairment.
J Speech Lang Hear Res, 42 (1999), pp. 1461-1470
[124.]
C.M. Stein, J.H. Schick, H.G. Taylor, L.D. Shriberg, C. Millard, A. Kundtz-Kluge, et al.
Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and reading.
Am J Hum Genet, 74 (2004), pp. 283-297
[125.]
S.E. Fisher, C. Francks, A.J. Marlow, I.L. MacPhie, D.F. Newbury, L.R. Cardon, et al.
Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia.
Nat Genet, 30 (2002), pp. 86-91
[126.]
S.E. Fisher, J.C. DeFries.
Developmental dyslexia: genetic dissection of a complex cognitive trait.
Nat Rev Neurosci, 3 (2002), pp. 767-780
[127.]
G.-Y.R. Hsiung, B.J. Kaplan, T.L. Petryshen, S. Lu, L.L. Field.
A dyslexia susceptibility locus (DYX7) linked to dopamine D4 receptor (DRD4) region on chromosome 11p15.5.
Am J Med Genet B Neuropsychiatr Genet, 125 (2004), pp. 112-119
[128.]
G.G. Nussdorfer, M. Bahcelioglu, G. Neri, L.K. Malendowicz.
Secretin, glucagon, gastric inhibitory polypeptide, parathyroid hormone, and related peptides in the regulation of the hypothalamus–pituitary–adrenal axis.
Peptides, 21 (2000), pp. 309-310
[129.]
W.H. Yung, P.S. Leung, S.S. Ng, J. Zhang, S.C. Chan, B.K. Chow.
Secretin facilitates GABA transmission in the cerebellum.
J Neurosci, 21 (2001), pp. 7063-7068
[130.]
N.J. Parker, C.G. Begley, P.J. Smith, R.M. Fox.
Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5.
Genomics, 37 (1996), pp. 253-256
[131.]
D. Prawitt, T. Enklaar, G. Klemm, B. Gartner, C. Spangenberg, A. Winterpacht, et al.
Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression.
Hum Mol Genet, 9 (2000), pp. 203-216
[132.]
J.J. Zhu, Y. Qin, M. Zhao, L. Van Aelst, R. Malinow.
Ras and Rap control AMPA receptor trafficking during synaptic plasticity.
Cell, 110 (2002), pp. 443-555
[133.]
D.E. Comings, S. Wu, C. Chiu, D. Muhleman, J. Sverd.
Studies of the c-Harvey-Ras gene in psychiatric disorders.
Psychiatry Res, 63 (1996), pp. 25-32
[134.]
J. Eisenberg, A. Zohar, G. Mei-Tal, A. Steinberg, E. Tartakovsky, I. Gritsenko, et al.
A haplotype relative risk study of the dopamine D4 receptor (DRD4) exon III repeat polymorphism and attention deficit hyperactivity disorder (ADHD).
Am J Med Genet, 96 (2000), pp. 258-261
[135.]
J.T. McCracken, S.L. Smalley, J.J. McGough, L. Crawford, M. Del’Homme, R.M. Cantor, et al.
Evidence for linkage of a tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4) with attention deficit hyperactivity disorder (ADHD).
Mol Psychiatry, 5 (2000), pp. 531-536
[136.]
T. Roman, M. Schmitz, G. Polanczyk, M. Eizirik, L.A. Rohde, M.H. Hutz.
Attention-deficit hyperactivity disorder: A study of association with both the dopamine transporter gene and the dopamine D4 receptor gene.
Am J Med Genet, 105 (2001), pp. 471-480
[137.]
L.A. Schmidt, N.A. Fox, K. Perez-Edgar, S. Hu, D.H. Hamer.
Association of DRD4 with attention problems in normal childhood development.
Psychiatr Genet, 11 (2001), pp. 25-29
[138.]
K.L. Purvis, R. Tannock.
Language abilities in children with attention deficit hyperactivity disorder, reading disabilities, and normal controls.
J Abnorm Child Psychol, 25 (1997), pp. 133-144
[139.]
S.E. Shaywitz.
Dyslexia.
N Engl J Med, 338 (1998), pp. 307-312
[140.]
E.G. Willcutt, B.F. Pennington, R.K. Olson, J.C. DeFries.
Understanding comorbidity: a twin study of reading disability and attentiondeficit/hyperactivity disorder.
Am J Med Genet B Neuropsychiatr Genet, 144 (2007), pp. 709-714
[141.]
M.C. Defagot, E.L. Malchiodi, M.J. Villar, M.C. Antonelli.
Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies.
Brain Res Mol Brain Res, 45 (1997), pp. 1-12
[142.]
R.J. Primus, A. Thurkauf, J. Xu, E. Yevich, S. McInerney, K. Shaw, et al.
II. Localization and characterization of dopamine D4binding sites in rat and human brain by use of the novel D4receptor– selective ligand [3H]NGD 94–1.
J Pharmacol Exp Ther, 282 (1997), pp. 1020-1027
[143.]
U. Froster, G. Schulte-Körne, J. Hebebrand, H. Remschmidt.
Cosegregation of balanced translocation (1,2) with retarded speech development and dyslexia.
Lancet, 342 (1993), pp. 178-179
[144.]
M. Rabin, X.L. Wen, M. Hepburn, H.A. Lubs, E. Feldman, R. Duara.
Suggestive linkage of developmental dyslexia to chromosome 1p34-p36.
Lancet, 342 (1993), pp. 178
[145.]
J.M. Couto, L. Gomez, K. Wigg, T. Cate-Carter, J. Archibald, B. Anderson, et al.
The KIAA0319-like (KIAA0319L) Gene on chromosome 1p34 as a candidate for reading disabilities.
J Neurogenet, 22 (2008), pp. 295-313
[146.]
K. Zhou, P. Asherson, P. Sham, B. Franke, R.J. Anney, J. Buitelaar, et al.
Linkage to chromosome 1p36 for attention-deficit/hyperactivity disorder traits in school and home settings.
Biol Psychiatry, 64 (2008), pp. 571-576
[147.]
C.G.F. De Kovel, F.A. Hol, J.G.A.M Heister, J.J.H.T Willemen, L.A. Sandkuijl, B. Franke, et al.
Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family.
J Med Genet, 41 (2004), pp. 652-657
[148.]
V.S. Knopnik, M. Alarcón, J.C. DeFries.
Common and specific gender influences on individual differences in reading performance: a twin study.
Pers Individ Dif, 25 (1998), pp. 269-277
[149.]
M. Rutter, A. Caspi, D. Fergusson, L.J. Horwood, R. Goodman, B. Maugham, et al.
Sex differences in developmental reading disability.
JAMA, 291 (2004), pp. 2007-2012
[150.]
C.J. Harrison, E.M. Jack, T.D. Allen, R. Harris.
The fragile X: a scanning electron microscopic study.
J Med Genet, 20 (1983), pp. 280-285
[151.]
K.A. Lugenbeel, A.M. Peier, N.L. Carson, A.E. Chudley, D.L. Nelson.
Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome.
Nat Genet, 10 (1995), pp. 483-485
[152.]
S.A. Merenstein, W.E. Sobesky, A.K. Taylor, J.E. Riddle, H.X. Tran, R.J. Hagerman.
Molecular-clinical correlations in males with an expanded FMR1 mutation.
[153.]
C. Schrander-Stumpel, W.-J. Gerver, H. Meyer, J. Engelen, H. Mulder, J.-P. Fryns.
Prader-Willi-like phenotype in fragile X syndrome.
Clin Genet, 45 (1994), pp. 175-180
[154.]
S.T. Warren, S.L. Sherman.
The fragile X syndrome.
McGraw Hill, (2001),
[155.]
P. Jin, S.T. Warren.
Understanding the molecular basis of fragile X syndrome.
Hum Mol Genet, 9 (2000), pp. 901-908
[156.]
B. Lendvai, E.A. Stern, B. Chen, K. Svoboda.
Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo.
Nature, 404 (2000), pp. 876-881
[157.]
W.T. O’Donnell, S.T. Warren.
A decade of molecular studies of fragile X syndrome.
Annu Rev Neurosci, 25 (2002), pp. 315-338
[158.]
W.T. Greenough, A.Y. Klintsova, S.A. Irwin, R. Galvez, K.E. Bates, I.J. Weiler.
Synaptic regulation of protein synthesis and the fragile X protein.
Proc Natl Acad Sci U S A, 98 (2001), pp. 7101-7106
[159.]
R.P. Igo, N.H. Chapman, V.W. Berninger, M. Matsushita, Z. Brkanac, J.H. Rothstein, et al.
Genomewide scan for real-word reading subphenotypes of dyslexia: Novel chromosome 13 locus and genetic complexity.
Am J Med Genet B Neuropsychiatr Genet, 141 (2006), pp. 15-27
[160.]
C.W. Bartlett, J.F. Flax, M.W. Logue, V.J. Vieland, A.S. Bassett, P. Tallal, et al.
A major susceptibility locus for specific language impairment is located on 13q21.
Am J Hum Genet, 71 (2002), pp. 45-50
[161.]
P. Sarda, C. Turleau, M.O. Cabanis, J. Jalaguier, J. De Grouchy, H. Bonnet.
Délétion interstitielle du bras long du chromosome 7.
Ann Genet, 31 (1988), pp. 258-261
[162.]
S. Zeesman, M.J. Nowaczyk, I. Teshima, W. Roberts, J.O. Cardy, J. Brian, et al.
Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2.
Am J Med Genet A, 140 (2006), pp. 509-514
[163.]
A. Benítez-Burraco.
FOXP2: del trastorno específico a la biología molecular del lenguaje I. Aspectos etiológicos, neuroanatómicos, neurofisiológicos y moleculares.
Rev Neurol, 40 (2005), pp. 671-682
[164.]
A. Benítez-Burraco.
FOXP2: del trastorno específico a la biología molecular del lenguaje II. Implicaciones para la ontogenia y la filogenia del lenguaje.
Rev Neurol, 41 (2005), pp. 37-44
[165.]
A. Benítez-Burraco.
FOXP2 y la biología molecular del lenguaje: nuevas evidencias I. Aspectos fenotípicos y modelos animales.
Rev Neurol, 46 (2008), pp. 289-298
[166.]
A. Benítez-Burraco.
FOXP2 y la biología molecular del lenguaje: nuevas evidencias II. Aspectos moleculares e implicaciones para la ontogenia y la filogenia del lenguaje.
Rev Neurol, 46 (2008), pp. 351-359
[167.]
S.E. Fisher, C.S.L. Lai, A.P. Monaco.
Deciphering the genetic basis of speech and language disorders.
Annu Rev Neurosci, 26 (2003), pp. 57-80
[168.]
D.F. Newbury, D.V. Bishop, A.P. Monaco.
Genetic influences on language impairment and phonological short-term memory.
Trends Cogn Sci, 9 (2005), pp. 528-534
[169.]
D.V.M. Bishop.
Genetic influences on language impairment and literacy problems in child.
J Child Psychol Psychiatry, 42 (2001), pp. 189-198
[170.]
E.W. McPherson, G. Laneri, M.M. Clemens, S.J. Kochmar, U. Surti.
Apparently balanced t(1,7)(q21.3,q34) in an infant with Coffin-Siris syndrome.
Am J Med Genet, 71 (1997), pp. 430-433
[171.]
E.M. McGhee, C.J. Klump, S.M. Bitts, P.D. Cotter, E.J. Lammer.
Candidate region for Coffin-Siris syndrome at 7q32-34.
Am J Med Genet, 93 (2000), pp. 241-243
[172.]
A. Swillen, N. Glorieux, M. Peeters, J.-P. Fryns.
The Coffin-Siris syndrome: data on mental development, language, behavior and social skills in children.
Clin Genet, 48 (1995), pp. 177-182
[173.]
Y. Bradford, J. Haines, H. Hutcheson, M. Gardiner, T. Braun, V. Sheffield, et al.
Incorporating language phenotypes strengthens evidence of linkage to autism.
Am J Med Genet, 105 (2001), pp. 539-547
[174.]
M. Smith, A. Woodroffe, R. Smith, S. Holguin, J. Martinez, P.A. Filipek, et al.
Molecular genetic delineation of a deletion of chromosome 13q12-q13 in a patient with autism and auditory processing deficits.
Cytogenet Genome Res, 98 (2002), pp. 233-239
[175.]
A. Benítez-Burraco.
Autismo y lenguaje: aspectos moleculares.
Rev Neurol, 46 (2008), pp. 40-48
[176.]
J. Bond, E. Roberts, K. Springell, S. Lizarraga, S. Scott, J. Higgins, et al.
A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size.
Nat Genet, 37 (2005), pp. 353-355
[177.]
L.-Y. Hung, C-JC Tang, T.K. Tang.
Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex.
Molec Cell Biol, 20 (2000), pp. 7813-7825
[178.]
L.-Y. Hung, H.-L. Chen, C.-W. Chang, B.-R. Li, T.K. Tang.
Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly.
Molec Biol Cell, 15 (2004), pp. 2697-2706
[179.]
W.B. Dobyns.
Primary microcephaly: new approaches for an old disorder.
Am J Hum Genet, 112 (2002), pp. 315-317
[180.]
C.G. Woods.
Human microcephaly.
Curr Opin Neurobiol, 14 (2004), pp. 1-6
[181.]
Z. Brkanac, N.H. Chapman, R.P. Igo, M.M. Matsushita, K. Nielsen, V.W. Berninger, et al.
Genome scan of a nonword repetition phenotype in families with dyslexia: evidence for multiple loci.
Behav Genet, 38 (2008), pp. 462-475
[182.]
G. Poelmans, J.J. Engelen, J. Van Lent-Albrechts, H.J. Smeets, E. Schoenmakers, B. Franke, et al.
Identification of novel dyslexia candidate genes through the analysis of a chromosomal deletion.
Am J Med Genet B Neuropsychiatr Genet, 150 (2009), pp. 140-147
[183.]
G. Yu, T. Zerucha, M. Ekker, J.L.R. Rubenstein.
Evidence that GRIP, a PDZ-domain protein which is expressed in the embryonic forebrain, coactivates transcription with DLX homeodomain proteins.
Brain Res Dev Brain Res, 130 (2001), pp. 217-230
[184.]
G.L. Collingridge, J.T.R. Isaac.
Functional roles of protein interactions with AMPA and kainate receptors.
Neurosci Res, 47 (2003), pp. 3-15
[185.]
H.L. Swanson, C.B. Howard, L. Saez.
Do different components of working memory underlie different subgroups of reading disabilities?.
J Learn Disabil, 39 (2006), pp. 252-269
[186.]
M. Mukhopadhyay, P. Pelka, D. DeSousa, B. Kablar, A. Schindler, M.A. Rudnicki, et al.
Cloning, genomic organization and expression pattern of a novel Drosophila gene, the discointeracting protein 2 (dip2), and its murine homolog.
Gene, 293 (2002), pp. 59-65
[187.]
M.R. Flory, M.J. Moser, R.J. Monnat, T.N. Davis.
Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin.
Proc Nat Acad Sci U S A, 97 (2000), pp. 5919-5923
[188.]
A. Benítez-Burraco.
Genes y lenguaje: aspectos ontogenéticos, filogenéticos y cognitivos.
Reverté, (2009),
[189.]
A.M. Galaburda.
Dyslexia–a molecular disorder of neuronal migration: the 2004 Norman Geschwind Memorial Lecture.
Ann Dyslexia, 55 (2005), pp. 151-165
[190.]
A.M. Galaburda, J. LoTurco, F. Ramus, R.H. Fitch, G.D. Rosen.
From genes to behavior in developmental dyslexia.
Nat Neurosci, 9 (2006), pp. 1213-1217
[191.]
J.W. Fox, E.D. Lamperti, Y.Z. Eksioglu, S.E. Hong, Y. Feng, D.A. Graham, et al.
Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia.
Neuron, 21 (1998), pp. 1315-1325
[192.]
B.S. Chang, J. Ly, B. Appignani, A. Bodell, K.A. Apse, R.S. Ravenscroftet, et al.
Reading impairment in the neuronal migration disorder of periventricular nodular heterotopia.
[193.]
F.J. Newmeyer.
Genetic dysphasia and linguistic theory.
J Neurolinguistics, 10 (1997), pp. 47-73
[194.]
U. Bellugi, L. Lichtenberger, D. Mills, A. Galaburda, J.R. Korenberg.
Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome.
Trends Neurosci, 22 (1999), pp. 197-207
[195.]
A. Benítez-Burraco.
Genes y lenguaje: aspectos ontogenéticos filogenéticos y cognitivos.
Reverté, (2009),
[196.]
G.F. Marcus.
The birth of the mind. How a tiny number of genes creates the complexities of human thought.
Basic Books, (2004),
Copyright © 2010. Sociedad Española de Neurología
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.nrleng.2019.03.017
No mostrar más