was read the article
array:23 [ "pii" => "S2173510713000049" "issn" => "21735107" "doi" => "10.1016/j.rxeng.2012.06.004" "estado" => "S300" "fechaPublicacion" => "2014-11-01" "aid" => "628" "copyright" => "SERAM" "copyrightAnyo" => "2011" "documento" => "article" "subdocumento" => "fla" "cita" => "Radiologia. 2014;56:533-40" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1236 "formatos" => array:2 [ "HTML" => 941 "PDF" => 295 ] ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0033833812002342" "issn" => "00338338" "doi" => "10.1016/j.rx.2012.06.014" "estado" => "S300" "fechaPublicacion" => "2014-11-01" "aid" => "628" "copyright" => "SERAM" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Radiologia. 2014;56:533-40" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1703 "formatos" => array:3 [ "EPUB" => 12 "HTML" => 1067 "PDF" => 624 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Comparación de una secuencia en 3D con eco de gradiente potenciada en T1 con 3 factores de reducción de imagen en paralelo diferentes, en apnea y respiración libre, utilizando una bobina de 32 canales a 1,5T. Estudio preliminar" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "533" "paginaFinal" => "540" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "A comparison of a T1 weighted 3D gradient-echo sequence with three different parallel imaging reduction factors, breath hold and free breathing, using a 32 channel coil at 1.5T. A preliminary study" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2139 "Ancho" => 1000 "Tamanyo" => 160433 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Imágenes en 3D EG potenciadas en T1 obtenidas con respiración libre con FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (A), FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (B) y FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 (C) del mismo individuo. Todas las imágenes se consideraron no diagnósticas. Obsérvese la presencia de artefactos por movimiento con todos los FR. En (C), el granulado de los píxeles y el <span class="elsevierStyleItalic">aliasing</span> son muy evidentes en el centro de la imagen, contribuyendo a una mayor degradación de la imagen.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "V. Herédia, B. Dale, R. Op de Campos, M. Ramalho, L.B. Burke, C. Sams, M. de Toni, R.C. Semelka" "autores" => array:8 [ 0 => array:2 [ "nombre" => "V." "apellidos" => "Herédia" ] 1 => array:2 [ "nombre" => "B." "apellidos" => "Dale" ] 2 => array:2 [ "nombre" => "R." "apellidos" => "Op de Campos" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Ramalho" ] 4 => array:2 [ "nombre" => "L.B." "apellidos" => "Burke" ] 5 => array:2 [ "nombre" => "C." "apellidos" => "Sams" ] 6 => array:2 [ "nombre" => "M." "apellidos" => "de Toni" ] 7 => array:2 [ "nombre" => "R.C." "apellidos" => "Semelka" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173510713000049" "doi" => "10.1016/j.rxeng.2012.06.004" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173510713000049?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0033833812002342?idApp=UINPBA00004N" "url" => "/00338338/0000005600000006/v3_201706012056/S0033833812002342/v3_201706012056/es/main.assets" ] ] "itemSiguiente" => array:18 [ "pii" => "S2173510714000597" "issn" => "21735107" "doi" => "10.1016/j.rxeng.2012.06.006" "estado" => "S300" "fechaPublicacion" => "2014-11-01" "aid" => "626" "copyright" => "SERAM" "documento" => "article" "subdocumento" => "fla" "cita" => "Radiologia. 2014;56:541-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1791 "formatos" => array:2 [ "HTML" => 1445 "PDF" => 346 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Comparison of image quality and radiation dose in computed tomography angiography of the peripheral arteries using tube voltage of 80<span class="elsevierStyleHsp" style=""></span>kV versus 100<span class="elsevierStyleHsp" style=""></span>kV" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "541" "paginaFinal" => "547" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Comparación de la calidad de imagen y dosis de radiación en angio-tomografía computarizada de arterias periféricas con 80 y 100<span class="elsevierStyleHsp" style=""></span>kV" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2423 "Ancho" => 2168 "Tamanyo" => 419491 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Volume rendering reconstructions with the identical algorithm to that of angio-CT of peripheral arteries of two (2) different patients of 82<span class="elsevierStyleHsp" style=""></span>kg of weight both. The patient who underwent the 80<span class="elsevierStyleHsp" style=""></span>kV protocol shows occlusion of the right external iliac artery (hollow arrow) and bilateral femoropopliteal artery recanalizing through collaterals distally. The patient studied with 100<span class="elsevierStyleHsp" style=""></span>kV shows the occlusion of the left popliteal artery (arrow). See the optimal quality of the image obtained with both protocols.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "R. Oca Pernas, C. Delgado Sánchez-Gracián, G. Tardáguila de la Fuente, A. Fernández del Valle, N. Silva Priegue, M. González Vázquez, C. Trinidad López" "autores" => array:7 [ 0 => array:2 [ "nombre" => "R." "apellidos" => "Oca Pernas" ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Delgado Sánchez-Gracián" ] 2 => array:2 [ "nombre" => "G." "apellidos" => "Tardáguila de la Fuente" ] 3 => array:2 [ "nombre" => "A." "apellidos" => "Fernández del Valle" ] 4 => array:2 [ "nombre" => "N." "apellidos" => "Silva Priegue" ] 5 => array:2 [ "nombre" => "M." "apellidos" => "González Vázquez" ] 6 => array:2 [ "nombre" => "C." "apellidos" => "Trinidad López" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0033833812002135" "doi" => "10.1016/j.rx.2012.06.013" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0033833812002135?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173510714000597?idApp=UINPBA00004N" "url" => "/21735107/0000005600000006/v1_201412120104/S2173510714000597/v1_201412120104/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S2173510714000627" "issn" => "21735107" "doi" => "10.1016/j.rxeng.2012.10.002" "estado" => "S300" "fechaPublicacion" => "2014-11-01" "aid" => "640" "copyright" => "SERAM" "documento" => "article" "subdocumento" => "fla" "cita" => "Radiologia. 2014;56:524-32" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1429 "formatos" => array:2 [ "HTML" => 1106 "PDF" => 323 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Magnetic resonance imaging in breast cancer treated with neoadjuvant chemotherapy: Radiologic–pathologic correlation of the response and disease-free survival depending on molecular subtype" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "524" "paginaFinal" => "532" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Resonancia magnética en el cáncer de mama tratado con neoadyuvancia: correlación radiopatológica de la respuesta y supervivencia libre de enfermedad en función del subtipo molecular" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 527 "Ancho" => 1301 "Tamanyo" => 83284 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">T1-weighted dynamic images on the axial view. (a) Pre-chemotherapy (pre-CT) MRI: nodular enhancement (arrow) of ovoid morphology and lobular contours with heterogenous enhancement occupying the mid and posterior views of lower quadrants of left breast with luminal B HER2− immunohistochemical profile. (b) Post-CT MRI: no response to neoadjuvant therapy. The only difference is two (2) areas of central necrosis (arrow).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "S. Cruz Ciria, F. Jiménez Aragón, C. García Mur, H. Esteban Cuesta, B. Gros Bañeres" "autores" => array:5 [ 0 => array:2 [ "nombre" => "S." "apellidos" => "Cruz Ciria" ] 1 => array:2 [ "nombre" => "F." "apellidos" => "Jiménez Aragón" ] 2 => array:2 [ "nombre" => "C." "apellidos" => "García Mur" ] 3 => array:2 [ "nombre" => "H." "apellidos" => "Esteban Cuesta" ] 4 => array:2 [ "nombre" => "B." "apellidos" => "Gros Bañeres" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S003383381200272X" "doi" => "10.1016/j.rx.2012.10.004" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S003383381200272X?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173510714000627?idApp=UINPBA00004N" "url" => "/21735107/0000005600000006/v1_201412120104/S2173510714000627/v1_201412120104/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original report</span>" "titulo" => "A comparison of a T1 weighted 3D gradient-echo sequence with three different parallel imaging reduction factors, breath hold and free breathing, using a 32 channel coil at 1.5<span class="elsevierStyleHsp" style=""></span>T. A preliminary study" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "533" "paginaFinal" => "540" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "V. Herédia, B. Dale, R. Op de Campos, M. Ramalho, L.B. Burke, C. Sams, M. de Toni, R.C. Semelka" "autores" => array:8 [ 0 => array:3 [ "nombre" => "V." "apellidos" => "Herédia" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 1 => array:3 [ "nombre" => "B." "apellidos" => "Dale" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 2 => array:3 [ "nombre" => "R." "apellidos" => "Op de Campos" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "M." "apellidos" => "Ramalho" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 4 => array:3 [ "nombre" => "L.B." "apellidos" => "Burke" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "C." "apellidos" => "Sams" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:3 [ "nombre" => "M." "apellidos" => "de Toni" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 7 => array:4 [ "nombre" => "R.C." "apellidos" => "Semelka" "email" => array:1 [ 0 => "richsem@med.unc.edu" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Radiology, Hospital Espirito Santo, Evora, Portugal" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Siemens Medical Systems, Cary, NC, USA" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Department of Radiology, Hospital Garcia de Orta, Almada, Portugal" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Comparación de una secuencia en 3D con eco de gradiente potenciada en T1 con 3 factores de reducción de imagen en paralelo diferentes, en apnea y respiración libre, utilizando una bobina de 32 canales a 1,5T. Estudio preliminar" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2139 "Ancho" => 1001 "Tamanyo" => 165047 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Free breathing T1 weighted 3D GRE images with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (A), RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (B) and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 (C) of the same subject. All images were considered non-diagnostic. Notice the presence of motion artifacts with all RFs. In (C) pixel graininess and aliasing artifacts are also clearly evident in the center of the image contributing furthermore for image degradation.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Despite recent technical developments like parallel imaging (PI), the shortest available acquisition times are generally still too long for high diagnostic quality dynamic abdominal magnetic resonance (MR) imaging in non cooperative patients such as agitated, sedated or unconscious patients,<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1–4</span></a> or in partially cooperative patients who can only suspend their breath for a few seconds.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Three-dimensional (3D) gradient echo (GRE) imaging with uniform fat saturation is the primary pulse sequence used for multiphase post gadolinium imaging of the upper abdomen, which is the mainstay for high quality diagnostic studies and is arguably the single most important dataset in a typical abdominal MR exam.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> The inability of non-cooperative patients to hold their breath impairs the image quality substantially on T1-weighted GRE sequences.<a class="elsevierStyleCrossRefs" href="#bib0025"><span class="elsevierStyleSup">5–8</span></a> It is the authors’ experience that with 1.5<span class="elsevierStyleHsp" style=""></span>T systems and with a 8-channel phased array coil, the use of reduction factor (RF) greater than 2 in T1-weighted 3D GRE dynamic imaging is associated with significant degradation of image quality, which is consistent with previous reports.<a class="elsevierStyleCrossRefs" href="#bib0010"><span class="elsevierStyleSup">2,9</span></a> The recent development of multi channel receive coils would also provide a solution to the limitations of breath holding requirements. New 32 element phased array coils, produce higher signal to noise ratio (SNR), and may allow higher PI RFs,<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10–14</span></a> permitting extremely short acquisition times, potentially with diagnostic quality T1-weighted dynamic imaging in non-cooperative and partially cooperative patients.<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,12</span></a> Previous reports using commercially available systems have not tested temporal resolution for parallel imaging higher than RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 for abdominal T1-weighted 3D-GRE dynamic imaging, including in non-cooperative patients.<a class="elsevierStyleCrossRefs" href="#bib0010"><span class="elsevierStyleSup">2,9</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">The purpose of the present study is to investigate whether increasing temporal resolution with higher RFs, in both breath-hold and free breathing approaches, using a non-contrast T1-weighted 3D GRE sequence and a 32-channel phased array coil, permits diagnostic image quality, with potential application in patients unable to cooperate with breath-hold requirements. Such information can be used to determine the optimal 3D GRE sequence and RF combination for a given level of patient cooperation.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Subject selection</span><p id="par0020" class="elsevierStylePara elsevierViewall">A total of 9 healthy subjects (5 female, 4 male) were recruited for this prospective study. The age range was 20–49<span class="elsevierStyleHsp" style=""></span>yrs (mean 36<span class="elsevierStyleHsp" style=""></span>yrs).</p><p id="par0025" class="elsevierStylePara elsevierViewall">This HIPPA compliant study was approved by our institutional IRB, and signed informed consent was obtained from the participants.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Magnetic resonance imaging technique</span><p id="par0030" class="elsevierStylePara elsevierViewall">All MR examinations were performed on a 1.5-T (Avanto, Siemens Medical Systems, Malvern, PA) MR system using a 32-element phased-array torso coil with k-space based PI (GRAPPA−generalized autocalibrating partially parallel acquisitions) reconstruction, RFs of 2, 4 and 6, breath hold and free breathing. The used coil is a 32-channel phased-array coil with an anterior and a posterior part. Each part is 30<span class="elsevierStyleHsp" style=""></span>cm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>40<span class="elsevierStyleHsp" style=""></span>cm and contains 16 coil elements. The 32 elements of the coil are arranged as 4 H-F<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>4 R-L<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2 A-P.</p><p id="par0035" class="elsevierStylePara elsevierViewall">All subjects underwent a transverse T1-weighted fat-suppressed three-dimensional GRE (VIBE- volume interpolated breath hold examination) MR imaging of the abdomen. Information on the used parameters can be found in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0040" class="elsevierStylePara elsevierViewall">The used echo time of 1.7<span class="elsevierStyleHsp" style=""></span>ms with the bandwidth of 350<span class="elsevierStyleHsp" style=""></span>Hz/px requires a very slight/weak asymmetry. However, the asymmetry was the same for all accelerations. Although it does impact the image quality, it is a fixed variable in this study. Subjects were instructed to breath normally during free breathing acquisition. No respiratory trigger or navigation techniques were used. The acquisition times were 17<span class="elsevierStyleHsp" style=""></span>s for RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2, 8.7<span class="elsevierStyleHsp" style=""></span>s for RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 and 6.4<span class="elsevierStyleHsp" style=""></span>s with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Magnetic resonance imaging interpretation</span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Qualitative analyses</span><p id="par0045" class="elsevierStylePara elsevierViewall">3D GRE sequences of all patients were independently, retrospectively and blindly evaluated on a workstation by 2 different reviewers with 2 and 18 years post-fellowship training experience to determine image quality and extent of artifacts. The reviewers were blinded to the parameters of the sequences that they reviewed. A training set was performed with one patient. This data was included in the study.</p><p id="par0050" class="elsevierStylePara elsevierViewall">Image quality was analyzed using a five-point scale (1, very low quality; 2, low quality; 3, fair quality; 4, good quality; 5, excellent quality), which evaluates overall image quality with higher scores representing better overall image quality. Sequences in which the image quality was between 3 and 5 were considered to be diagnostic quality.</p><p id="par0055" class="elsevierStylePara elsevierViewall">The reviewers qualitatively analyzed each image for motion, truncation, aliasing and pixel graininess artifacts and for signal heterogeneity. Extent of artifacts was analyzed using a six-point scale (1, profound; 2, severe; 3, moderate; 4, mild; 5, minimal; 6, imperceptible) with higher scores representing fewer artifacts. Sequences in which the extent of artifacts was between 4 and 6 were considered to be diagnostic quality.</p><p id="par0060" class="elsevierStylePara elsevierViewall">Motion artifact was defined as blurring or ghosting of the image in the phase encoding direction.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> The time difference in the acquisition of adjacent points in the phase encoding direction is much longer, when compared with the frequency encoding direction and is equal to the repetition time used for the sequence. The positional difference because of motion introduces phase differences between the views in k-space that appear as ghost or blurring artifacts on the image.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></p><p id="par0065" class="elsevierStylePara elsevierViewall">Truncation or Gibbs artifacts were defined as bright or dark lines that appear parallel with and adjacent to the borders of an area of abrupt signal intensity change on MR images.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> Insufficient collection of samples in either the phase encoding direction or the readout direction leads to Gibbs rings as a result of the Fourier transform.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></p><p id="par0070" class="elsevierStylePara elsevierViewall">Aliasing artifact was described as a wraparound image. Aliasing can occur whenever any part of the body extends outside the field of view and a signal produced by this structure reaches the receiver coil. Parallel reconstruction techniques can reduce the fold-over component resulting from the reduced sampling of k-space lines, but if the calculated missing lines are not sufficient, some aliasing persists. When this occurs, uncorrected aliasing artifacts may arise from structures separated by the aliasing distance in the phase-encoding direction, often placing wraparound artifact at or near the center of the image.<a class="elsevierStyleCrossRefs" href="#bib0075"><span class="elsevierStyleSup">15,16</span></a></p><p id="par0075" class="elsevierStylePara elsevierViewall">Pixel graininess was determined as the presence and extent of granularity and reflects the overall magnitude and inhomogeneity of background noise.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">Signal heterogeneity was considered present when lack of uniformity of signal intensity was present within a slice, occurring most often in the phase-encoding direction.</p><p id="par0085" class="elsevierStylePara elsevierViewall">The authors did not perform quantitative analyses, including the use of phantom studies, for the purpose of this preliminary study is accomplished with a qualitative analysis.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Statistical analysis</span><p id="par0090" class="elsevierStylePara elsevierViewall">Wilcoxon signed-rank test was used to compare the three breath hold and free breathing sequences for the parameters of qualitative analyses, with <span class="elsevierStyleItalic">α</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.05. The Bonferroni adjustment was applied for multiple comparisons. These analyses were performed using the web calculators of VassarStats (<a class="elsevierStyleInterRef" href="http://faculty.vassar.edu/lowry/VassarStats.html">http://faculty.vassar.edu/lowry/VassarStats.html</a>) and SISA (<a class="elsevierStyleInterRef" href="http://www.quantitativeskills.com/sisa/">http://www.quantitativeskills.com/sisa/</a>). Inter observer reproducibility for the qualitative data was assessed using Kappa statistics, performed with ComKappa (<a class="elsevierStyleInterRef" href="http://www2.gsu.edu/~psyrab/BakemanPrograms.html">http://www2.gsu.edu/∼psyrab/BakemanPrograms.html</a>).</p></span></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Results</span><p id="par0095" class="elsevierStylePara elsevierViewall">The results of independent qualitative analyses for each sequence are displayed in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>. All results are reported as mean<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>standard deviation.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0100" class="elsevierStylePara elsevierViewall">RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 breath hold acquisitions had an average diagnostic image quality, although with significantly better ratings using RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004), mainly because of higher ratings of pixel graininess (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.006) artifacts. RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 had an overall non-diagnostic image quality (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>), significantly differing from RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.01) and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004). Pixel graininess was the main cause for this non-diagnostic image quality of RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6, comparing with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004) and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004). RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 also had a lower but almost diagnostic rate of aliasing artifacts (3.7<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.6).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0105" class="elsevierStylePara elsevierViewall">Concerning signal heterogeneity, RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 also had lower and significantly different ratings comparing with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2, both in breath hold (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004) and free breathing (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.01) acquisitions.</p><p id="par0110" class="elsevierStylePara elsevierViewall">All free breathing acquisitions were rated non-diagnostic (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>). The main cause for the non-diagnostic rating of RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 free breathing acquisitions were motion artifacts (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0115" class="elsevierStylePara elsevierViewall">The agreements between the two reviewers for the independent qualitative data analyses were good to excellent with Kappa<span class="elsevierStyleHsp" style=""></span>><span class="elsevierStyleHsp" style=""></span>0.8.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Discussion</span><p id="par0120" class="elsevierStylePara elsevierViewall">The results of our study revealed that breath hold RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 sequences had a significantly better overall image quality compared to their corresponding free breathing acquisitions. Therefore RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 probably should be used in partially cooperative patients, because of its short acquisition time (around 9<span class="elsevierStyleHsp" style=""></span>s). In other words, if a patient can hold his breath for 9<span class="elsevierStyleHsp" style=""></span>s, but not for 17<span class="elsevierStyleHsp" style=""></span>s then it is likely that better overall image quality will be obtained using RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 in a breath-hold approach (image quality 3.7<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.4) than using RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 in a free-breathing approach (image quality 1.9<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.9), which is consistent with other reports using lower RF and non-accelerated 3D GRE.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a></p><p id="par0125" class="elsevierStylePara elsevierViewall">Breath hold RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 had the lowest average rates amongst the breath hold sequences, and overall image quality was considered non diagnostic, although almost in the diagnostic range. Pixel graininess was the main parameter responsible for the non-diagnostic quality of RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6, with significant differences comparing to RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004). Pixel graininess reflects low SNR. As the reduction factor increases, the noise amplification associated with g-factor and reduced noise-averaging results in an increasingly fast lowering of SNR.<a class="elsevierStyleCrossRefs" href="#bib0085"><span class="elsevierStyleSup">17–20</span></a> The g-factor measures the spatially varying level of noise amplification occurring as a result of the reconstruction process. It depends not only on the number and configuration of the coils, but also with the used reduction factor.<a class="elsevierStyleCrossRefs" href="#bib0085"><span class="elsevierStyleSup">17–21</span></a> The use of a coil like the one in our study, which clearly outnumbers the acceleration factor, should expect for a better rate concerning PI artifacts (including pixel graininess) in high acceleration factors.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9,19</span></a> It is possible that pixel graininess may be an intrinsic limitation of higher PI reduction factors in the conditions of our study. Previous reports suggested that in field strengths up to 5<span class="elsevierStyleHsp" style=""></span>T, assuming that an optimal coil is used, for RFs above a certain critical limit (3–4 for undersampling along one dimension), g-factor increases exponentially.<a class="elsevierStyleCrossRefs" href="#bib0110"><span class="elsevierStyleSup">22–25</span></a> Applications that maximize baseline SNR, such as high and ultra-high field strengths may be useful in the setting of parallel imaging.<a class="elsevierStyleCrossRefs" href="#bib0090"><span class="elsevierStyleSup">18,19,24–26</span></a> In addition, it is possible that reduced noise amplification may be overcome not only with further coil developments,<a class="elsevierStyleCrossRefs" href="#bib0085"><span class="elsevierStyleSup">17,19,27</span></a> but also k-space sampling pattern improvements.<a class="elsevierStyleCrossRefs" href="#bib0140"><span class="elsevierStyleSup">28–30</span></a></p><p id="par0130" class="elsevierStylePara elsevierViewall">Signal heterogeneity, aliasing and truncation all had increasing lower rates with higher RF, although they were not found to be major causes of non diagnostic quality of RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6. Signal heterogeneity is most likely a direct result of the fact that the g factor becomes more spatially heterogeneous with increasing reduction factor. Aliasing and truncation are probably related with smaller numbers of phase encoding steps at high RF<a class="elsevierStyleCrossRefs" href="#bib0025"><span class="elsevierStyleSup">5,15</span></a> and may be potentially improved, with further sequence optimization.</p><p id="par0135" class="elsevierStylePara elsevierViewall">Our intention in performing free breathing acquisitions was to determine if image quality was superior with the short duration high RFs. Our clinical experience with currently available partial sampling and motion compensation techniques indicates that they are unreliable and often when they fail they are prone to severe motion artifacts. We had hoped that the very short acquisition times here would obviate the need for such techniques. All free breathing acquisitions were motion sensitive and rated non-diagnostic regardless of the reduction factor and therefore the acquisition duration. Our explanation for this, and for the poor performance of the short duration RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 sequence alone during breathing, is that despite the short duration of the sequence (approximately 6<span class="elsevierStyleHsp" style=""></span>s), central k-space duration was unaffected by increasing RFs, and this sampling was not sufficiently short to freeze motion. Since k-space center determines overall image quality,<a class="elsevierStyleCrossRefs" href="#bib0030"><span class="elsevierStyleSup">6,7,28,31</span></a> the preservation of a still relatively long k-space for all sequences resulted in poor image quality for all free-breathing sequences, regardless of their duration. We do not however consider that attempt to render sequences resistant to artifacts should be abandoned, rather alternative additional strategies should be examined such as different methods of k-space encoding patterns that could potentially have a higher SNR per unit time.<a class="elsevierStyleCrossRefs" href="#bib0140"><span class="elsevierStyleSup">28–30,32</span></a></p><p id="par0140" class="elsevierStylePara elsevierViewall">Respiratory triggering and navigation are routinely used in abdominal studies for T2-weighted imaging in intent to limit respiratory motion artifacts.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">33–35</span></a> These techniques are most effective and useful for long TR imaging (typically T2-weighted imaging) where the normal variations in the respiratory cycle will not significantly affect the signal. Less attention has been paid to their use in mitigating respiratory motion artifacts in T1-weighted imaging.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">33,36,37</span></a> Triggering and navigation techniques in common use tend to greatly disturb the steady state magnetization characteristically achieved with T1-weighted imaging, which can explain their ineffectiveness with volumetric 2D- and 3D-spoiled GRE T1-weighted imaging. Furthermore, these techniques can fail in cases of irregular respiration, they require additional steps in the clinical workflow, and their longer-duration do not allow dynamic post-contrast imaging, critical for abdominal imaging.<a class="elsevierStyleCrossRefs" href="#bib0190"><span class="elsevierStyleSup">38–40</span></a></p><p id="par0145" class="elsevierStylePara elsevierViewall">Our study had some limitations. We only used healthy volunteers. A future potential study, now that our preliminary results show the feasibility of RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 in breath hold acquisitions, would be to compare results of image quality and artifacts between partially cooperative patients (using breath hold RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4) and cooperative patients (using breath hold RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2). In addition, because of constraints related with using healthy subjects, we did not perform a post-contrast evaluation, which would have higher SNR than non-contrast images, potentially out weighing loss in SNR caused by parallel MRI. Another limitation was that we only performed a qualitative evaluation, which provides useful information regarding the purpose of our study: to determine the optimal 3D GRE sequence and RF combination for a given level of patient cooperation. Quantitative measurements may provide useful data in order to further optimize and compare sequences. Another limitation of our study is the relatively small sample size, with its corresponding implications in statistical power. It is conceivable that future studies may show significant differences that were not found in this study for the same tested parameters, although our rating results suggest that they probably are not the major cause of non-diagnostic image quality of higher RF sequences. Finally a major limitation of all studies that evaluate new technology is that the deficiencies revealed might more reflect the level of optimization of techniques rather than a fundamental problem with them.</p><p id="par0150" class="elsevierStylePara elsevierViewall">In conclusion, our study indicates that in partially cooperative patients (who cannot hold their breath for 17<span class="elsevierStyleHsp" style=""></span>s) it is likely that better overall image quality will be obtained using RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 in a breath-hold approach than using RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 in a free-breathing approach. It also indicates that RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 non diagnostic rates mainly reflect low SNR, despite the use of a 32-channel phased array coil, which may be an intrinsic limitation of the higher PI reduction factors employed with the tested 3D GRE sequence and used phased array coil at 1.5<span class="elsevierStyleHsp" style=""></span>T. There were no consistent advantages using high RF in free breathing approach.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Ethical responsibilities</span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Protection of human and animal subjects</span><p id="par0155" class="elsevierStylePara elsevierViewall">The authors declare that the procedures followed were in accordance with the regulations of the responsible Clinical Research Ethics Committee and in accordance with those of the World Medical Association and the Helsinki Declaration.</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Confidentiality of data</span><p id="par0160" class="elsevierStylePara elsevierViewall">The authors declare that they have followed the protocols of their work center on the publication of patient data and that all the patients included in the study have received sufficient information and have given their informed consent in writing to participate in that study.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Right to privacy and informed consent</span><p id="par0165" class="elsevierStylePara elsevierViewall">The authors have obtained the informed consent of the patients and/or subjects mentioned in the article. The author for correspondence is in possession of this document.</p></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Authorship</span><p id="par0170" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">1.</span><p id="par0175" class="elsevierStylePara elsevierViewall">Responsible for the study's integrity: RCS.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">2.</span><p id="par0180" class="elsevierStylePara elsevierViewall">Conception of the study: VH, BD, RODC, MR, LBB, CS, MDT and RCS.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">3.</span><p id="par0185" class="elsevierStylePara elsevierViewall">Design of the study: RS, VH, BD, MR and RODC.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">4.</span><p id="par0190" class="elsevierStylePara elsevierViewall">Acquisition of data: RS and LBB.</p></li><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">5.</span><p id="par0195" class="elsevierStylePara elsevierViewall">Analysis and interpretation of data: VH, BD, RODC, MR, LBB, CS, MDT and RCS.</p></li><li class="elsevierStyleListItem" id="lsti0030"><span class="elsevierStyleLabel">6.</span><p id="par0200" class="elsevierStylePara elsevierViewall">Statistical analysis: VH, BD and MR.</p></li><li class="elsevierStyleListItem" id="lsti0035"><span class="elsevierStyleLabel">7.</span><p id="par0205" class="elsevierStylePara elsevierViewall">References search: VH, BD, MR, RODC and RS.</p></li><li class="elsevierStyleListItem" id="lsti0040"><span class="elsevierStyleLabel">8.</span><p id="par0210" class="elsevierStylePara elsevierViewall">Writing of the manuscript: VH, MR, BD and RCS.</p></li><li class="elsevierStyleListItem" id="lsti0045"><span class="elsevierStyleLabel">9.</span><p id="par0215" class="elsevierStylePara elsevierViewall">Critical review with intellectually relevant contributions: VH, BD, RODC, MR, LBB, CS, MDT and RCS.</p></li><li class="elsevierStyleListItem" id="lsti0050"><span class="elsevierStyleLabel">10.</span><p id="par0220" class="elsevierStylePara elsevierViewall">Approval of the final version: VS, BD, RODC, MR, LBB, CS, MDT and RCS.</p></li></ul></p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle">Conflict of interest</span><p id="par0225" class="elsevierStylePara elsevierViewall">The authors declare not having any conflict of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:2 [ "identificador" => "xres389416" "titulo" => array:5 [ 0 => "Abstract" 1 => "Purpose" 2 => "Materials and methods" 3 => "Results" 4 => "Conclusion" ] ] 1 => array:2 [ "identificador" => "xpalclavsec367705" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xres389415" "titulo" => array:5 [ 0 => "Resumen" 1 => "Objetivo" 2 => "Material y métodos" 3 => "Resultados" 4 => "Conclusión" ] ] 3 => array:2 [ "identificador" => "xpalclavsec367704" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Subject selection" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Magnetic resonance imaging technique" ] 2 => array:3 [ "identificador" => "sec0025" "titulo" => "Magnetic resonance imaging interpretation" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0030" "titulo" => "Qualitative analyses" ] 1 => array:2 [ "identificador" => "sec0035" "titulo" => "Statistical analysis" ] ] ] ] ] 6 => array:2 [ "identificador" => "sec0040" "titulo" => "Results" ] 7 => array:2 [ "identificador" => "sec0045" "titulo" => "Discussion" ] 8 => array:3 [ "identificador" => "sec0050" "titulo" => "Ethical responsibilities" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0055" "titulo" => "Protection of human and animal subjects" ] 1 => array:2 [ "identificador" => "sec0060" "titulo" => "Confidentiality of data" ] 2 => array:2 [ "identificador" => "sec0065" "titulo" => "Right to privacy and informed consent" ] ] ] 9 => array:2 [ "identificador" => "sec0070" "titulo" => "Authorship" ] 10 => array:2 [ "identificador" => "sec0075" "titulo" => "Conflict of interest" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2011-10-19" "fechaAceptado" => "2012-06-20" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec367705" "palabras" => array:4 [ 0 => "3D gradient echo" 1 => "Parallel imaging" 2 => "32-Channel coil" 3 => "Magnetic resonance" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec367704" "palabras" => array:4 [ 0 => "3D eco de gradiente" 1 => "Imagen en paralelo" 2 => "Bobina de 32 canales" 3 => "Resonancia magnética" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span class="elsevierStyleSectionTitle">Purpose</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">To investigate whether increasing temporal resolution with higher parallel imaging (PI) reduction factors (RF) in both breath-hold and free breathing approaches, using a non-contrast T1-weighted 3D gradient echo (GRE) sequence and a 32-channel phased array coil, permits diagnostic image quality, with potential application in patients unable to cooperate with breath-hold requirements.</p> <span class="elsevierStyleSectionTitle">Materials and methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">The 9 healthy subjects (5 females and 4 males; age range was 20–49, mean 36 yrs) were recruited. A 3D GRE MR imaging of the abdomen was performed on 1.5<span class="elsevierStyleHsp" style=""></span>T MR system using a 32-element phased-array torso coil with PI RFs of 2, 4 and 6, breath hold and free breathing. Two reviewers retrospectively qualitatively evaluated all sequences for image quality, extent of artifacts, including motion, truncation, aliasing, pixel graininess and signal heterogeneity. The results were compared using Wilcoxon signed rank and a Bonferroni adjustment was applied for multiple comparisons.</p> <span class="elsevierStyleSectionTitle">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Image quality and extent of artifacts were better with breath hold than with free breathing acquisitions. The rate of artifacts increased with higher RF. The best quality was acquired with breath hold sequence using RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2. RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 had lower but diagnostic rates (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004). The severity of artifacts, mainly pixel graininess (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.004), rendered sequences with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 non-diagnostic. All sequences were non-diagnostic in free breathing acquisitions.</p> <span class="elsevierStyleSectionTitle">Conclusion</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Breath hold sequences with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 had excellent quality and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 had good quality and may be potentially used in partially cooperative patients. None of the sequences was considered diagnostic in free breathing acquisitions.</p>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span class="elsevierStyleSectionTitle">Objetivo</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Analizar si el aumento de la resolución temporal utilizando mayores factores de reducción (FR) de imagen en paralelo (IP), tanto en apnea como con respiración libre, utilizando una secuencia 3D con eco de gradiente (EG) potenciada en T1, sin contraste y una bobina de múltiples elementos (<span class="elsevierStyleItalic">phased array</span>) de 32 canales, proporciona una calidad de imagen diagnóstica, con posibilidad de ser aplicada en pacientes que no puedan cooperar para mantener la apnea.</p> <span class="elsevierStyleSectionTitle">Material y métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Se incluyeron en el estudio 9 sujetos sanos (5 mujeres y 4 varones; rango de edad: 20-49; media: 36 años). Se les realizó un estudio de RM abdominal con secuencias 3D EG en un equipo de 1,5T con bobina de múltiples elementos (<span class="elsevierStyleItalic">phased-array</span>) de 32 canales con FR de imagen en paralelo de 2, 4 y 6, en apnea y con respiración libre. Dos revisores evaluaron retrospectiva y cualitativamente la calidad de imagen de las secuencias, la magnitud de los artefactos, incluyendo los artefactos de movimiento por reducción de señales, de solapamiento (<span class="elsevierStyleItalic">aliasing</span>), de granulado de los píxeles y la heterogeneidad de la señal. Los resultados se compararon mediante la prueba de Wilcoxon de los rangos con signo y la corrección de Bonferroni para comparaciones múltiples.</p> <span class="elsevierStyleSectionTitle">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">La adquisición en apnea proporcionó mejor calidad de imagen y menos artefactos que la adquisición con respiración libre. La tasa de artefactos fue mayor para FR más altos. La mejor calidad se obtuvo con secuencias en apnea con un FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2. Un FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 presentó tasas menores pero diagnósticas (p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,004). La severidad de los artefactos, en especial el granulado de los píxeles (p<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0,004), hizo que las secuencias con un FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 no fueran diagnósticas. Ninguna de las secuencias obtenidas con respiración libre fue diagnóstica.</p> <span class="elsevierStyleSectionTitle">Conclusión</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Las secuencias obtenidas en apnea con un FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 presentaron una calidad de imagen excelente, y aquellas con un FR<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 presentaron una calidad buena y potencialmente se pueden aplicar en pacientes poco colaboradores. Ninguna de las secuencias obtenidas con respiración libre se consideró diagnóstica.</p>" ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara">Please cite this article: Herédia V, et al. Comparación de una secuencia en 3D con eco de gradiente potenciada en T1 con 3 factores de reducción de imagen en paralelo diferentes, en apnea y respiración libre, utilizando una bobina de 32 canales a 1,5T. Estudio preliminar. Radiología. 2014;65:533–540.</p>" ] ] "multimedia" => array:4 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2072 "Ancho" => 1001 "Tamanyo" => 171628 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Breath hold T1 weighted 3D GRE images with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (A), RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (B) and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 (C) of the same subject. Notice the worsening image quality with increasing RF. The image quality of (A) was considered excellent with almost no artifacts. Notice the clear definition of the liver, pancreas and spleen edges and of the portal vein branches contours. In (B) and (C) there is progressive worsening of artifacts, mainly pixel graininess and central aliasing in the center of the image. Although there is only slight blurring of the liver structures in RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (B), artifacts present in image (C) cause substantial blurring and lower definition of the liver, rendering (C) non-diagnostic.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2139 "Ancho" => 1001 "Tamanyo" => 165047 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Free breathing T1 weighted 3D GRE images with RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 (A), RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 (B) and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 (C) of the same subject. All images were considered non-diagnostic. Notice the presence of motion artifacts with all RFs. In (C) pixel graininess and aliasing artifacts are also clearly evident in the center of the image contributing furthermore for image degradation.</p>" ] ] 2 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sequence \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Plane \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TR/TE (ms)<a class="elsevierStyleCrossRef" href="#tblfn0010"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Acquisition time (s) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Flip angle (°) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Thickness/gap (mm) <a class="elsevierStyleCrossRef" href="#tblfn0015"><span class="elsevierStyleSup">c</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FOV (mm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Matrix \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Respiratory control \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">RF<a class="elsevierStyleCrossRef" href="#tblfn0020"><span class="elsevierStyleSup">d</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Phase encoding direction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Bandwidth (Hertz/pixel) \t\t\t\t\t\t\n \t\t\t\t</td></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3D GRE (VIBE)<a class="elsevierStyleCrossRef" href="#tblfn0005"><span class="elsevierStyleSup">a</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Axial \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.8/1.7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17; 8.7; 6.4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3/0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">263<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>350<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>252 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">160<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>256 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Breath hold/free breathing \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2; 4 (2<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2)<a class="elsevierStyleCrossRef" href="#tblfn0025"><span class="elsevierStyleSup">e</span></a>; 6 (3<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">A–P<a class="elsevierStyleCrossRef" href="#tblfn0030"><span class="elsevierStyleSup">f</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">350 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab599940.png" ] ] ] "notaPie" => array:6 [ 0 => array:3 [ "identificador" => "tblfn0005" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara">T1-weighted 3D gradient-echo sequence (volume interpolated breath hold examination).</p>" ] 1 => array:3 [ "identificador" => "tblfn0010" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara">TR/TE – repetition time/echo time (millisecond).</p>" ] 2 => array:3 [ "identificador" => "tblfn0015" "etiqueta" => "c" "nota" => "<p class="elsevierStyleNotepara">mm – millimeter.</p>" ] 3 => array:3 [ "identificador" => "tblfn0020" "etiqueta" => "d" "nota" => "<p class="elsevierStyleNotepara">RF – parallel imaging reduction factor (RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2, RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6).</p>" ] 4 => array:3 [ "identificador" => "tblfn0025" "etiqueta" => "e" "nota" => "<p class="elsevierStyleNotepara">Parallel imaging reduction factor product (phase encoding<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>3D). Integrated reference lines were used. 24 reference lines in the phase direction (all RF) and 24 reference lines in the slice direction (RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 only).</p>" ] 5 => array:3 [ "identificador" => "tblfn0030" "etiqueta" => "f" "nota" => "<p class="elsevierStyleNotepara">Anterior–posterior.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Detailed parameters of 3D gradient-echo (GRE) sequences.</p>" ] ] 3 => array:7 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Parameters \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="3" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">Breath hold</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="3" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">Free breathing</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">RF<a class="elsevierStyleCrossRef" href="#tblfn0035"><span class="elsevierStyleSup">a</span></a><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" style="border-bottom: 2px solid black">RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6 \t\t\t\t\t\t\n \t\t\t\t</td></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Image quality \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.83<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.37<a class="elsevierStyleCrossRef" href="#tblfn0040"><span class="elsevierStyleSup">b</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.72<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.61<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.89<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.87 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.05<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.08 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.5<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.89 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Motion \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.83<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.61<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.39<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.28<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.72<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.14 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Truncation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.16<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.89 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.82 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.72<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.04 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.28<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.65 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.11<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.66 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Aliasing \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.94<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.55<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.72<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.63 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.78<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.63 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.94<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.90 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pixel graininess \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.61<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.59 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.22<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.63 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.16<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.46 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.39<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.89<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.31 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Signal heterogeneity \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.55<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.83 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.78<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.85 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.11<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.11<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.22<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.39<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.06 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab599939.png" ] ] ] "notaPie" => array:2 [ 0 => array:3 [ "identificador" => "tblfn0035" "etiqueta" => "a" "nota" => "<p class="elsevierStyleNotepara">RF – parallel imaging reduction factor (RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2, RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>4 and RF<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>6).</p>" ] 1 => array:3 [ "identificador" => "tblfn0040" "etiqueta" => "b" "nota" => "<p class="elsevierStyleNotepara">Mean and standard deviation.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Results of the qualitative analyses.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:40 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Time-efficient breath-hold abdominal MRI at 3.0<span class="elsevierStyleHsp" style=""></span>T" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.L. Lauzon" 1 => "H. Mahallati" 2 => "R. Frayne" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2214/AJR.05.1157" "Revista" => array:6 [ "tituloSerie" => "AJR Am J Roentgenol" "fecha" => "2006" "volumen" => "187" "paginaInicial" => "649" "paginaFinal" => "657" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16928926" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parallel acquisition techniques for accelerated volumetric interpolated breath-hold examination magnetic resonance imaging of the upper abdomen: assessment of image quality and lesion conspicuity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F.M. Vogt" 1 => "G. Antoch" 2 => "P. Hunold" 3 => "S. Maderwald" 4 => "M.E. Ladd" 5 => "J.F. Debatin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.20288" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2005" "volumen" => "21" "paginaInicial" => "376" "paginaFinal" => "382" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15779026" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parallel imaging of the abdomen" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D.J. Margolis" 1 => "R. Bammer" 2 => "L.C. Chow" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Top Magn Reson Imaging" "fecha" => "2004" "volumen" => "15" "paginaInicial" => "197" "paginaFinal" => "206" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15480001" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diagnostic approach to protocoling and interpreting MR studies of the abdomen and pelvis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.C. Semelka" 1 => "S.M. Hussain" 2 => "Z. Firat" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "titulo" => "Abdominal-pelvic MRI" "edicion" => "2nd ed." "serieFecha" => "2006" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Artifacts in body MR imaging: their appearance and how to eliminate them" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Stadler" 1 => "W. Schima" 2 => "A. Ba-Ssalamah" 3 => "J. Kettenbach" 4 => "E. Eisenhuber" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00330-006-0470-4" "Revista" => array:6 [ "tituloSerie" => "Eur Radiol" "fecha" => "2007" "volumen" => "17" "paginaInicial" => "1242" "paginaFinal" => "1255" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17149625" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Motion-induced artifacts" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.G. Mitchell" 1 => "M.S. Cohen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "edicion" => "2nd ed." "titulo" => "MRI principles" "fecha" => "2004" "editorial" => "Saunders" "editorialLocalizacion" => "Philadelphia" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Strategies of fast imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.G. Mitchell" 1 => "M.S. Cohen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ "edicion" => "2nd ed." "titulo" => "MRI principles" "fecha" => "2004" "editorial" => "Saunders" "editorialLocalizacion" => "Philadelphia" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Klessen" 1 => "P. Asbach" 2 => "T.J. Kroencke" 3 => "T. Fischer" 4 => "C. Warmuth" 5 => "A. Stemmer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.20293" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2005" "volumen" => "21" "paginaInicial" => "576" "paginaFinal" => "582" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15834908" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.A. McKenzie" 1 => "D. Lim" 2 => "B.J. Ransil" 3 => "M. Morrin" 4 => "I. Pedrosa" 5 => "E.N. Yeh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1148/radiol.2302021230" "Revista" => array:7 [ "tituloSerie" => "Radiology" "fecha" => "2004" "volumen" => "230" "paginaInicial" => "589" "paginaFinal" => "594" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14699184" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1556086415317652" "estado" => "S300" "issn" => "15560864" ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An introduction to coil array design for parallel MRI" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M. Ohliger" 1 => "D. Sodickson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/nbm.1046" "Revista" => array:7 [ "tituloSerie" => "NMR Biomed" "fecha" => "2006" "volumen" => "19" "paginaInicial" => "300" "paginaFinal" => "315" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16705631" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1556086415319316" "estado" => "S300" "issn" => "15560864" ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New horizons in MR technology: MR coil designs and trends" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "H. Fujita" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med Sci" "fecha" => "2007" "volumen" => "6" "paginaInicial" => "29" "paginaFinal" => "42" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17510540" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current concepts and advances in clinical parallel magnetic resonance imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R. Bammer" 1 => "S. Schoenberg" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Top Magn Reson Imaging" "fecha" => "2004" "volumen" => "15" "paginaInicial" => "129" "paginaFinal" => "158" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15479997" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Highly parallel volumetric imaging with a 32-element RF coil array" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Zhu" 1 => "C.J. Hardy" 2 => "D.K. Sodickson" 3 => "R.O. Giaquinto" 4 => "C.L. Dumoulin" 5 => "G. Kenwood" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.20209" "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2004" "volumen" => "52" "paginaInicial" => "869" "paginaFinal" => "877" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15389961" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Rapid volumetric MRI using parallel imaging with order-of-magnitude accelerations and a 32-element RF coil array: feasibility and implications" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.K. Sodickson" 1 => "C.J. Hardy" 2 => "Y. Zhu" 3 => "R.O. Giaquinto" 4 => "P. Gross" 5 => "G. Kenwood" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.acra.2005.01.012" "Revista" => array:6 [ "tituloSerie" => "Acad Radiol" "fecha" => "2005" "volumen" => "12" "paginaInicial" => "626" "paginaFinal" => "635" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15866137" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Zhuo" 1 => "R. Gullapalli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1148/rg.261055134" "Revista" => array:6 [ "tituloSerie" => "Radiographics" "fecha" => "2006" "volumen" => "26" "paginaInicial" => "275" "paginaFinal" => "297" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16418258" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parallel MR imaging: a user's guide" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.F. Glockner" 1 => "H.H. Hu" 2 => "D.W. Stanley" 3 => "L. Angelos" 4 => "K. King" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1148/rg.255045202" "Revista" => array:6 [ "tituloSerie" => "Radiographics" "fecha" => "2005" "volumen" => "25" "paginaInicial" => "1279" "paginaFinal" => "1297" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16160112" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parallel magnetic resonance imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D. Larkman" 1 => "R. Nunes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1088/0031-9155/52/7/R01" "Revista" => array:6 [ "tituloSerie" => "Phys Med Biol" "fecha" => "2007" "volumen" => "52" "paginaInicial" => "R15" "paginaFinal" => "R55" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17374908" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parallel imaging in cardiovascular MRI: methods and applications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "T. Niendorf" 1 => "D. Sodickson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/nbm.1051" "Revista" => array:6 [ "tituloSerie" => "NMR Biomed" "fecha" => "2006" "volumen" => "19" "paginaInicial" => "325" "paginaFinal" => "341" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16705633" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "128-channel body MRI with a flexible high-density receiver-coil array" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.J. Hardy" 1 => "R.O. Giaquinto" 2 => "J.E. Piel" 3 => "K.W. Rohling" 4 => "L. Marinelli" 5 => "D.J. Blezek" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.21463" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2008" "volumen" => "28" "paginaInicial" => "1219" "paginaFinal" => "1225" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18972330" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Half-Fourier-acquisition single-shot turbo spin-echo (HASTE) MRI of the lung at 3<span class="elsevierStyleHsp" style=""></span>Tesla using parallel imaging with 32-receiver channel technology" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Henzler" 1 => "O. Dietrich" 2 => "R. Krissak" 3 => "T. Wichmann" 4 => "T. Lanz" 5 => "M.F. Reiser" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.21882" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2009" "volumen" => "30" "paginaInicial" => "541" "paginaFinal" => "546" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19711408" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Blaimer" 1 => "F. Breuer" 2 => "M. Mueller" 3 => "R.M. Heidemann" 4 => "M.A. Griswold" 5 => "P.M. Jakob" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Top Magn Reson Imaging" "fecha" => "2004" "volumen" => "15" "paginaInicial" => "223" "paginaFinal" => "236" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15548953" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Specific coil design for SENSE: a six-element cardiac array" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Weiger" 1 => "K.P. Pruessmann" 2 => "C. Leussler" 3 => "P. Röschmann" 4 => "P. Boesiger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2001" "volumen" => "45" "paginaInicial" => "495" "paginaFinal" => "504" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11241709" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.A. de Zwart" 1 => "P.J. Ledden" 2 => "P. Kellman" 3 => "P. van Gelderen" 4 => "J.H. Duyn" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.10169" "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2002" "volumen" => "47" "paginaInicial" => "1218" "paginaFinal" => "1227" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12111969" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Electrodynamics and ultimate SNR in parallel MR imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F. Wiesinger" 1 => "P. Boesiger" 2 => "K.P. Pruessmann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.20183" "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2004" "volumen" => "52" "paginaInicial" => "376" "paginaFinal" => "390" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15282821" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.A. Ohliger" 1 => "A.K. Grant" 2 => "D.K. Sodickson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.10597" "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2003" "volumen" => "50" "paginaInicial" => "1018" "paginaFinal" => "1030" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14587013" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7<span class="elsevierStyleHsp" style=""></span>Tesla" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Adriany" 1 => "P.F. Van de Moortele" 2 => "J. Ritter" 3 => "S. Moeller" 4 => "E.J. Auerbach" 5 => "C. Akgün" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.21488" "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2008" "volumen" => "59" "paginaInicial" => "590" "paginaFinal" => "597" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18219635" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R. Lattanzi" 1 => "A.K. Grant" 2 => "J.R. Polimeni" 3 => "M.A. Ohliger" 4 => "G.C. Wiggins" 5 => "L.L. Wald" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/nbm.1435" "Revista" => array:6 [ "tituloSerie" => "NMR Biomed" "fecha" => "2010" "volumen" => "23" "paginaInicial" => "142" "paginaFinal" => "151" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19904727" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "K-space in the clinic" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.B. Paschal" 1 => "H.D. Morris" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.10451" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2004" "volumen" => "19" "paginaInicial" => "145" "paginaFinal" => "159" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14745747" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of motion correction effect and image quality with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) and parallel imaging acquisition technique in the upper abdomen" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y. Hirokawa" 1 => "H. Isoda" 2 => "Y.S. Maetani" 3 => "S. Arizono" 4 => "K. Shimada" 5 => "K. Togashi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.21538" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2008" "volumen" => "28" "paginaInicial" => "957" "paginaFinal" => "962" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18821630" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K.T. Block" 1 => "M. Uecker" 2 => "J. Frahm" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.21236" "Revista" => array:6 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2007" "volumen" => "57" "paginaInicial" => "1086" "paginaFinal" => "1098" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17534903" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of incomplete breath-holding on 3D MR image quality" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.H. Maki" 1 => "T.L. Chenevert" 2 => "M.R. Prince" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "1997" "volumen" => "7" "paginaInicial" => "1132" "paginaFinal" => "1139" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9400859" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Free-breathing renal magnetic resonance angiography with steady-state free-precession and slab-selective spin inversion combined with radial k-space sampling and water-selective excitation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Katoh" 1 => "E. Spuentrup" 2 => "M. Stuber" 3 => "R. Hoogeveen" 4 => "R.W. Günther" 5 => "A. Buecker" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/mrm.20467" "Revista" => array:7 [ "tituloSerie" => "Magn Reson Med" "fecha" => "2005" "volumen" => "53" "paginaInicial" => "1228" "paginaFinal" => "1233" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15844141" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0169500211002698" "estado" => "S300" "issn" => "01695002" ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Navigated abdominal T1-W MRI permits free-breathing image acquisition with less motion artifact" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S.S. Vasanawala" 1 => "Y. Iwadate" 2 => "D.G. Church" 3 => "R.J. Herfkens" 4 => "A.C. Brau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00247-009-1502-4" "Revista" => array:6 [ "tituloSerie" => "Pediatr Radiol" "fecha" => "2010" "volumen" => "40" "paginaInicial" => "340" "paginaFinal" => "344" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20066407" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Liver: T2-weighted MR imaging with breath-hold fast-recovery optimized fast spin-echo compared with breath-hold half-Fourier and non-breath-hold respiratory-triggered fast spin-echo pulse sequences" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Augui" 1 => "O. Vignaux" 2 => "C. Argaud" 3 => "J. Coste" 4 => "H. Gouya" 5 => "P. Legmann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1148/radiol.2233011011" "Revista" => array:6 [ "tituloSerie" => "Radiology" "fecha" => "2002" "volumen" => "223" "paginaInicial" => "853" "paginaFinal" => "859" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12034959" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y. Hirokawa" 1 => "H. Isoda" 2 => "Y.S. Maetani" 3 => "S. Arizono" 4 => "K. Shimada" 5 => "K. Togashi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2214/AJR.07.3657" "Revista" => array:6 [ "tituloSerie" => "AJR Am J Roentgenol" "fecha" => "2008" "volumen" => "191" "paginaInicial" => "1154" "paginaFinal" => "1158" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18806158" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Water excitation MPRAGE: an alternative sequence for postcontrast imaging of the abdomen in noncooperative patients at 1.5<span class="elsevierStyleHsp" style=""></span>Tesla and 3.0<span class="elsevierStyleHsp" style=""></span>Tesla MRI" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E. Altun" 1 => "R.C. Semelka" 2 => "B.M. Dale" 3 => "J. Elias Jr." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.21346" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2008" "volumen" => "27" "paginaInicial" => "1146" "paginaFinal" => "1154" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18425826" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Respiratory navigated free breathing 3D spoiled gradient-recalled echo sequence for contrast-enhanced examination of the liver: diagnostic utility and comparison with free breathing and breath-hold conventional examinations" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P.M. Young" 1 => "A.C. Brau" 2 => "Y. Iwadate" 3 => "S. Vasanawala" 4 => "B.L. Daniel" 5 => "A. Tamrazi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2214/AJR.09.3892" "Revista" => array:6 [ "tituloSerie" => "AJR Am J Roentgenol" "fecha" => "2010" "volumen" => "195" "paginaInicial" => "687" "paginaFinal" => "691" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20729447" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantification of missing and overlapping data in multiple breath hold abdominal imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "O. Noterdaeme" 1 => "F. Gleeson" 2 => "R.R. Phillips" 3 => "M. Brady" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ejrad.2007.02.028" "Revista" => array:6 [ "tituloSerie" => "Eur J Radiol" "fecha" => "2007" "volumen" => "64" "paginaInicial" => "273" "paginaFinal" => "278" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17418517" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Navigator- triggered prospective acquisition correction (PACE) technique vs. conventional respiratory-triggered technique for free-breathing 3D MRCP: an initial prospective comparative study using healthy volunteers" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Morita" 1 => "E. Ueno" 2 => "K. Suzuki" 3 => "H. Machida" 4 => "M. Fujimura" 5 => "S. Kojima" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/jmri.21485" "Revista" => array:6 [ "tituloSerie" => "J Magn Reson Imaging" "fecha" => "2008" "volumen" => "28" "paginaInicial" => "673" "paginaFinal" => "677" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18777550" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of respiratory suppression methods and navigator locations for MR coronary angiography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.V. McConnell" 1 => "V.C. Khasgiwala" 2 => "B.J. Savord" 3 => "M.H. Chen" 4 => "M.L. Chuang" 5 => "R.R. Edelman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2214/ajr.168.5.9129447" "Revista" => array:6 [ "tituloSerie" => "AJR Am J Roentgenol" "fecha" => "1997" "volumen" => "168" "paginaInicial" => "1369" "paginaFinal" => "1375" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9129447" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735107/0000005600000006/v1_201412120104/S2173510713000049/v1_201412120104/en/main.assets" "Apartado" => array:4 [ "identificador" => "8098" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original reports" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735107/0000005600000006/v1_201412120104/S2173510713000049/v1_201412120104/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173510713000049?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 3 | 0 | 3 |
2024 October | 37 | 2 | 39 |
2024 September | 26 | 0 | 26 |
2024 August | 18 | 0 | 18 |
2024 July | 15 | 0 | 15 |
2024 June | 14 | 0 | 14 |
2024 May | 11 | 0 | 11 |
2024 April | 7 | 0 | 7 |
2024 March | 10 | 2 | 12 |
2024 February | 13 | 0 | 13 |
2024 January | 6 | 0 | 6 |
2023 December | 13 | 0 | 13 |
2023 November | 13 | 0 | 13 |
2023 October | 18 | 0 | 18 |
2023 September | 14 | 0 | 14 |
2023 August | 8 | 0 | 8 |
2023 July | 1 | 0 | 1 |
2023 June | 8 | 0 | 8 |
2023 May | 10 | 0 | 10 |
2023 April | 13 | 0 | 13 |
2023 March | 6 | 2 | 8 |
2023 February | 2 | 0 | 2 |
2023 January | 1 | 0 | 1 |
2018 May | 6 | 1 | 7 |
2018 April | 22 | 4 | 26 |
2018 March | 12 | 1 | 13 |
2018 February | 83 | 3 | 86 |
2018 January | 41 | 3 | 44 |
2017 December | 86 | 1 | 87 |
2017 November | 37 | 3 | 40 |
2017 October | 15 | 1 | 16 |
2017 September | 19 | 10 | 29 |
2017 August | 21 | 4 | 25 |
2017 July | 25 | 5 | 30 |
2017 June | 30 | 20 | 50 |
2017 May | 33 | 6 | 39 |
2017 April | 30 | 9 | 39 |
2017 March | 38 | 14 | 52 |
2017 February | 12 | 4 | 16 |
2017 January | 13 | 2 | 15 |
2016 December | 23 | 6 | 29 |
2016 November | 15 | 4 | 19 |
2016 October | 22 | 4 | 26 |
2016 September | 19 | 6 | 25 |
2016 August | 9 | 9 | 18 |
2016 July | 22 | 3 | 25 |
2016 June | 33 | 7 | 40 |
2016 May | 23 | 15 | 38 |
2016 April | 15 | 26 | 41 |
2016 March | 26 | 15 | 41 |
2016 February | 27 | 20 | 47 |
2016 January | 24 | 20 | 44 |
2015 December | 23 | 13 | 36 |
2015 November | 15 | 16 | 31 |
2015 October | 29 | 15 | 44 |
2015 September | 22 | 4 | 26 |
2015 August | 22 | 3 | 25 |
2015 July | 16 | 3 | 19 |
2015 June | 13 | 8 | 21 |
2015 May | 17 | 4 | 21 |
2015 March | 2 | 1 | 3 |
2015 February | 1 | 1 | 2 |
2015 January | 0 | 1 | 1 |