metricas
covid
Buscar en
Revista Colombiana de Reumatología
Toda la web
Inicio Revista Colombiana de Reumatología Enfermedades osteocondensantes: una nueva visión clínico-radiológica soportad...
Journal Information
Vol. 16. Issue 1.
Pages 46-60 (March 2009)
Share
Share
Download PDF
More article options
Vol. 16. Issue 1.
Pages 46-60 (March 2009)
Full text access
Enfermedades osteocondensantes: una nueva visión clínico-radiológica soportada en la genética y la inmunoosteología
Osteocondensant diseases. A new clinical-radiological vision supported in genetics and osteoimmunology
Visits
10670
Jimi Mejía-Vallejo1, Enrique Calvo2, José Félix Restrepo3, Antonio Iglesias-Gamarra3
1 Internista Reumatólogo, Universidad Nacional de Colombia
2 Radiólogo, Profesor Asociado de Radiología
3 Internista y Reumatólogo, Profesor Titular de Reumatología
Related content
Rev Colomb Reumatol. 2009;16:14510.1016/S0121-8123(09)70112-4
This item has received
Article information
Resumen

Las alteraciones en el remodelado óseo llevan al incremento o disminución de la masa ósea, generando daño de la microarquitectura ósea, lo cual incrementa el riesgo de fractura. Las patologías con incremento de la densidad conducen a diversos procesos osteocondensantes genéticamente dirigidos. La osteocondensación es explicada actualmente por alteración en la función del osteoclasto asociada a una deficiente función de la resorción ósea, alteración en la función del osteoblasto que genera un incremento anormal en la formación ósea, o un imbalance homeostático entre los dos procesos; la expresión clínica y radiológica de estas entidades puede darse en etapas tempranas del desarrollo o en la vida adulta dependiendo del componente autosómico recesivo o dominante respectivamente. En esta revisión, se discute la clasificación basada en el desorden funcional de las células óseas y las principales características clínicas y radiológicas que permiten un abordaje diagnóstico sencillo y aplicable en la práctica clínica.

Palabras clave:
osteoesclerosis
hiperostosis
osteoclasto
osteoblasto
Summary

The alterations in osseous remodeling lead to the increase or decrease of the osseous mass, generating damage to the osseous micro-architecture, which increases the risk of fracture. The pathologies with increase in osseous density lead to different genetically directed osteocondensing processes. The osteocondensing is currently explained by alteration in the function of the osteoclast, associated with a deficient function of the osseous resorption, an alteration in the osteoblast function, which generates an abnormal increase in the osseous formation, or a homeostatic imbalance between the two processes; the clinical and radiological expression of these diseases can take place in early stages of the development, or in the adult life, depending on the recessive or dominant autosomic component, respectively. In this review, the classification based on the functional disorder of the bone cell is discussed, as well as the main clinical and radiological characteristics than permit a simple and applicable diagnostic approach in the clinical practice.

Key words:
osteosclerosis
hyperostosis
osteoclast
osteoblast
Full text is only aviable in PDF
Referencias
[1.]
M. Walsh, N. Kim, Y. Kadono, J. Rho, S. Lee, J. Lorenzo, et al.
Osteoimmunology: Interplay Between the Immune System and Bone Metabolism.
[2.]
J. Quinn, K. Itoh, N. Udagawa, K. Hausler, H. Yasuda, N. Shima, et al.
Transforming growth factor B affects osteoclast differentiation via direct and indirect actions.
J Bone Miner, 16 (2001), pp. 1784-1794
[3.]
A. Greenspan.
Sclerosing bone dysplasias –a targetsite approach.
Skelatal Radiol, 20 (1991), pp. 561-583
[4.]
L. Duong, P. lakkakorpi, I. Nakamura, G. Rodan.
Integrins and signaling in osteoclast function.
Matrix Biol, 19 (2000), pp. 97-105
[5.]
J. Takagi, B. Petre, T. Walz, T. Springer.
Global conformational rearrangements in integrin extracellular domans in outside-in and inside-out signaling.
Cell, 110 (2002), pp. 599-611
[6.]
S. Teitelbaum.
Osteoclast: What Do They Do and How Do They Do it?.
Am J Pathol, 170 (2007), pp. 427-435
[7.]
A. Frattini, P. Orchanrd, C. Sobacchi, S. Giliani, M. Abinum, J. Mattsson, et al.
Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis.
Nat Genet, 25 (2000), pp. 343-346
[8.]
W. Balemans, L. Van Wesenbeeck, W. Van Hul.
A Clinical and Molecular Overview of the Human Osteopetrosis.
Calcif Tissue Int, 77 (2005), pp. 263-274
[9.]
J. Tolar, S. Teitelbaum, P. Orchard.
Osteopetrosis.
N Engl J Med, 351 (2004), pp. 2839-2849
[10.]
A. Frattini, A. Pangrazio, L. Susani.
Chloride channel CICN7 mutations are responsable for severe recessive, dominant, and intermediate osteopetrosis.
The J Bone and Miner Res, 18 (2003), pp. 1740-1747
[11.]
O. Benichou, J. Laredo, M. Vernejoul.
Type II autosomal dominant osteopetrosis (Albers-Schönberg disease): clinical and radiological manifestation in 42 patients.
Bone, 26 (2000), pp. 87-93
[12.]
M. Vernejoul.
Sclerosing bone disorders.
Best Pract Res Clin Rheum, 22 (2008), pp. 71-83
[13.]
C. Toro, M. Quintana, J. Restrepo, F. Rondón, F. Cons, A. Iglesias, et al.
Osteoesclerosis axiales. Propuesta para una nueva aproximación diagnóstica.
Rev Colomb Reumatol, 11 (2004), pp. 341-346
[14.]
S. Waguespack, S. Hui, L. DiMeglio, M. Econs.
Autosomal Dominant Osteopetrosis: Clinical Severity and Natural History of 94 Subjects with a Chloride Channel 7 Gene Mutation.
The J Clin Endocrinol Metab, 92 (2007), pp. 771-778
[15.]
B. Gelb, G. Shi, H. Champan, R. Desnick.
Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency.
Science, 273 (1996), pp. 1236-1238
[16.]
A. Iglesias-Gamarra, J. Vázquez-Lamadrid, C. Abud.
Enfermedades metabólicas del hueso.
Bogotá – Colombia, Instituto Nacional de Salud, II (1992), pp. 608-613
[17.]
L. Marreño, V. Rondón, D. Barbán, E. Morales, F. Quintana.
Estudio en una familia de una paciente con picnodisostosis.
Rev Cubana Ortop Traumatol, 18 (2004), pp. 34-40
[18.]
G. Russel, G. Mueller, C. Shipman, P. Croucher.
Clinical discords in bone resortion.
Novartis Found Symp, 232 (2001), pp. 251-257
[19.]
E. Gazzerro, E. Canalis.
Bone morphogenetic proteins and their antagonists.
Rev Endocr Metab Disord, 7 (2006), pp. 51-65
[20.]
S. Caputo, J. Couprie, I. Duband-Goulet, E. Konde, F. Lin, S. Braund, et al.
The Carboxyl-terminal Nucleoplasmic Region of MAN1 Exhibits a DNA Binding Winged Helix Domain.
The J Biol Chem, 281 (2006), pp. 18208-18215
[21.]
L. Holmer, H. Worman.
Inner nuclear membrane proteins: functions and targeting.
CMLS Cell Mol Life SCi, (2001), pp. 1741-1747
[22.]
Y. Li, Z. Xiao.
Advances in Runx2 regulation and its isoforms.
Med Hypotheses, 68 (2007), pp. 169-175
[23.]
U. Valcourt, A. Moustakas.
BMP signaling in Osteogenesis Bone Remodeling and Repair.
Europ J Trauma, 5 (2005), pp. 464-479
[24.]
P. Elke, E. Boudin, W. Van Hul.
Wnt signaling: A Win For bone.
Arch Biochem and Bioph, 473 (2008), pp. 112-116
[25.]
F. Liu, S. Kohlmeier, C. Wang.
Wnt signaling and skeletal development.
Cell Signal, 20 (2008), pp. 999-1009
[26.]
B. Zimmermann.
Effects of pyrophosphate on desmal and endocondral mineralization and TNAP activity in organoid culture.
Ann Anat, (2008), pp. 167-177
[27.]
K. Gurley, R. Reimer, D. Kingsley.
Biochemical and Genetic Analysis of ANK in Arthritis and Bone Disease.
The Am J Hum Gen, 79 (2006), pp. 1017-1029
[28.]
W. Balemans, N. Patel, M. Ebeling, E. Van Hul, W. Wuyts, C. Lacza, et al.
Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease.
J Med Genet, 39 (2002), pp. 91-97
[29.]
F. Vanhoenacker, W. Balemans, G. Tan, F. Dikkers, A. De Schepper, D. Mathysen, et al.
Van Buchem disease: lifetime evolution of radioclinical feactures.
Skeletal Radiol, 32 (2003), pp. 708-718
[30.]
W. Balemans, J. Van Den Ende, A. Freire, F. Dikkers, P. Willems, F. Vanhoenacker, et al.
Localization of the gene for Sclerosteosis to the van Buchem disease-Gene region on chromosome 17q12-q21.
Am J Hum Genet, 64 (1999), pp. 1661-1669
[31.]
L. Boiden, J. Mao, J. Belsky, L. Mitzner, A. Farhi, M. Mitnick, et al.
High bone density due to mutation in LDLreceptor- relat protein 5.
N Engl J Med, 346 (2002), pp. 1513-1521
[32.]
M. Johnson, G. Gong, W. Kimberling, S. Recker, D. Kimmel, R. Recker.
Linkage of a gene causing high bone mass to human chromosome 11(11q12-13).
Am J Hum Genet, 60 (1997), pp. 1326-1332
[33.]
Balemans W, Piters E, Cleiren E, Ai M, Van Wesenbeeck L, Warman M, et al. The Binding Between Sclerostatin and LRP5 in altered by Dkk1 and by High-Bone Mass LRP5 mutations. Calcif Tissue Int 2008 in press.
[34.]
D. Millar, D. Maisels, J. Batstone, B. Yates.
Craneofacial Surgery in Craniometaphyseal dysplasia.
Am J Surg, 113 (1967), pp. 615-621
[35.]
E. Reichenberger, V. Tiziani, S. Watanabe, L. Park, Y. Ueki, C. Santanna, et al.
Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK.
Am J Hum Genet, (2001), pp. 1321-1326
[36.]
R. Day, T. Park, J. Ojemann, B. Kaufman.
Foramen magnum descompresssion for cervicomedulary encroachment in craniometaphyseal dysplasia: Case report.
Neurosurgery, 41 (1997), pp. 960-964
[37.]
W. Sheppard, R. Shprintzen, Tatums, C. Woods.
Craniometaphyseal dysplasia: a case report and review of medical and surgical management.
Int J Pediatr Otorhinolaryngo, 67 (2003), pp. 71-77
[38.]
F. Lin, D. Blake, I. Callebaut, I. Skerjanc, L. Holmer, M. McBurney, et al.
MAN1, an inner nuclear membrane protein that shares the LEM domain with laminaassociated polypeptide 2 and emerin.
J Biol Chem, 275 (2000), pp. 4840-4847
[39.]
A. Couto, J. Bruges-Armas, C. Peach, K. Chapman, M. Brown, B. Wordsworth, et al.
A Novel LEMD3 Mutation Common to Patients with Osteopoiquilosis With and Without Melorheostosis.
Calcif Tissue Int, 81 (2007), pp. 81-84
[40.]
A. Ariza, E. Egea, F. Loeza, C. Barrera, M. Donato, A. Iglesias, et al.
El pleomorfismo clínico de la escleroderma lineal.
Acta Med Col, 14 (1989), pp. 71-81
[41.]
B. Menten, K. Buysse, F. Zahir, J. Hellemans, S. Hamilton, T. Costa, et al.
Osteopoiquilosis, short stature and mental retardation as key feactures of a new microdelection syndrome on 12q14.
J Med Genet, 44 (2007), pp. 264-268
[42.]
L. Chaudier-Mnaymneh, Broder, W. Mnaymneh.
Lobular carcinoma of the breast metastasi to bone with usual clinical Cancer, 52 (1984), pp. 1801-1803
[43.]
H. Takayanagy.
Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems.
Nat Rev Immunol, 7 (2007), pp. 292-304
[44.]
H. Data, W. Ng, J. Walker, S. Tuck, S. Varanasi.
The cell biology of bone metabolism.
J Clin Pathol, 61 (2008), pp. 577-587
[45.]
K. Iba, J. Takada, H. Kamasaki, T. Oda, N. Hatakeyama, T. Wada, et al.
A significant improvement in lower limb pain after treatment with alendronate in two cases of Camurati-Engelmann disease.
J Bone Miner Metab, 26 (2008), pp. 107-109
[46.]
J. Bondestam, M. Mäyränpää, S. Ikegawa, E. Marttinen, H. Kröger, O. Mäkitie.
Bone biopsy and densitometry findings in a child with Camurati-Engelmann disease.
Clin Rheumatol, 26 (2007), pp. 1773-1777
[47.]
K. Janssen, R. Gershoni-Baruch, E. Van Hul, R. Brik, N. Guañabens, N. Migone, et al.
Localisation of the gene causing diaphyseal dysplasia Camurati- Engelmann to chromosome 19q13.
J Med Genet, 37 (2000), pp. 245-249
[48.]
A. Iglesias-Gamarra, J.F. Restrepo, M. Lacouture, A. Iglesias- Rodríguez, E. Calvo, F. Rondon.
Distrofia ósea mixta no esclerosante Paquidermoperiostosis y displasia diafisiaria tipo Engelmann-Camurati.
Rev española de enf. metabólicas óseas, 9 (2000), pp. 178-183
[49.]
M. Hernández, P. Peris, N. Guañabens, L. Alvarez, A. Monegal, F. Pons, et al.
Biochemical Markers of Bone Turnover in Camurati-Engelmann Disease: A Report on Four Cases in One Family.
Calcif Tissue Int, 61 (1997), pp. 48-51
[50.]
K. Janssens, F. Vanhoenacker.
Bonduelle. Camurati- Engelmann Disease: revive of the clinical, radiological and molecular data of 24 families and implications towards diagnostics and treatment.
J Med Genet, 43 (2006), pp. 1-11
[51.]
L. Van Wesenbeek, E. Cleiren, J. Gram, R. Beals, O. Bénichu, D. Scopellini, et al.
Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density.
Am J Hum Genet, 72 (2003), pp. 763-771
[52.]
C. Hernandez-Cassis, C. Vogel, T. Hernandez, M. Econs, M. Iglesias, A. Iglesias, et al.
Autosomal Dominant Hyperostosis/Osteosclerosis with High Serum Alkaline Phosphatase Activity.
J Clin Endocrinol Metab, 88 (2003), pp. 2650-2655
Copyright © 2009. Asociación Colombiana de Reumatología
Download PDF
Article options