metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Células madre e ingeniería tisular ósea. Bases celulares y perspectivas terap...
Journal Information
Vol. 47. Issue 5.
Pages 362-374 (January 2003)
Share
Share
Download PDF
More article options
Vol. 47. Issue 5.
Pages 362-374 (January 2003)
Full text access
Células madre e ingeniería tisular ósea. Bases celulares y perspectivas terapéuticas
Stem cells and bone tissue engineering
Visits
8882
E. Gueradoa,b,
Corresponding author
eguerado@hcs.es

Correspondencia: Servicio de Cirugía Ortopédica y Traumatología Hospital Costa del Sol Carretera Cádiz-Málaga km 187 29600 Marbella. Málaga
, A. Díaz-Martína, M.P. Arrabalc, M. Cifuentesc, J.A. Andradesc, J. Becerrac
a Servicio de Cirugía Ortopédica y Traumatología. Hospital Costa del Sol
b Departamento de Cirugía. Universidad de Málaga
c Departamento de Biología Celular, Genética y Fisiología. Universidad de Málaga
This item has received
Article information

Los avances en el conocimiento de las proteínas morfogenéticas de hueso (BMP) han propiciado su utilización directa en las reparaciones óseas, planteando la falta de control sobre el tiempo que estas proteínas permanecen en la lesión, la actividad real de las mismas y la imprescindible necesidad de células osteogénicas en el lugar de aplicación, efectores últimos de la acción inductora. Por lo tanto, cuando la falta de células sea el problema fundamental, la aplicación directa de factores osteoinductores, aun cuando en otras circunstancias puedan ser más útiles, no producirá los resultados esperados, siendo el aporte de células osteoprogenitoras la línea de actuación más apropiada, bien directamente o a través de un material transportador osteoconductor, sin descartar la posibilidad de inyección sistémica. Entre las aplicaciones directas a la cirugía ortopédica de esta ingeniería tisular, está la consecución de artrodesis del raquis como tratamiento de inestabilidades de origen diverso. Los problemas actuales se centran en el fracaso de la fusión y en la morbilidad de la zona donante de autoinjerto. En las artroplastias la ingeniería tisular muestra también un campo de aplicación inmediato, si bien antes es necesario solucionar los problemas relativos a la estabilidad primaria. En cualquier caso, la validez de las conclusiones de la ingeniería tisular pasará por su verificación en modelos clínicos humanos con diseños epidemiológicos prospectivos metodológicamente correctos. Los problemas éticos y legales serán, en fin, los condicionantes fundamentales para la generalización de la ingeniería tisular como propuesta terapéutica. En este trabajo se realiza una revisión conceptual de estos problemas.

Palabras clave:
reparación ósea
factores de crecimiento
células madre mesenquimatosas
ingeniería tisular
artroplastia
artrodesis espinal

Advances in the knowledge of bone morphogenetic proteins (BMPs) have made it possible to use them in bone repair. This highlights our lack of knowledge about the time that these proteins remain in the lesion, their true activity, and the clear need for osteogenic cells in the application site as the ultimate effectors of inductor action. Consequently, when a lack of cells is the fundamental problem, direct application of osteoinductor factors, even when they may be more useful in other circunstances, will not produce the expected results. Supplying osteogenic stem cells is the most appropriate approach, either directly or using osteoconductor transport materials, without excluding the possibility of systemic injections. Among the direct applications to orthopedic surgery of tissue engineering is the achievement of spinal fusion as a treatment for different types of instability. Current problems center on the failure of fusion and the morbidity of the autograft donor zone. In arthroplasties, tissue engineering also shows potential for immediate applications, although problems relative to primary stability must first be solved. In any case, the validity of the conclusions of tissue engineering will have to be verified in human clinical models using methodologically correct prospective epidemiological designs. Ethical and legal problems will finally determine is tissue engineering becomes generalized as a therapeutic proposal. These problems are conceptually reviewed in this study.

Key words:
bone repair
growth factors
mesenchymal stem cells
tissue engineering
arthroplasty
spinal fusion
Full text is only aviable in PDF
Bibliografía
[1.]
D.L. Stocum.
New Tissues from Old.
Science, 276 (1997), pp. 15
[2.]
D.L. Stocum.
Limb regeneration: re-entering the cell cycle.
Curr Biol, 9 (1999), pp. 644-646
[3.]
J.P. Brockes.
Amphibian Limb Regeneration: Rebuilding a Complex Structure.
Science, 276 (1997), pp. 81-87
[4.]
G.S. Stein, J.B. Lian.
Molecular mechanisms mediating development and hormone-regulated expression of genes in osteoblasts: An integrate relationship of cell growth and differentiation.
Cellular and Molecular Biology of Bone, pp. 47-95
[5.]
T.A. Einhorn.
The Cell and Molecular Biology of Fracture Healing.
Clin Orthop, (1998), pp. 7-21
[6.]
D. Marsh.
Concepts of Fracture Union, Delayed Union, and Nonunion.
Clin Orthop, (1998), pp. 22-30
[7.]
P. Byers, J. Bonardio.
The molecular basis of clinica heterogeneity of Osteogenesis Imperfecta: Mutations in type I collagen genes have different effects on collagen provessing.
Genetic and Metabolic Diseases in Pediatrics, pp. 56-90
[8.]
S.E. Haynesworth, V.M. Goldberg, A.I. Caplan.
Disminution of the number of mesenchymal stem cells as a cause for skeletal aging.
Musculoskeletal Soft-Tissue Aging: Impact on Mobility. Section 1, Chapter 7, pp. 80-86
[9.]
S.P. Bruder, A.A. Kurth, M. Shea, W.C. Hayes, N. Jaiswal, S. Kadiyala.
Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells.
J Orthop Res, 16 (1998), pp. 155-162
[10.]
J.F. Connolly.
Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis.
Clin Orthop, (1998), pp. 257-266
[11.]
Andrades JA, Nimni ME, Santamaría JA, Becerra J. Bone marrow cells induced in vitro by a modified human TGF-ß1 may form cartilage and bone when they are implanted in vivo [en prensa]. Connect Tissue Res.
[12.]
J.M. Lane.
Biologic Enhancement of Fracture Repair.
Clin Orthop, (1998), pp. 359-360
[13.]
R.N. Rosier.
Regional Gene Therapy.
Clin Orthop, (1998), pp. 361-363
[14.]
J. Gao, J.E. Dennis, R.F. Muzic, M. Lundberg, A.I. Caplan.
The dynamic in vivo distribution of bone-marow-derived mensenchymal stem cells after infusion.
Cells Tissues Organs, 169 (2001), pp. 12-20
[15.]
A.I. Caplan.
Mesenchymal stem cells and gene therapy.
Clin Orthop, (2000), pp. 67-70
[16.]
A.I. Caplan, S.P. Bruder.
Cell and Molecular Engineering of Bone Regeneration.
Textbook of Tissue Engineering, pp. 603-618
[17.]
D.J. Prockop.
Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues.
Science, 276 (1997), pp. 71-74
[18.]
R.F. Pereira, K.W. Halford, M.D. O'Hara, D.B. Leeper, B.P. Sokolov, M.D. Pollard, et al.
Culture adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice.
Proc Natl Acad Sci USA, 92 (1995), pp. 4857-4861
[19.]
M. Owen.
Linage of osteogenic cells and their relationship to the stromal system.
Bone Min Res, 3 (1985), pp. 1-25
[20.]
A.I. Caplan.
Mesenchymal stem cells.
J Orthop Res, 9 (1991), pp. 641-650
[21.]
Stem Cell: scientific progress and future research directions..
Report prepared by the NIH.
[22.]
J. Triffitt.
Iniciation and enhancement of bone formation: A review.
Acta Orthop Scand, 58 (1987), pp. 673-684
[23.]
A.I. Caplan.
The mesengenic process.
Clin Plast Surg, 21 (1994), pp. 429-435
[24.]
S.C. Manologas.
Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis.
Endoc Rev, 21 (2000), pp. 115-137
[25.]
M.E. Nimni.
Polypeptide growth factors: targeted delivery systems.
Biomaterials, 18 (1997), pp. 1201-1225
[26.]
A.H. Reddi.
BMPs: Actions in flesh and bone.
Nat Med, 3 (1997), pp. 837-839
[27.]
S.B. Trippel.
Potential Role of Insulinlike Growth Factors in Fracture Healing.
Clin Orthop Relat R, (1998), pp. 301-313
[28.]
J.J. McGill, B.S. Strates, M.H. McGuire.
Stimulation of osteogenesis by PDGF and TGF adsorbed on microcrystals of hydroxiapatite.
J Bone Min Res, 6 (1990), pp. 503
[29.]
M.L. Radomsky, A.Y. Thompson, R.C. Spiro, J.W. Poser.
Potential Role of Fibroblast Growth Factor in Enhancement of Fracture Healing.
Clin Orthop, (1998), pp. 283-293
[30.]
A. Nakajima, F. Nakajima, S. Shimizu, A. Ogasawara, A. Wanaka, H. Moriya, et al.
Spatial and temporal gene expression for fibroblast growth factor type I receptor (FGFR1) during fracture healing in the rat.
Bone, 29 (2001), pp. 458-466
[31.]
M.P.G. Bostrom, P. Asnis.
Transforming Growth Factor Beta in Fracture Repair.
Clin Orthop Relat R, (1998), pp. 124-131
[32.]
M. Braddock, P. Houston, C. Campbell, P. Ashcroft.
Born again bone: Tissue engineering for bone repair.
News Physiol Sci, 16 (2001), pp. 208-213
[33.]
N. Duneas, J. Crooks, U. Ripamonti.
Transforming growth factor-ß1: induction of bone morphogenetic protein gene expression during endochondral bone formation in the baboon, and sinergystic interaction with osteogenic protein-1 (BMP-7).
Growth Factors, 15 (1998), pp. 259-277
[34.]
L. Solchaga, A.I. Caplan, T.M. Hering, J.M. Goldberg, J.U. Yoo, B. Johnstone.
BMP-2 induction and TGF-ß1 modulation of rat periosteal cell chondrogenesis. J.
Cell Biochem, 81 (2001), pp. 284-294
[35.]
R.N. Rosier, R.J. O'Keefe, D.G. Hicks.
The Potential Role of Transforming Growth Factor Beta in Fracture Healing.
Clin Orthop, (1998), pp. 294-300
[36.]
M.R. Urist.
Bone: formation by autoinduction.
Science, 150 (1965), pp. 893-899
[37.]
A.H. Reddi.
Morphogenetic messages are in the extracellular matrix: biotecnology from bench to bebside.
Biochem Soc Trans, 28 (2000), pp. 345-349
[38.]
W. Ishida, T. Hamamoto, K. Kusanagi, K. Yagi, M. Kawabata, K. Takehara, et al.
Smad6 is smad1/5 induced smad inhibitor. Caracterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter.
J Biol Chem, 275 (2000), pp. 6075-6079
[39.]
Bostrom MPG.
Expression of bone morphogenetic proteins in fracture healing.
Clin Orthop, (1998), pp. 116-123
[40.]
L.J. Yang, Y. Jin.
Immunohistochemical observations on bone morphogenetic protein in normal and abnormal conditions.
Clin Orthop, 257 (1990), pp. 249-256
[41.]
M.P. Bostrom, J.M. Lane, W.S. Berberian, A.A. Missri, E. Tomin, A. Weilan, et al.
Immunolocalization and expression of bone morphogenetic protein 2 and 4 in fracture healing.
J Orthop Res, 13 (1995), pp. 357-367
[42.]
M. Bostrom, J.M. Lane, E. Tomin, M. Browne, W. Berberian, T. Turek, et al.
Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model.
Clin Orthop, 327 (1996), pp. 272-282
[43.]
D. Bonn.
The application of cell biology to broken bones.
The Lancet, 353 (1999), pp. 650
[44.]
International Conference on Bone Morphogenetic Proteins.
[45.]
Hench LL. Bioactive glasses mechanism of bioactive bonding. (web page)
[46.]
H. Frost.
A New direction for osteoporosis research: A review and proposal.
Bone, 12 (1991), pp. 429-437
[47.]
R. De Groot.
Effect of porosity and fisicochemycal properties on the stability, resortion and strenght of calcium phosphate ceramics.
Ann NY Acad Sci, 523 (1998), pp. 227-233
[48.]
M.W. Chapman, R. Bucholz, C.N. Cornell.
Treatment of acute fractures with a collagen-calcium phosphate graft material: A randomized clinical trial.
J Bone Joint Surg Am, 79A (1997), pp. 495-502
[49.]
C.T. Laurencin, J.M. Lane.
Poly (Lactic Acid) and Poly (Glicolic Acid): Orthopaedic Surgery Applications.
Bone Formation and Repair. Park Ridge, IL. American Academy of Orthopaedic Surgeons Symposium, pp. 325-339
[50.]
J.A. Andrades, B. Han, J. Becerra, N. Sorgente, F.L. Hall, M.E. Nimni.
A recombinant human TGF-ß1 Fusion Protein with Collagen-Binding Domain Promotes Migration, Growth, and Differentiation of Bone Marrow Mesenchymal Cells.
Exp Cell Res, 250 (1999), pp. 485-498
[51.]
J.A. Andrades, J.A. Santamaría, M.E. Nimni, J. Becerra.
In vitro selection, amplification and induction of a bone marrow cell population to the chondro-osteogenic lineage by rhOP-1. An in vitro and in vivo study.
Int J Dev Biol, 45 (2001), pp. 689-693
[52.]
H.J. Mardon, J. Bee, K. Von der Mark, M.E. Owen.
Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats.
Cell Tissue Res, 250 (1987), pp. 157-165
[53.]
A. Herbertson, J.E. Aubin.
Dexamethasone alters the subpopulation make-up of rat bone marrow stromal cell cultures.
J Bone Miner Res, 10 (1995), pp. 285-294
[54.]
J. Becerra, J.A. Andrades, D.C. Ertl, N. Sorgente, M.E. Nimni.
Demineralized Bone Matrix Mediates Differentiation of Bone Marrow Stromal Cells In Vitro: Effect of Age of Cell Donor.
J Bone Min Res, 11 (1996), pp. 1703-1714
[55.]
S.P. Bruder, N. Jaiswal, N.S. Ricalton, J.D. Mosca, K.H. Kraus, S. Kadiyala.
Mesenchymal Stem Cells in Osteobiology and Applied Bone Regeneration.
Clin Orthop, (1998), pp. 247-256
[56.]
S. Kale, S. Biermann, C. Edwards, C. Tarnowski, M. Morris, M.W. Long.
Three dimensional cellular development is essential for ex vivo formation of human bone.
Nat Biotechnol, 18 (2000), pp. 954-963
[57.]
D.J. Rickard, T.A. Sullivan, B.J. Shenker, P.S. Leboy, I. Kanzhdan.
Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2.
Dev Biol, 161 (1994), pp. 218-228
[58.]
T.K. Sampath, J.C. Maliakal, P.V. Hauschka, W.K. Jones, H. Sasak, R.F. Turker, et al.
Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natual bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro.
J Biol Chem, 267 (1992), pp. 20352-20362
[59.]
E.H.J. Groeneveld, E.H. Burger.
Bone morphogenetic proteins in human bone regeneration.
Eur J Endocrinol, 142 (2000), pp. 9-21
[60.]
M. Braddock, P. Houston, C. Campbell, P. Ashcroft.
Born again bone: Tissue engineering for bone repair.
News Physiol Sci, 16 (2001), pp. 208-213
[61.]
K. Inoue, H. Ohgushi, T. Yoshikawa, M. Okumura, T. Sempuku, S. Tamay, et al.
The effect of aging on bone formation in porous hydroxyapatite: Biochemical and histological analysis.
J Bone Miner Res, 12 (1997), pp. 989-994
[62.]
C. Niyibizi, A. Baltzer, C. Lattermann, M. Oyama, J.D. Whalen, P.D. Robbins, et al.
Potential Role for Gene Therapy in the Enhancement of Fracture Healing.
Clin Orthop, 355 (1998), pp. 148-153
[63.]
S.A. Goldstein, J. Bonadio.
Potential Role for Direct Gene Transfer in the Enhancement of Fracture Healing.
Clin Orthop, 355 (1998), pp. 154-162
[64.]
Polylactic-coglycolide/hidroxyapatite delivery of BMP-2-producing cells:.
a regional gene therapy approach to bone regeneration.
Biomaterials, 22 (2001), pp. 1271-1277
[65.]
R. Fujisawa, M. Mizuno, Y. Nodasaka, Y. Kuboki.
Attachment of Osteoblastic Cells to Hydroxyapatite Crystals by a Synthetic Peptide (Glu7-Pro-Arg-Gly-Asp-Thr) Containing Two Functional Sequences of Bone Sialoprotein.
Matrix Biology, 16 (1997), pp. 21-28
[66.]
M.E. Nimni, S. Bernick, D.C. Ertl, S.K. Nishimoto, B. Strates, J. Villanueva.
Ectopic bone formation in senescent animals implanted with embryonic calvaria cells.
Clin Orthop, 234 (1988), pp. 255-266
[67.]
J.D. Termine.
Cellular activity, matrix proteins and agin bone.
Exper Gerontol,, 25 (1990), pp. 217-221
[68.]
S.D. Boden, J.H. Schimandle, W.C. Hutton, C.J. Damien, J.J. Benedict, C. Baranowski, et al.
In Vivo Evaluation of a Resorbable Osteoinductive Composite as a Graft Substitute for Lumbar Spinal Fusion.
J Spinal Disord, 10 (1997), pp. 1-11
[69.]
J.C. Fernyhough, J.H. Schimandle, M.C. Weigel, C.C. Edwards, A.M. Levine.
Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion.
Spine, 17 (1992), pp. 1474-1480
[70.]
D.M. Ehrler, A.R. Vaccaro.
The use of allograft bone in lumbar spine surgery.
Clin Orthop, 371 (2000), pp. 38-45
[71.]
C.J. Damien, P.S. Christel, J.J. Benedict, J.L. Patat, G. Guillemin.
A composite of natural coral, collagen, bone protein, and basic fibroblast growth factor tested in a rat subcutaneous model.
Ann Chir Gynaecol, 82 (1993), pp. 117-128
[72.]
S.D. Boden, J.H. Schimandle, W.C. Hutton.
Lumbar intertransverse process spine arthrodesis using a bovine-derived osteoinductive bone protein.
J Bone Jt Surg, 77A (1995), pp. 1404-1417
[73.]
H. Albers, M.T. Hresko, J. Carlson, J.E. Hall.
Comparison of Single and Dual Rod Techniques for Posterior Spinal Instrumentation in the Treatment of Adolescent Idiopathic Scoliosis.
Spine, 25 (2000), pp. 1944-1949
[74.]
J.M. Wattenberger, B.S. Richards, J.A. Herring.
A Comparison of Single-Rod Instrumentation with Double-Rod Instrumentation in Adolescent Idiopathic Scoliosis Spine, 25 (2000), pp. 1680-1688
[75.]
G. Martin, S. Boden, L. Titus, N. Scarborough.
New Formulations of Demineralized Bone Matrix as a More Effective Graft Alternative in Experimental Posterolateral Lumbar Spine Arthrodesis.
Spine, 24 (1999), pp. 637-645
[76.]
D.Y. Suh, S.D. Boden, J. Louis-Ugbo, M. Mayr, H. Murakami, H.S. Kim, et al.
Delivery of Recombinant Human Bone Morphogenetic Protein-2 Using a Compression-Resistant Matrix in Posterolateral Spine Fusion in the Rabbit and in the Non-Human Primate.
Spine, 27 (2002), pp. 353-360
[77.]
B. Hecht, J. Fisxhgrund, H. Herkowitz, L. Penman, J. Toth, A. Shirkhoda.
The Use of Recombinant Human Bone Morphogenetic Protein 2 (rhBMP-2) to Promote Spinal Fusion in a Nonhuman Primate Anterior Interbody Fusion Model.
Spine, 24 (1999), pp. 629-636
[78.]
J. Delecrin, S. Takahashi, F. Gouin, N. Passuti.
A synthetic porous ceramic as a bone graft substitute in the scoliosis: a prospective, randomized study.
Spine, 25 (2000), pp. 563-569
[79.]
P.C. Noble.
The Design of Cementless Femoral Prostheses.
Orthopaedic Knowledge Update. Hip and Knee Reconstruction, pp. 127-138
[80.]
C.W. Di Giovanni, K.L. Garvin, P.M. Pellicci.
Femoral Preparation in Cemented Total Hip Arthroplasty: Reaming or Broaching?.
J Acad Orthop Surg, 7 (1999), pp. 349-357
[81.]
L.A. Whiteside, S.E. White, C.A. Engh, W. Head.
Mechanical evaluation of cadaver retrieval specimens of cementless bone-ingrowth total hip arthroplasty femoral components.
J Arthroplasty, 8 (1993), pp. 147-155
[82.]
W.N. Capello.
Femoral component fixation in the 1990's. Hydroxyapatite in total hip arthroplasty:five-year clinical experience.
Orthopedics, 17 (1994), pp. 781-792
[83.]
M. Lind, S. Overgaad, Y. Song, S.B. Goodman, C. Bunger, K. Soballe.
Osteogenic protein 1 device stimulates bone healing to hydroxiapatite-coated and titanium implants.
J Arthroplasty, 15 (2000), pp. 339-346
[84.]
L.T. Wu, F.L. Hall, M.E. Nimni, J. Becerra.
Engineering, expression, and renaturation of a collagen-targeted human bFGF fusion protein.
Growth Factors, 18 (2001), pp. 261-275
[85.]
J.A. Andrades, J.A. Santamaría, L.T. Wu, F.L. Hall, M.E. Nimni, J. Becerra.
Production of a recombinant human bFGF with a collagen binding domain.
Protoplasma, 218 (2001), pp. 95-103
Copyright © 2003. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos