metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología La restricción de metionina en la dieta disminuye el estrés oxidativo en mitoc...
Journal Information
Vol. 41. Issue 6.
Pages 334-339 (November 2006)
Share
Share
Download PDF
More article options
Vol. 41. Issue 6.
Pages 334-339 (November 2006)
Originales
Full text access
La restricción de metionina en la dieta disminuye el estrés oxidativo en mitocondrias de corazón
Methionine dietary restriction decreases oxidative stress in heart mitochondria
Visits
6210
Pilar Caro, Alberto Sanz, José Gómez, Gustavo Barja
Corresponding author
gbarja@bio.ucm.es

Correspondencia: Dr. G. Barja. Departamento de Fisiología Animal-II. Facultad de Ciencias Biológicas. Universidad Complutense. Antonio Novais, 2. 28040 Madrid. España.
Departamento de Fisiología Animal-II. Facultad de Ciencias Biológicas. Universidad Complutense. Madrid. España
This item has received
Article information
Resumen
Introducción

la restricción calórica (RC) disminuye la producción mitocondrial de radicales libres (MitROS) y el daño oxidativo al ADN mitocondrial (ADNmt) y aumenta la longevidad máxima, pero no se conocen los mecanismos implicados. Hemos encontrado que la restricción de proteínas (RP) también produce esos cambios. Varios hallazgos relacionan a la metionina con el envejecimiento, y la restricción de metionina (RMet) también aumenta, como la RC y la RP, la longevidad máxima. Hemos hipotetizado, por tanto, que la RMet es la causa del descenso en producción de MitROS y estrés oxidativo que ocurre en la RP y la RC.

Material y métodos

ratas Wistar macho sometidas a RMet o alimentadas ad líbitum durante 7 semanas. Se aislaron mitocondrias funcionales de corazón por centrifugación. La respiración mitocondrial se midió por polarografía con electrodo de Clark y la producción de MitROS por fluorometría. El daño oxidativo al ADNmt (8-oxodG) se midió por HPLC con detección electroquímica.

Resultados

la RMet disminuyó la producción mitocondrial de ROS en el complejo I, no cambió el consumo de oxígeno mitocondrial y disminuyó los valores de la 8-oxodG en el ADNmt.

Conclusiones

los cambios observados en la producción de MitROS y la 8-oxodG durante la RMet son iguales a los observados previamente en la RC y la RP. Esto sugiere que el descenso en la ingestión de metionina es la causa del descenso en la generación de ROS y estrés oxidativo mitocondrial y de parte del descenso de velocidad del envejecimiento que ocurre durante la restricción calórica. La restricción proteica (o de metionina) ofrece por primera vez una intervención aplicable a las poblaciones occidentales, incluida la española, que es potencialmente capaz de retrasar en aproximadamente un 20% la velocidad del proceso endógeno del envejecimiento y de todas las enfermedades degenerativas asociadas a él sin necesidad de disminuir en nada la ingesta calórica.

Palabras clave:
Mitocondrias
Restricción calórica
Radicales libres
Envejecimiento
Daño al ADN
Abstract
Introduction

caloric restriction (CR) decreases the production of mitochondrial reactive oxygen species (MitROS) and oxidative damage to mitochondrial DNA (mtDNA) and increases maximum longevity, but the mechanisms responsible for these effects are unknown. We have found that protein restriction (PR) also produces these changes. Various findings link methionine to ageing; moreover, like CR, methionine restriction (MetR) increases maximum longevity. We hypothesized that MetR is responsible for the decrease in MitROS generation and oxidative stress that takes place in PR and CR.

Material and methods

male Wistar rats were subjected to methionine restriction or fed ad libitum for 7 weeks. Functional heart mitochondria were isolated by centrifugation. Mitochondrial respiration was measured by polarography with a Clark electrode and MitROS production was assayed by fluorometry. Oxidative damage to mtDNA (8-oxodG) was measured by HPLC with electrochemical detection.

Results

MetR decreased MitROS generation at complex I, did not change mitochondrial oxygen consumption, and decreased 8-oxodG levels in mtDNA.

Conclusions

the changes induced by MetR in the rate of MitROS generation and 8-oxodG are similar to those previously observed in CR and PR. This suggests that the reduction in methionine ingestion is responsible for the decrease in mitROS production and oxidative stress and part of the decrease in the rate of ageing that occurs during caloric restriction. Protein (and methionine) restriction provide the first possibility of an intervention that could be applied to western populations, including the Spanish population. This type of intervention could potentially delay the rate of ageing by approximately 20% and could decrease the incidence of all degenerative diseases without the need to reduce dietary caloric intake.

Key words:
Mitochondria
Caloric restriction
Free radicals
Ageing
DNA damage
Full text is only aviable in PDF
Bibliografía
[1]
K.B. Beckman, B. Ames.
The free radical theory of aging matures.
Physiol Reviews, 78 (1998), pp. 547-581
[2]
G. Barja.
Free radicals and aging.
Trends in Neurosci, 27 (2004), pp. 595-600
[3]
R. Gredilla, G. Barja.
Caloric restriction, aging and oxidative stress.
Endocrinology, 146 (2005), pp. 3713-3717
[4]
R. Gredilla, A. Sanz, M. López-Torres, et al.
Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart.
FASEB J, 15 (2001), pp. 1589-1591
[5]
R. Pamplona, M. Portero-Otín, M.J. Bellmunt, et al.
Aging increases Nepsilon-(Carboxymethyl)lysine and caloric restriction decreases Nepsilon-(Carboxyethyl) lysine and Nepsilon-(Malondialdehyde)lysine in rat heart mitochondrial proteins.
Free Rad Res, 36 (2002), pp. 47-54
[6.]
Sanz A, Gómez J, Caro P, et al. Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr. 2006. En prensa.
[7]
A. Sanz, P. Caro, J. Gómez, et al.
Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage.
Ann NY Acad Sci, 1067 (2006), pp. 200-209
[8]
A. Sanz, P. Caro, G. Barja.
Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver.
J Bioenerg Biomembr, 36 (2004), pp. 545-552
[9]
W. Mair, M.D.W. Piper, L. Partridge.
Calories do not explain extension of life span by dietary restriction in Drosophila.
PLOS Biol, 3 (2005), pp. 1305-1311
[10]
S. Leto, G.C. Kokkonen, C.H. Barrows Jr.
Dietary protein, life-span, and biochemical variables in female mice.
J Gerontol, 31 (1976), pp. 144-148
[11]
C.L. Goodrick.
Body weight increment and length of life: the effect of genetic constitution and dietary protein.
J Gerontol, 33 (1978), pp. 184-190
[12]
C.H Barrows Jr, G. Kokkonen.
Protein synthesis, development, growth and life span.
Growth, 39 (1975), pp. 525-533
[13]
M.H. Ross.
Length of life and nutrition in the rat.
J Nutr, 75 (1961), pp. 197-210
[14]
J.P. Richie Jr, Y. Leutzinger, S. Parthasarathy, et al.
Methionine restriction increases blood glutathione and longevity in F344 rats.
FASEB J, 8 (1994), pp. 1302-1307
[15]
R.A. Miller, G. Buehner, Y. Chang, et al.
Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance.
[16]
R. Gredilla, G. Barja, M. López-Torres.
Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria, and location of the free radical source.
J Bioenerg Biomembr, 33 (2001), pp. 279-287
[17]
G. Barja.
The quantitative measurement of H2O2 generation in isolated mitochondria.
J Bioenerg Biomembr, 34 (2002), pp. 227-233
[18]
A. Latorre, A. Moya, A. Ayala.
Evolution of mitochondrial DNA in Drosophila suboscura.
Proceedings of the National Academy of Sciences of USA, 83 (1986), pp. 8649-8653
[19]
J.G. Asunción, A. Millan, R. Pla, et al.
Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA.
FASEB J, 10 (1986), pp. 333-338
[20]
S. Loft, H.E. Poulsen.
Markers of oxidative damage to DNA: antioxidants and molecular damage.
Methods Enzymol, 300 (1999), pp. 166-184
[21]
J.A. Zimmerman, V. Malloy, R. Krajcik, et al.
Nutritional control of aging.
Exper Gerontol, 38 (2003), pp. 47-52
[22]
M.C. Ruiz, V. Ayala, M. Portero-Otín, et al.
Protein methionine content and MDA-lysine protein adducts are inversely related to maximum life span in the heart of mammals.
Mech Ageing Dev, 126 (2005), pp. 1106-1114
[23]
J. Moskovitz, S. Bar-Noy, W.M. Williams, et al.
Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals.
PNAS USA, 98 (2001), pp. 12920-12925
[24]
N. Hidiroglou, G. Sarwar Gilani, L. Long, et al.
The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil.
J Nutr Biochem, 15 (2004), pp. 730-740
[25]
N. Mori, K. Hirayama.
Long-term consumption of a methionine-supplemented diet increases iron and lipid peroxide levels in rat liver.
J Nutr, 130 (2000), pp. 2349-2355
[26]
D. Fau, J. Peret, P. Hadjilisky.
Effects of ingestion of high protein or excess methionine diets by rats for two years.
J Nutr, 118 (1988), pp. 128-133
[27]
H. Ruan, X.D. Tang, M.L. Chen, et al.
High-quality life extension by the enzyme peptide methionine sulfoxide reductase.
PNAS USA, 99 (2002), pp. 2748-2753
[28]
A. Mitsui, J. Hamuro, H. Nakamura, et al.
Overexpression of human thioredoxin in transgenic mice controls oxidative stress and lifespan.
Antioxid Redox Sign, 4 (2002), pp. 693-696
[29]
E.O. Uthus, H. Brown-Borg.
Altered methionine metabolism in long living Ames dwarf mice.
Exper Gerontol, 38 (2003), pp. 491-498
[30]
J. St Pierre, J.A. Buckingham, S.J. Roebuck, et al.
Topology of superoxide production from different sites in the respiratory chain.
J Biol Chem, 277 (2002), pp. 44784-44790
[31]
G. Barja.
Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?.
Biol Reviews, 79 (2004), pp. 235-251
[32]
E. Nisoli, C. Tonello, A. Cardile, V. Cozzi, R. Bracale, L. Tedesco, et al.
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS.
Science, 310 (2005), pp. 314-317
[33]
G. López-Lluch, N. Hunt, B. Jones, M. Zhun, H. Jamieson, S. Hilmer, et al.
Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency.
PNAS, 103 (2006), pp. 1768-1773
[34]
V.L. Malloy, A. Krajcik, S.J. Bailey, G. Hristopoulos, J.D. Plummer, N. Orentreich.
Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction.
Aging Cell, 5 (2006), pp. 1-10
[35]
E.R. Taylor, F. Hurrell, R.J. Shannon, et al.
Reversible glutathionylation of complex I increases mitochondrial superoxide formation.
J Biol Chem, 278 (2003), pp. 19603-19610
[36]
L. Chang, J. Zhao, J. Xu, et al.
Effects of taurine and homocysteine on calcium homeostasis and hydrogen peroxide and superoxide anions in rat myocardial mitochondria.
Clin Exp Pharmacol Physiol, 31 (2004), pp. 237-243
[37]
D. Matthias, C.H. Becker, R. Riezler, et al.
Homocysteine induced arteriosclerosis- like alterations of the aorta in normotensive and hypertensive rats following application of high doses of methionine.
Atherosclerosis, 122 (1996), pp. 201-216
[38]
T. Ninomiya, Y. Kiyohara, M. Kubo, et al.
Hyperomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study.
Am J Kidney Dis, 44 (2004), pp. 437-445
[39]
A. Sanz, P. Caro, V. Ayala, M. Portero-Otin, M. Pamplona, G. Barja.
Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins.
FASEB Journal, 20 (2006), pp. 1064-1073

Este trabajo se realizó con el apoyo del proyecto del Plan Nacional BFU2005-02584 del Ministerio de Educación y Ciencia concedido a G. Barja.

Copyright © 2006. Sociedad Española de Geriatría y Gerontología
Download PDF
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos