array:24 [ "pii" => "S2253808919300965" "issn" => "22538089" "doi" => "10.1016/j.remnie.2019.09.001" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "1095" "copyright" => "Sociedad Española de Medicina Nuclear e Imagen Molecular" "copyrightAnyo" => "2019" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2020;39:68-74" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:18 [ "pii" => "S2253654X19301040" "issn" => "2253654X" "doi" => "10.1016/j.remn.2019.08.001" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "1095" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2020;39:68-74" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Protocolo de un día para la PET/TC con <span class="elsevierStyleSup">18</span>F-FDG y <span class="elsevierStyleSup">13</span>N-amonio con escala de desacoplamiento de la captación para diferenciar el glioma de bajo grado no tratado de la inflamación" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "68" "paginaFinal" => "74" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "One-day protocol for <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia PET/CT with uptake decoupling score in differentiating untreated low-grade glioma from inflammation" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1853 "Ancho" => 2917 "Tamanyo" => 344615 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Caso representativo de un varón de 54 años con una lesión cerebral inflamatoria. a) La región de interés roja muestra la lesión en las imágenes de TC. b y c) Marcado incremento de la captación de <span class="elsevierStyleSup">18</span>F-FDG (b) y captación disminuida de <span class="elsevierStyleSup">13</span>N-amonio (c) presentes en los mapas de los índices tumor-tejido normal (T/N). d) Se estableció la correlación entre la captación de <span class="elsevierStyleSup">18</span>F-FDG y de <span class="elsevierStyleSup">13</span>N-amonio en el tejido cerebral normal. e) La lesión en el mapa de desacoplamiento se muestra inferior al tejido cerebral normal adyacente.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Y. Chang, Y. Donglan, S. Xinchong, L. Ganhua, Z. Bing, L. Yao, Z. Rutong, H. Qiao, Z. Xiangsong" "autores" => array:9 [ 0 => array:2 [ "nombre" => "Y." "apellidos" => "Chang" ] 1 => array:2 [ "nombre" => "Y." "apellidos" => "Donglan" ] 2 => array:2 [ "nombre" => "S." "apellidos" => "Xinchong" ] 3 => array:2 [ "nombre" => "L." "apellidos" => "Ganhua" ] 4 => array:2 [ "nombre" => "Z." "apellidos" => "Bing" ] 5 => array:2 [ "nombre" => "L." "apellidos" => "Yao" ] 6 => array:2 [ "nombre" => "Z." "apellidos" => "Rutong" ] 7 => array:2 [ "nombre" => "H." "apellidos" => "Qiao" ] 8 => array:2 [ "nombre" => "Z." "apellidos" => "Xiangsong" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2253808919300965" "doi" => "10.1016/j.remnie.2019.09.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253808919300965?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253654X19301040?idApp=UINPBA00004N" "url" => "/2253654X/0000003900000002/v1_202002260640/S2253654X19301040/v1_202002260640/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2253808919301399" "issn" => "22538089" "doi" => "10.1016/j.remnie.2019.12.003" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "1110" "copyright" => "Sociedad Española de Medicina Nuclear e Imagen Molecular" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Med Nucl Imagen Mol. 2020;39:75-83" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Combined positive axillary lymph node marking with iodine-125 seeds and sentinel lymph node biopsy in breast cancer patients treated with neoadjuvant chemotherapy" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "75" "paginaFinal" => "83" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Procedimiento combinado de marcaje del ganglio axilar positivo biopsiado con semilla de yodo-125 y biopsia del ganglio centinela en pacientes con cáncer de mama tratadas con quimioterapia neoadyuvante" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 529 "Ancho" => 1255 "Tamanyo" => 66059 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Axillary ultrasound (patient n.° 3). Ultrasound-guided puncture with 18<span class="elsevierStyleHsp" style=""></span>G needle of the positive biopsied lymph node A) and definitive position of the <span class="elsevierStyleSup">125</span>I seed B).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A.C. Rebollo Aguirre, R. Sánchez Sánchez, A.D. González Jiménez, M. Culiañez Casas, I. Mendoza Arnau, M. Rashki, T. Rudolphi Solero, S. Martínez Meca" "autores" => array:8 [ 0 => array:2 [ "nombre" => "A.C." "apellidos" => "Rebollo Aguirre" ] 1 => array:2 [ "nombre" => "R." "apellidos" => "Sánchez Sánchez" ] 2 => array:2 [ "nombre" => "A.D." "apellidos" => "González Jiménez" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Culiañez Casas" ] 4 => array:2 [ "nombre" => "I." "apellidos" => "Mendoza Arnau" ] 5 => array:2 [ "nombre" => "M." "apellidos" => "Rashki" ] 6 => array:2 [ "nombre" => "T." "apellidos" => "Rudolphi Solero" ] 7 => array:2 [ "nombre" => "S." "apellidos" => "Martínez Meca" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S2253654X1930280X" "doi" => "10.1016/j.remn.2019.09.007" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253654X1930280X?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253808919301399?idApp=UINPBA00004N" "url" => "/22538089/0000003900000002/v1_202002260643/S2253808919301399/v1_202002260643/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S2253808920300124" "issn" => "22538089" "doi" => "10.1016/j.remnie.2020.02.002" "estado" => "S300" "fechaPublicacion" => "2020-03-01" "aid" => "1137" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "edi" "cita" => "Rev Esp Med Nucl Imagen Mol. 2020;39:67" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>" "titulo" => "Revista española de medicina nuclear e imagen molecular in 2020" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "67" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La revista española de medicina nuclear e imagen molecular en 2020" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M. Mitjavila Casanovas, M.N. Cabrera, V. Camacho, C. De la Fuente, J.R. García, A. Jiménez" "autores" => array:6 [ 0 => array:2 [ "nombre" => "M. Mitjavila" "apellidos" => "Casanovas" ] 1 => array:2 [ "nombre" => "M.N." "apellidos" => "Cabrera" ] 2 => array:2 [ "nombre" => "V." "apellidos" => "Camacho" ] 3 => array:2 [ "nombre" => "C." "apellidos" => "De la Fuente" ] 4 => array:2 [ "nombre" => "J.R." "apellidos" => "García" ] 5 => array:2 [ "nombre" => "A." "apellidos" => "Jiménez" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S2253654X20300263" "doi" => "10.1016/j.remn.2020.02.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253654X20300263?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253808920300124?idApp=UINPBA00004N" "url" => "/22538089/0000003900000002/v1_202002260643/S2253808920300124/v1_202002260643/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "One-day protocol for <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia PET/CT with uptake decoupling score in differentiating untreated low-grade glioma from inflammation" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "68" "paginaFinal" => "74" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Y. Chang, Y. Donglan, S. Xinchong, L. Ganhua, Z. Bing, L. Yao, Z. Rutong, H. Qiao, Z. Xiangsong" "autores" => array:9 [ 0 => array:3 [ "nombre" => "Y." "apellidos" => "Chang" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] ] ] 1 => array:3 [ "nombre" => "Y." "apellidos" => "Donglan" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">1</span>" "identificador" => "fn0005" ] ] ] 2 => array:3 [ "nombre" => "S." "apellidos" => "Xinchong" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "L." "apellidos" => "Ganhua" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "Z." "apellidos" => "Bing" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "L." "apellidos" => "Yao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 6 => array:3 [ "nombre" => "Z." "apellidos" => "Rutong" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 7 => array:3 [ "nombre" => "H." "apellidos" => "Qiao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 8 => array:4 [ "nombre" => "Z." "apellidos" => "Xiangsong" "email" => array:1 [ 0 => "xiaolong-4310@163.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Medical Engineering, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author at: Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University. Zhongshan Er Road 58#, Guangzhou, China." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Protocolo de un día para la TEP/TC con amoníaco 18F-FDG y 13N con puntuación de desacoplamiento de la captación para diferenciar el glioma de bajo grado no tratado de la inflamación" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1288 "Ancho" => 1508 "Tamanyo" => 112433 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Receiver operating characteristic analysis for detecting lesions with <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG tumor-to-normal tissue (T/N) ratio, <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia T/N ratio, and decoupling score. The decoupling score showed the best performance, with a cutoff value of 2.31 (area under the curve, AUC: 0.77), whereas the cutoff values for T/N ratio of <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG and <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia uptake were 0.73 (AUC: 0.48) and 0.97 (AUC: 0.68), respectively.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Low-grade gliomas (LGGs; World Health Organization [WHO] grades I and II) are a diverse group of primary brain tumors that often arise in young, otherwise healthy patients; these commonly follow an indolent course and exhibit long-term survival, which contrasts with the prognosis of high-grade gliomas.<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,2</span></a> Accurate diagnosis and grading are critical for management of LGGs.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> Although histopathological examination of tissue remains the gold standard for diagnosis and grading of LGGs, preoperative imaging is essential to distinguish between inflammation and tumor. However, gliomas are often histologically heterogeneous, with evolving anaplastic areas within a low-grade tumor; moreover, contrast-enhancement on CT or MRI does not provide a good marker for anaplastic tissue detection.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> The development of radiolabeled tracers has enabled metabolic and molecular imaging to play a major role in the management of gliomas, such as PET. To successfully use PET data in glioma treatment, PET can be integrated in the planning of image-guided biopsy, resection, and radiosurgery.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> Additionally, amino acid tracers have a high sensitivity for detection of LGGs.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> Notably, fluorothymidine is useful in grading gliomas, as is dynamic PET using fluoroethyltyrosine (FET) for tumor grading;<a class="elsevierStyleCrossRefs" href="#bib0030"><span class="elsevierStyleSup">6–8</span></a> however, these tracers are either complicated to synthesize, with low yields, or require a complex acquisition protocol.</p><p id="par0010" class="elsevierStylePara elsevierViewall">In a previous study, we found that <span class="elsevierStyleSup">13</span>N-ammonia PET was superior to <span class="elsevierStyleSup">18</span>F-FDG PET and contrast-enhanced MRI for grading of untreated gliomas and that it could be used for the detection of high-grade gliomas and recurrent astrocytomas.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9–11</span></a> Thus far, differentiation between neoplastic and non-neoplastic lesions has been evaluated in several studies.<a class="elsevierStyleCrossRefs" href="#bib0060"><span class="elsevierStyleSup">12,13</span></a> However, our recent study found that <span class="elsevierStyleSup">13</span>N-ammonia was effective in distinguishing high-grade gliomas from low-grade gliomas and inflammation, but its role in differential diagnose of low-grade gliomas and brain inflammatory lesions was limited.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> This might be attributed to difficulty in discriminating between brain inflammation lesions (BILs) and LGGs by using conventional imaging modalities; furthermore, there are no established quantification approaches for image analysis using <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG.</p><p id="par0015" class="elsevierStylePara elsevierViewall">In this retrospective study, we performed voxel-wise analysis of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia PET in tumor and inflammation-infiltrative brain lesions, in an attempt to discriminate between benign lesions and LGGs using decoupling score.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Patients</span><p id="par0020" class="elsevierStylePara elsevierViewall">This study was performed between july 2011 and may 2016. A total of 28 patients with a final diagnosis of LGG (13 female and 15 male patients; mean age, 36.53 ± 14.59 years; age range, 14–67 years) and 16 patients with a final diagnosis of BIL (8 female and 8 male patients; mean age, 46.38 ± 16.49 years; range, 23–73 years) were included in this study. Patients with any previous treatments were excluded (e.g., corticosteroids, surgery, chemotherapy, radiotherapy, or gamma-knife therapy).<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> All patients underwent <span class="elsevierStyleSup">13</span>N-ammonia PET/CT and <span class="elsevierStyleSup">18</span>F-FDG PET/CT on the same day (FDG PET/CT was performed after ammonia PET/CT, with a minimum interval of 2 h). In 34 patients, pathological diagnosis was obtained by tumor resection or biopsy after PET examination. Four patients had grade I glioma, according to the WHO classification, whereas 24 had WHO grade II glioma (19 were astrocytoma, 4 were oligodendroglioma, and 1 was oligoastrocytoma). The remaining patients had BILs (3 were brain abscess, 2 were demyelination, and 1 was fungal infection). In 10 patients, the results of pathological examination could not be obtained; thus, the diagnosis of inflammation was based on radiological (CT and MRI) and clinical investigation. The patients’ characteristics are summarized in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0025" class="elsevierStylePara elsevierViewall">The study of <span class="elsevierStyleSup">13</span>N-ammonia imaging has been approved by the ethics committee of our hospital. Although formal consent was not required for this retrospective study, all subjects agreed to participate in this study after receiving an explanation of detailed study purpose and imaging procedure.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">PET data acquisition</span><p id="par0030" class="elsevierStylePara elsevierViewall">Tracers were produced at our center by using standard techniques and commercially available system for isotope generation (Cyclone-10, Ion Beam Applications; Louvain-La-Neuve, Belgium). PET/CT imaging was performed with a Gemini GXL 16 scanner (Philips, Amsterdam, Netherlands) in a 3-dimensional (3D) acquisition mode. The specific imaging protocol for the brain was selected as field of view (FOV) 180 mm, and the transaxial spatial resolution was 2 mm full width at half maximum (FWHM) at the center of the FOV for <span class="elsevierStyleSup">18</span>F-FDG. The spatial resolution of <span class="elsevierStyleSup">13</span>N-ammonia imaging was lower than that of <span class="elsevierStyleSup">18</span>F-FDG because of the difference in positron energy. PET images were reconstructed by the Line of Response RAMLA algorithm with low-dose CT images for attenuation correction, resulting in 3D images comprising 128 × 128 × 90 voxels of 2.0 × 2.0 × 2.0 mm<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a>.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9,10</span></a></p><p id="par0035" class="elsevierStylePara elsevierViewall">All subjects fasted for at least 8 h before PET/CT imaging. Ammonia and FDG PET/CT studies were performed on the same day, as described above. The 10-min PET acquisition began 5 min after an intravenous injection of <span class="elsevierStyleSup">13</span>N-ammonia (555–740 MBq) or 45–60 min after an intravenous injection of <span class="elsevierStyleSup">18</span>F-FDG (5.18 MBq/kg).</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Data analysis</span><p id="par0040" class="elsevierStylePara elsevierViewall">One experienced nuclear medicine physician, who was blinded to the clinical and structural imaging findings, evaluated the PET/CT images. PET images were converted to NII format and co-registered using SPM software (Functional Imaging Laboratory, Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK). The registration of the images was confirmed visually.</p><p id="par0045" class="elsevierStylePara elsevierViewall">Lesion uptake was evaluated by semiquantitative analysis. Regions of interest (ROIs) for each lesion were outlined in the area with the highest activity, and the location of the lesion was determined by using CT image guidance to avoid misplacement. For lesions that did not show higher uptake than the surrounding tissue, ROIs were defined on CT images after co-registering the PET and CT images. All ROIs of each tumor were placed carefully to avoid areas of necrosis, hemorrhage, or normal tissue; in addition, the first and the last slices of each tumor were not used, to avoid the volume effect. For reference tissue, ROIs were selected at the uninvolved contralateral hemisphere of the same slice of the lesion ROI, including both gray and white matter. The average standardized uptake value (SUV) of all regions was used to calculate the tumor to normal tissue (T/N) ratio, enabling reconstruction of a T/N ratio image.</p><p id="par0050" class="elsevierStylePara elsevierViewall">All datasets (standard anatomical images and PET data) were exported to in-house software written in MATLAB 7.6 (MathWorks, Natick, MA, USA) for further analysis.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Decoupling score calculation</span><p id="par0055" class="elsevierStylePara elsevierViewall">As illustrated in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>, a linear relationship between <span class="elsevierStyleSup">13</span>N-ammonia uptake and <span class="elsevierStyleSup">18</span>F-FDG uptake in normal brain was observedas follows:<elsevierMultimedia ident="eq0005"></elsevierMultimedia>where (<span class="elsevierStyleSup">13</span>N-ammonia) and (<span class="elsevierStyleSup">18</span>F-FDG) represent the T/N ratios of <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG PET, respectively.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0060" class="elsevierStylePara elsevierViewall">Subsequently, calculate the deviation of each data point (i) from the expected linear regression fit as follows:<elsevierMultimedia ident="eq0010"></elsevierMultimedia>where (<span class="elsevierStyleSup">13</span>N-ammonia) and (<span class="elsevierStyleSup">18</span>F-FDG) represent the T/N ratios of <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG PET, respectively.</p><p id="par0065" class="elsevierStylePara elsevierViewall">The decoupling score of each data point was defined as follows:<elsevierMultimedia ident="eq0015"></elsevierMultimedia>where µ and σ represent the mean and standard deviation of deviation (i) for the ROI located in the normal brain. This score (i) could be used to quantify the difference between <span class="elsevierStyleSup">13</span>N-ammonia uptake and <span class="elsevierStyleSup">18</span>F-FDG uptake in brain lesions.<a class="elsevierStyleCrossRefs" href="#bib0075"><span class="elsevierStyleSup">15,16</span></a></p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Statistical analysis</span><p id="par0070" class="elsevierStylePara elsevierViewall">Statistical analysis was conducted on the platform of PASW Statistics 18.0 (IBM, Armonk, NY, USA). Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) with 95% confidence intervals (CI) were calculated for each tracer with T/N ratios. Student’s t-test was used to compare T/N ratios and decoupling scores of each tracer between LGGs and BILs. Receiver operating characteristic (ROC) analysis was used to establish a cut-off value for the decoupling score, and the area under the curve (AUC) was calculated to evaluate differential efficacy. Results were considered significant at the level of p < 0.05.</p></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Results</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Decoupling map reconstruction in LGG and BIL</span><p id="par0075" class="elsevierStylePara elsevierViewall">According to visual analysis, decoupling scores were markedly increased in the tumors, compared to surrounding normal brain tissues; this allowed precise delineation of the extent of tumor (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). Conversely, decoupling scores of BILs were similar to or lower than those of surrounding normal brain tissue (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>). In <span class="elsevierStyleSup">18</span>F-FDG or <span class="elsevierStyleSup">13</span>N-ammonia T/N ratio maps, LGGs and BILs did not exhibit fixed patterns of expression and were higher or lower than surrounding normal brain tissues. Tumor boundaries were always more clearly delineated in the decoupling map than in the T/N ratio map.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">T/N ratios in LGG and BIL</span><p id="par0080" class="elsevierStylePara elsevierViewall">The T/N ratios of <span class="elsevierStyleSup">18</span>F-FDG were lower than those of <span class="elsevierStyleSup">13</span>N-ammonia in LGGs (mean ± standard deviation, 0.76 ± 0.23 vs. 1.00 ± 0.18, t = −6.718, p < 0.001). However, no significant difference was observed between <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia in BILs (0.88 ± 0.52 vs. 0.84 ± 0.22, t = 0.330, p = 0.746). The T/N ratios of <span class="elsevierStyleSup">18</span>F-FDG uptake were not useful for differentiating LGGs from BILs (LGG vs. BIL: 0.76 ± 0.23 vs. 0.88 ± 0.52, t = −0.836, p = 0.413), whereas the T/N ratios of <span class="elsevierStyleSup">13</span>N-ammonia (LGG vs. BIL: 1.00 ± 0.18 vs. 0.84 ± 0.22, t = 2.519, p = 0.018) uptake were better performance than those of <span class="elsevierStyleSup">18</span>F-FDG in differentiating LGGs from BILs.</p><p id="par0085" class="elsevierStylePara elsevierViewall">ROC analysis yielded optimal T/N cut-off values of 0.73 for <span class="elsevierStyleSup">18</span>F-FDG and 0.97 for <span class="elsevierStyleSup">13</span>N-ammonia for differentiating between LGGs and BILs; the respective AUCs were 0.48 and 0.68. For prediction of LGGs using these optimal cut-off values, the respective sensitivity, specificity, accuracy, PPV, and NPV were 53.6% (15/28), 62.5% (10/16), 56.8% (25/44), 71.4% (15/21), and 43.5% (10/23) for <span class="elsevierStyleSup">18</span>F-FDG; they were 50.0% (14/28), 75.0% (12/16), 59.1% (26/44), 77.8% (14/18), and 46.2% (12/26) for <span class="elsevierStyleSup">13</span>N-ammonia.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Decoupling score in LGGs and BILs</span><p id="par0090" class="elsevierStylePara elsevierViewall">The average decoupling scores of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia were calculated for both LGGs and BILs; these were 2.48 ± 0.62 and 1.72 ± 0.61, respectively, demonstrating a significant difference (t = 3.252, p = 0.003). The optimal T/N cut-off value for the decoupling score to differentiate between LGG and BIL, as determined by ROC curve analysis, was 2.31 (AUC, 0.77) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). For the diagnosis of LGG using the optimal cut-off values, the respective sensitivity, specificity, accuracy, PPV, and NPV were 60.7% (17/28), 93.8% (15/16), 72.7% (32/44), 94.4% (17/18), and 57.7% (15/26). <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a> summarizes the PET results of T/N ratios and decoupling scores for <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG PET uptake studies.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Discussion</span><p id="par0095" class="elsevierStylePara elsevierViewall">Although molecular diagnostics (e.g., chromosomal and gene array technologies) are becoming increasingly beneficial for understanding tumor genetic heterogeneity, <a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> these approaches always require invasive tissue analysis and therefore cannot fully replace non-invasive diagnostics. MRI, with or without gadolinium, remains the gold standard for noninvasive diagnosis and follow-up of patients with gliomas.<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,3,4</span></a> In patients with a suspected brain tumor, anatomic imaging sequences typically include T1- and T2-weighted MR sequences, as well as fluid attenuation inversion recovery MR sequences; T1- weighted imaging is performed after administration of gadolinium-based contrast.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> However, this technique only indirectly reflects the biological activity of the tumor by detecting destruction of the blood-brain barrier.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> Therefore, routine MRI lacks accuracy in terms of non-invasive assessment, especially for LGGs and BILs. Although advanced MR techniques (e.g., perfusion imaging, diffusion-weighted imaging, diffusion tensor imaging, and MR spectroscopy) provide some metabolic and functional information for differentiating gliomas from non-neoplastic brain lesions,<a class="elsevierStyleCrossRefs" href="#bib0100"><span class="elsevierStyleSup">20–22</span></a> they also involve some limitations.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> These drawbacks include: partial volume effects, non-standardized acquisition, and a postprocessing protocol that is non-specific for LGGs. Herein, the molecular information provided by PET is valuable in its ability to supplement additional imaging data.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a><span class="elsevierStyleSup">18</span>F-FDG and amino-acid tracers, such as <span class="elsevierStyleSup">11</span>C-methionine (<span class="elsevierStyleSup">11</span>C-MET), <span class="elsevierStyleSup">18</span>F-FET, and <span class="elsevierStyleSup">18</span>F-FDOPA, provide corresponding metabolic data that enable precise assessment of glioma extension, detection of anaplastic areas, and postoperative follow-up.<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">23–25</span></a> These methods have high sensitivity, as well as positive results, in both acute and chronic inflammation. Previously, we reported that <span class="elsevierStyleSup">13</span>N-ammonia, combined with <span class="elsevierStyleSup">18</span>F-FDG, exhibits great potential for the diagnosis, grading, and postoperative follow-up of intracranial lesions.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9–11</span></a> Moreover, we analyzed the application of <span class="elsevierStyleSup">13</span>N-ammonia in the diagnosis of glioma and inflammatory lesions, concluding that <span class="elsevierStyleSup">13</span>N-ammonia could distinguish high-grade gliomas from low-grade gliomas and inflammations, but could not distinguish low-grade gliomas from inflammatory lesions.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> Therefore, we used a new voxel-wise analysis to process <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG uptake in both LGGs and inflammatory lesions.</p><p id="par0100" class="elsevierStylePara elsevierViewall">Our previous reports showed that <span class="elsevierStyleSup">13</span>N-ammonia uptake was higher than <span class="elsevierStyleSup">18</span>F-FDG uptake in high-grade gliomas and meningiomas,<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9,26</span></a> while <span class="elsevierStyleSup">13</span>N-ammonia uptake was lower than <span class="elsevierStyleSup">18</span>F-FDG uptake in brain abscesses and primary central nervous system lymphomas.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10,27</span></a> However, LGGs and BILs showed heterogeneous uptake in both <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG. As shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>b, lesions (WHO grade Ⅱ oligodendroglioma) showed lower <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake than normal brain tissues. The average T/N ratios of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake, obtained from 16 layers of lesions, were 0.55 and 0.93, respectively. These results were not helpful in the diagnosis of the lesions. Conversely, a remarkably high decoupling score was observed in the lesions in the decoupling map, which could be helpful for diagnosis. Similarly, as shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>a, lesions (WHO grade Ⅱ astrocytoma) showed lower <span class="elsevierStyleSup">18</span>F-FDG uptake, but higher <span class="elsevierStyleSup">13</span>N-ammonia uptake and decoupling score, compared to normal brain tissues. Furthermore, as shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>, lesions (inflammation) showed higher <span class="elsevierStyleSup">18</span>F-FDG uptake, but lower <span class="elsevierStyleSup">13</span>N-ammonia uptake and decoupling score, compared to normal brain tissues. ROC analysis revealed the optimal performance of the decoupling score at a cut-off value of 2.31 (sensitivity, 60.7%; specificity, 93.8%), with an AUC of 0.77. This result indicated that the decoupling score is a better surrogate indicator for discriminating between LGGs and BILs, compared to <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG PET alone.</p><p id="par0105" class="elsevierStylePara elsevierViewall">Many studies have shown that amino acid tracers were used in the management of patients with low-grade gliomas, but few have directly compared their differential efficacy to differentiate LGGs and inflammation. Kracht et al. reported <span class="elsevierStyleSup">11</span>C-MET PET in 13 LGGs and 3 nontumor lesions patients with 87% sensitivity and 89% specificity of 1.3-fold <span class="elsevierStyleSup">11</span>C-MET uptake relative to normal brain tissue.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a><span class="elsevierStyleSup">18</span>F-FET PET also appeared to be superior to FDG-PET for biopsy planning in non-contrast-enhancing brain tumurs, 69% LGGs (49/71) had been found increased <span class="elsevierStyleSup">18</span>F-FET uptake in Jansen NL study, 8/9 LGGs had increased 18F-FET uptake in Plotkin M study.<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">23,24</span></a><span class="elsevierStyleSup">18</span>F-DOPA was also useful to discriminate low-grade gliomas from high-grade gliomas in 2.16 SUVmax with 60% sensitivity and 100% specificity.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a> Compared with the above amino acid tracers, the decoupling score of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia method has higher specificity (93.8%) to differentiate LGGs and BILs.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Some previous studies<a class="elsevierStyleCrossRefs" href="#bib0075"><span class="elsevierStyleSup">15,16</span></a> have reported that <span class="elsevierStyleSup">18</span>F-FDG-<span class="elsevierStyleSup">11</span>C-methionine uptake decoupling score reflects glioma cell infiltration to assess glioma invasion. Similarly, a linear relationship could be inferred between <span class="elsevierStyleSup">13</span>N-ammonia uptake and <span class="elsevierStyleSup">18</span>F-FDG uptake in the normal brain, such that <span class="elsevierStyleSup">18</span>F-FDG can be used as a reference index for <span class="elsevierStyleSup">13</span>N-ammonia uptake in normal brain tissues. The decoupling score calculated at each voxel represents the magnitude of the disrupted correlation of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia at each location of the brain.</p><p id="par0115" class="elsevierStylePara elsevierViewall">According to Cooper,<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">28</span></a> ammonia can act as a source of glutamine in the glutamine cycle. Although inactive neovasculature provides a limited quantity of glutamine for trapping in LGGs,<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">29</span></a> deviation between <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake will be markedly evident in reconstructed images, in the event of tumor infiltration. Extreme decoupling of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake was observed in LGGs, suggesting that the difference in <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake could be expressed as the decoupling score. This difference implies that the decoupling score is based on tumor infiltration into brain tissue, although the relationship between inflammation and gliomas is rather complex.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> As reported in some literature, tumor was usually accompanied by inflammation, but the microenvironment of glioma contains many coordination mechanisms that are different from inflammation, include various glioma-secreted signaling factors such as cytokines, chemokines, and growth factors.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> As also, <span class="elsevierStyleSup">13</span>N-ammonia is involved in the glioma cells glutamine cycle, <span class="elsevierStyleSup">18</span>F-FDG is involved in the glioma cells glucose cycle. It may be due to the difference in the intracellular metabolic patterns of the two imaging agents in inflammation and glioma, which ultimately leads to the difference in the decoupling scores, and the mechanism needs further research.</p><p id="par0120" class="elsevierStylePara elsevierViewall">When <span class="elsevierStyleSup">11</span>C-MET coupled with <span class="elsevierStyleSup">18</span>F-FDG is used to diagnose gliomas, patients are required to visit the hospital 2 times. In the current one-day protocol, after <span class="elsevierStyleSup">13</span>N-ammonia PET is acquired, intravenous injection of <span class="elsevierStyleSup">18</span>F-FDG is administered after a 3-h interval. Notably, because of the short half-life of <span class="elsevierStyleSup">13</span>N and the urine excretion mechanism, <span class="elsevierStyleSup">13</span>N-ammonia is already cleared from the body. Therefore, it would not affect the two PET tracers; this enables same-day evaluation of <span class="elsevierStyleSup">13</span>N-ammonia and <span class="elsevierStyleSup">18</span>F-FDG PET. Finally, this approach was beneficial to the patients, who were not required to travel to our PET center 2 times. In addition, according to the present study,<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> the patient effective dose for <span class="elsevierStyleSup">13</span>N-ammonia brain PET/CT (active from 555 to 740 MBq) was 4.35–5.57 mSv, which is below the 5.2 ± 0.5 mSv dose for <span class="elsevierStyleSup">11</span>C-MET. This radiation dose is below the threshold established by the International Commission on Radiological Protection (ICRP); therefore, excess radiation dose caused by <span class="elsevierStyleSup">13</span>N-ammonia is not a concern with our new approach.</p><p id="par0125" class="elsevierStylePara elsevierViewall">In this study, we have presented decoupling score as a new voxel-wise method for evaluating <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake in LGGs. Although registration-based voxel-by-voxel analysis has shown promising results and comprises a new analytical method for the prediction of LGGs and inflammatory lesions, there are some inherent limitations in this study. First, the present study used small sample sizes of patients with LGGs or BILs; thus, these results should be further validated in prospective studies with a larger sample size. Second, clinical follow-up, rather than histopathology, was used in some patients with BILs. Finally, <span class="elsevierStyleSup">13</span>N-ammonia had an extremely short half-life (approximately 10 min); thus, a cyclotron is needed on-site for clinical use of <span class="elsevierStyleSup">13</span>N-ammonia.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Conclusions</span><p id="par0130" class="elsevierStylePara elsevierViewall">In conclusion, a one-day protocol for <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia PET/CT with uptake decoupling score was implemented to analyze deviation of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia uptake in treatment-naïve LGGs and BILs. The present results showed that the <span class="elsevierStyleSup">18</span>F-FDG–<span class="elsevierStyleSup">13</span>N-ammonia decoupling score was superior for detecting LGGs, compared to <span class="elsevierStyleSup">18</span>F-FDG or <span class="elsevierStyleSup">13</span>N-ammonia uptake alone. Thus, this method seems feasible, and may constitute an analytical approach for semi-quantitative image analysis to discriminate between LGGs and BILs.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres1311963" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Purpose" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1211112" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1311964" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0006" "titulo" => "Propósito" ] 1 => array:2 [ "identificador" => "abst0013" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0014" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0018" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1211113" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Patients" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "PET data acquisition" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Data analysis" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Decoupling score calculation" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0040" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Decoupling map reconstruction in LGG and BIL" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "T/N ratios in LGG and BIL" ] 2 => array:2 [ "identificador" => "sec0055" "titulo" => "Decoupling score in LGGs and BILs" ] ] ] 7 => array:2 [ "identificador" => "sec0060" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0065" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "xack452187" "titulo" => "Acknowledgements" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-04-18" "fechaAceptado" => "2019-08-27" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1211112" "palabras" => array:5 [ 0 => "One-Day protocol" 1 => "<span class="elsevierStyleSup">13</span>N-ammonia" 2 => "<span class="elsevierStyleSup">18</span>F-FDG" 3 => "Voxel-Wise analysis" 4 => "Low-Grade gliomas" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1211113" "palabras" => array:5 [ 0 => "protocolo de un día" 1 => "13N-amonio" 2 => "18F-FDG" 3 => "análisis de voxel" 4 => "gliomas de bajo grado" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0011">Purpose</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Accurate identification of low-grade gliomas (LGGs; World Health Organization grades I and II) and their differentiation from brain inflammation lesions (BILs) remains difficult; however, it is essential for treatment. This study assessed whether a one-day protocol for voxel-wise <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia PET/CT with uptake decoupling analysis could differentiate LGGs from BILs.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Materials and methods</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Twenty-eight patients with LGGs and 16 patients with BILs underwent <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia PET/CT on the same day before any type of therapy. The decoupling score and tumor-to-normal tissue (T/N) ratio of <span class="elsevierStyleSup">18</span>F-FDG and <span class="elsevierStyleSup">13</span>N-ammonia were calculated at each location. Student’s t-test was used to compare values, and ROC curve analysis was used to establish a cut-off value for the T/N ratio and decoupling score. Area under the curve (AUC) was calculated to evaluate differential efficacy.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Significant differences were observed in <span class="elsevierStyleSup">13</span>N-ammonia T/N ratio (p = 0.018) and decoupling score (p = 0.003) between LGGs and BILs; however, the <span class="elsevierStyleSup">18</span>F-FDG T/N ratio did not show any differences (p = 0.413). Optimal cut-off values for <span class="elsevierStyleSup">18</span>F-FDG T/N ratio, <span class="elsevierStyleSup">13</span>N-ammonia T/N ratio, and decoupling score were 0.73, 0.97, and 2.31, respectively, with corresponding AUCs of 0.48, 0.68, and 0.77. The respective sensitivity, specificity, and accuracy parameters using these cut-off values were 53.6%, 62.5%, and 56.8%, respectively, for <span class="elsevierStyleSup">18</span>F-FDG; 50.0%, 75.0%, and 59.1%, respectively, for <span class="elsevierStyleSup">13</span>N-ammonia; and 60.7%, 93.8%, and 72.7%, respectively, for decoupling score.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSup">18</span>F-FDG/<span class="elsevierStyleSup">13</span>N-ammonia uptake decoupling score can be used to discriminate between LGGs and BILs. Use of a decoupling map of these two tracers can improve visual analysis and diagnostic accuracy.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Purpose" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Materials and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0006" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0012">Propósito</span><p id="spar0031" class="elsevierStyleSimplePara elsevierViewall">La identificación precisa de los gliomas de bajo grado (LGGs; grados I y II de la Organización Mundial de la Salud) y su diferenciación de las lesiones por inflamación cerebral (BILs) sigue siendo difícil; sin embargo, es esencial para el tratamiento. Este estudio evaluó si un protocolo de un día para la TEP/TC con amoníaco 18F-FDG y 13Namoníaco con análisis de desacoplamiento de la captación podría diferenciar los LGG de los BIL.</p></span> <span id="abst0013" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0016">Materiales y métodos</span><p id="spar0036" class="elsevierStyleSimplePara elsevierViewall">Veintiocho pacientes con GLG y 16 pacientes con BIL se sometieron a TEP/TC con 18F-FDG y 13N-amoníaco el mismo día antes de cualquier tipo de terapia. La puntuación de desacoplamiento y la relación tumor/tejido normal (T/N) de 18F-FDG y 13N-amoníaco se calcularon en cada localización. Se utilizó la prueba t de Student para comparar valores, y el análisis de la curva ROC para establecer un valor de corte para la relación T/N y la puntuación de desacoplamiento. Se calculó la CUA para evaluar la eficacia diferencial.</p></span> <span id="abst0014" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0017">Resultados</span><p id="spar0038" class="elsevierStyleSimplePara elsevierViewall">Se observaron diferencias significativas en la relación T/N de 13N-amoníaco (p=0,018) y en la puntuación de desacoplamiento (p=0,003) entre los LGG y los BIL; sin embargo, la relación T/N de 18F-FDG no mostró ninguna diferencia (p=0,413). Los valores de corte óptimos para la relación T/N de 18F-FDG, la relación T/N de 13N-amoníaco y la puntuación de desacoplamiento fueron 0,73, 0,97 y 2,31, respectivamente, con AUC correspondientes de 0,48, 0,68 y 0,77. Los respectivos parámetros de sensibilidad, especificidad y precisión que utilizan estos valores de corte fueron 53,6%, 62,5% y 56,8%, respectivamente, para 18F-FDG; 50,0%, 75,0% y 59,1%, respectivamente, para la amoníaco 13N; y 60,7%, 93,8% y 72,7%, respectivamente, para la puntuación de desacoplamiento.</p></span> <span id="abst0018" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0021">Conclusiones</span><p id="spar0041" class="elsevierStyleSimplePara elsevierViewall">La puntuación de desacoplamiento de la captación de amoníaco 18FFDG/ 13N se puede utilizar para discriminar entre LGG y BIL. El uso de un mapa de desacoplamiento de estos dos trazadores puede mejorar el análisis visual y la precisión del diagnóstico.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0006" "titulo" => "Propósito" ] 1 => array:2 [ "identificador" => "abst0013" "titulo" => "Materiales y métodos" ] 2 => array:2 [ "identificador" => "abst0014" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0018" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:2 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Yi C, Quirce R, Yu D, Shi X, Luo G, Zhang B, Lu Y, Zeng R, He Q, Zhang X. Protocolo de un día para la TEP/TC con amoníaco 18F-FDG y 13N con puntuación de desacoplamiento de la captación para diferenciar el glioma de bajo grado no tratado de la inflamación. Rev Esp Med Nucl Imagen Mol. 2020;39:68–74.</p>" ] 1 => array:3 [ "etiqueta" => "1" "nota" => "<p class="elsevierStyleNotepara" id="npar9005">Chang Yi and Donglan Yu contributed equally to this work.</p>" "identificador" => "fn0005" ] ] "multimedia" => array:8 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 991 "Ancho" => 2508 "Tamanyo" => 347855 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Patient examples: region of interest (ROI) near the midline of the brain shows the lesion, ROI in the cerebral cortex shows normal tissue. a. A 30-year-old woman with grade II astrocytoma in the thalamus. <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG tumor-to-normal tissue (T/N) ratio map shows decreased uptake of <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG in the lesion, while <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia T/N ratio map shows increased uptake of <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia in the same lesion. Decoupling score map shows high decoupling scores in this lesion. Decoupling scores in each voxel were calculated using the expected linear regression line of <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG and <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia within normal brain. b. A 45-year-old woman with grade II oligodendrogliomas in the right frontal lobe next to the longitudinal fissure. Decreased uptake of both <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG and <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia was observed for this lesion in T/N ratio maps, which were not helpful for the diagnosis of the lesions. The decoupling score map showed high decoupling scores in the lesion.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1855 "Ancho" => 2925 "Tamanyo" => 491248 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Representative case of a 54-year-old man with a brain inflammation lesion. a. The region of interest shows the lesion in computed tomography images. b and c. Markedly increased uptake of <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG (b) and decreased uptake of <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia (c) were present in tumor-to-normal tissue (T/N) ratio maps. d. Correlation was determined between <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG and <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia uptake within normal brain. e. The lesion in the decoupling map appears lower than surrounding normal brain tissue.</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1288 "Ancho" => 1508 "Tamanyo" => 112433 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Receiver operating characteristic analysis for detecting lesions with <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG tumor-to-normal tissue (T/N) ratio, <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia T/N ratio, and decoupling score. The decoupling score showed the best performance, with a cutoff value of 2.31 (area under the curve, AUC: 0.77), whereas the cutoff values for T/N ratio of <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG and <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia uptake were 0.73 (AUC: 0.48) and 0.97 (AUC: 0.68), respectively.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Diagnosis \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">No. of patients \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Age (Years) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">No. of Sex (M/F) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">No. of diagnoses(histologic/follow-up) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Total \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40.11 ± 15.86 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23/21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34/10 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Inflammation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">46.38 ± 16.49 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8/8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6/10 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Encephalitis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">38.00 ± 13.74 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2/2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−/4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Brain abscess \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62.67 ± 12.34 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2/1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Demyelination \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">41.25 ± 13.44 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3/5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2/6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Fungal infection \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1/- \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LGGs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">36.53 ± 14.59 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15/13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Grade I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20.00 ± 3.16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3/1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Grade II \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">39.30 ± 13.9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12/12 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Astrocytoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">39.30 ± 15.1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11/8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oligodendrogliomas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">37.50 ± 9.68 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1/3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4/− \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oligoastrocytomas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">46 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">-/1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1/− \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2248631.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Patient characteristics.</p>" ] ] 4 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0025" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " rowspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Diagnosis</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">FDG T/N ratio (average)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">NH3 T/N ratio (average)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Decoupling score (average)</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mean \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Range \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mean \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Range \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Mean \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Range \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Total \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.80 ± 0.36 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02˜3.94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.94 ± 0.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.07˜3.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.20 ± 0.71 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−8.82˜9.38 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Inflammation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.88 ± 0.52 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02˜3.94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.84 ± 0.22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.07˜3.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.72 ± 0.61 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−8.82˜5.44 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Encephalitis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.64 ± 0.09 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.24˜1.10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.75 ± 0.23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.20˜1.38 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.58 ± 0.76 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4.51˜4.25 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Brain abscess \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.95 ± 0.32 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.02˜2.16 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.83 ± 0.26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.07˜1.50 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.37 ± 0.76 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1.39˜4.05 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Demyelination \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.05 ± 0.75 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.04˜3.94 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.93 ± 0.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.11˜3.20 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.98 ± 0.55 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−8.82˜5.44 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Fungal infection \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.67 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.13˜1.21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.73 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.16˜1.26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.52 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.62˜3.06 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LGGs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.76 ± 0.23 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.10˜1.81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.00 ± 0.18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.30˜2.72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.48 ± 0.62 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4.58˜9.38 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Grade I \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.91 ± 0.28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.27˜1.42 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.05 ± 0.21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.51˜1.43 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.36 ± 0.93 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.28˜5.18 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Grade II \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.73 ± 0.22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.10˜1.82 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.99 ± 0.17 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.30˜2.72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.50 ± 0.58 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4.58˜9.38 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Astrocytoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.77 ± 0.22 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.19˜1.82 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.02 ± 0.18 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.30˜2.72 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.57 ± 0.61 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−4.58˜9.38 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oligodendrogliomas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.55 ± 0.09 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.10˜1.28 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.85 ± 0.10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.31˜1.44 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.15 ± 0.37 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.29˜6.74 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oligoastrocytomas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.81 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.38˜1.24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.98 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.56˜1.36 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.49 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.72˜5.17 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2248630.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">PET results of T/N ratios and decoupling score for <a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a>N-ammonia and <a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>F-FDG PET.</p>" ] ] 5 => array:5 [ "identificador" => "eq0005" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:1 [ "Quimica" => "(<span class="elsevierStyleSup">13</span>N-ammonia) = α (<span class="elsevierStyleSup">18</span>F-FDG) + β" ] ] 6 => array:6 [ "identificador" => "eq0010" "etiqueta" => "(1)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Deviation(i)=N13-ammonia-αF18-FDG-βα2-1" "Fichero" => "STRIPIN_si3.jpeg" "Tamanyo" => 2843 "Alto" => 40 "Ancho" => 245 ] ] 7 => array:6 [ "identificador" => "eq0015" "etiqueta" => "(2)" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Score(i)=Deviation(i)-μσ" "Fichero" => "STRIPIN_si4.jpeg" "Tamanyo" => 1966 "Alto" => 32 "Ancho" => 173 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:31 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Low-grade gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D.A. Forst" 1 => "B.V. Nahed" 2 => "J.S. Loeffler" 3 => "T.T. Batchelor" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Oncologist" "fecha" => "2014" "volumen" => "19" "paginaInicial" => "403" "paginaFinal" => "413" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Cancer Genome Atlas Research Network" 1 => "D.J. Brat" 2 => "R.G. Verhaak" 3 => "K.D. Aldape" 4 => "W.K. Yung" 5 => "S.R. Salama" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa1402121" "Revista" => array:6 [ "tituloSerie" => "N Engl J Med" "fecha" => "2015" "volumen" => "372" "paginaInicial" => "2481" "paginaFinal" => "2498" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26061751" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Primary brain tumours in adults" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D. Ricard" 1 => "A. Idbaih" 2 => "F. Ducray" 3 => "M. Lahutte" 4 => "K. Hoang-Xuan" 5 => "J.Y. Delattre" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(11)61346-9" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2012" "volumen" => "379" "paginaInicial" => "1984" "paginaFinal" => "1996" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22510398" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Brain tumors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S. Goldman" 1 => "B.J. Pirotte" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/978-1-61779-062-1_16" "Revista" => array:6 [ "tituloSerie" => "Methods Mol Biol" "fecha" => "2011" "volumen" => "727" "paginaInicial" => "291" "paginaFinal" => "315" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21331940" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Delineation of brain tumor extent with [11C] L-methionine positron emission tomography: local comparison with stereotactic histopathology" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L.W. Kracht" 1 => "H. Miletic" 2 => "S. Busch" 3 => "A.H. Jacobs" 4 => "J. Voges" 5 => "M. Hoevels" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1158/1078-0432.CCR-04-0262" "Revista" => array:6 [ "tituloSerie" => "Clin Cancer Res" "fecha" => "2004" "volumen" => "10" "paginaInicial" => "7163" "paginaFinal" => "7170" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15534088" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Y. Yamamoto" 1 => "Y. Ono" 2 => "F. Aga" 3 => "N. Kawai" 4 => "N. Kudomi" 5 => "Y. Nishiyama" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2967/jnumed.112.104729" "Revista" => array:6 [ "tituloSerie" => "J Nucl Med" "fecha" => "2012" "volumen" => "53" "paginaInicial" => "1911" "paginaFinal" => "1915" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23081994" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N.L. Albert" 1 => "I. Winkelmann" 2 => "B. Suchorska" 3 => "V. Wenter" 4 => "C. Schmid-Tannwald" 5 => "E. Mille" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00259-015-3276-2" "Revista" => array:7 [ "tituloSerie" => "Eur J Nucl Med Mol Imaging" "fecha" => "2016" "volumen" => "43" "numero" => "6" "paginaInicial" => "1105" "paginaFinal" => "1114" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26666239" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Advances in neuro-oncology imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.J. Langen" 1 => "N. Galldiks" 2 => "E. Hattingen" 3 => "N.J. Shah" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrneurol.2017.44" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Neurol" "fecha" => "2017" "volumen" => "13" "paginaInicial" => "279" "paginaFinal" => "289" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28387340" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The comparison of 13N-ammonia and 18F-FDG in the evaluation of untreated gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "X. Shi" 1 => "Y. Liu" 2 => "X. Zhang" 3 => "C. Yi" 4 => "X. Wang" 5 => "Z. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/RLU.0b013e318295298d" "Revista" => array:6 [ "tituloSerie" => "Clin Nucl Med" "fecha" => "2013" "volumen" => "38" "paginaInicial" => "522" "paginaFinal" => "526" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23698463" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "X. Shi" 1 => "C. Yi" 2 => "X. Wang" 3 => "B. Zhang" 4 => "Z. Chen" 5 => "G. Tang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/RLU.0000000000000649" "Revista" => array:6 [ "tituloSerie" => "Clin Nucl Med" "fecha" => "2015" "volumen" => "40" "paginaInicial" => "195" "paginaFinal" => "199" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25546194" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with 13N-NH3 PET" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Z. Xiangsong" 1 => "C. Weian" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11060-006-9286-y" "Revista" => array:6 [ "tituloSerie" => "J Neurooncol" "fecha" => "2007" "volumen" => "82" "paginaInicial" => "305" "paginaFinal" => "311" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17120157" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "V. Dunet" 1 => "C. Rossier" 2 => "A. Buck" 3 => "R. Stupp" 4 => "J.O. Prior" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2967/jnumed.111.096859" "Revista" => array:6 [ "tituloSerie" => "J Nucl Med" "fecha" => "2012" "volumen" => "53" "paginaInicial" => "207" "paginaFinal" => "214" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22302961" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Rapp" 1 => "A. Heinzel" 2 => "N. Galldiks" 3 => "G. Stoffels" 4 => "J. Felsberg" 5 => "C. Ewelt" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2967/jnumed.112.109603" "Revista" => array:6 [ "tituloSerie" => "J Nucl Med" "fecha" => "2013" "volumen" => "54" "paginaInicial" => "229" "paginaFinal" => "235" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23232275" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of 13N-ammonia in the differential diagnosis of gliomas and brain inflammatory lesions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Yi" 1 => "X. Shi" 2 => "X. Zhang" 3 => "G. Luo" 4 => "B. Zhang" 5 => "X. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s12149-018-1308-2" "Revista" => array:6 [ "tituloSerie" => "Ann Nucl Med" "fecha" => "2019" "volumen" => "33" "paginaInicial" => "61" "paginaFinal" => "67" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30350180" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Imaging 18F-fluorodeoxy glucose/11C-methionine uptake decoupling for identification of tumor cell infiltration in peritumoral brain edema" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Kinoshita" 1 => "T. Goto" 2 => "H. Arita" 3 => "Y. Okita" 4 => "K. Isohashi" 5 => "N. Kagawa" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11060-011-0688-0" "Revista" => array:6 [ "tituloSerie" => "J Neurooncol" "fecha" => "2012" "volumen" => "106" "paginaInicial" => "417" "paginaFinal" => "425" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21847706" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A novel PET index, 18F-FDG-11C-methionine uptake decoupling score, reflects glioma cell infiltration" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Kinoshita" 1 => "H. Arita" 2 => "T. Goto" 3 => "Y. Okita" 4 => "K. Isohashi" 5 => "T. Watabe" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2967/jnumed.112.104992" "Revista" => array:6 [ "tituloSerie" => "J Nucl Med" "fecha" => "2012" "volumen" => "53" "paginaInicial" => "1701" "paginaFinal" => "1708" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23000747" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Management of diffuse low-grade gliomas in adults - use of molecular diagnostics" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Buckner" 1 => "C. Giannini" 2 => "J. Eckel-Passow" 3 => "D. Lachance" 4 => "I. Parney" 5 => "N. Laack" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrneurol.2017.54" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Neurol" "fecha" => "2017" "volumen" => "13" "paginaInicial" => "340" "paginaFinal" => "351" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28497806" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of imaging in the management of adults with diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "S.J. Fouke" 1 => "T. Benzinger" 2 => "D. Gibson" 3 => "T.C. Ryken" 4 => "S.N. Kalkanis" 5 => "J.J. Olson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11060-015-1908-9" "Revista" => array:6 [ "tituloSerie" => "J Neurooncol" "fecha" => "2015" "volumen" => "125" "paginaInicial" => "457" "paginaFinal" => "479" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26530262" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F.G. Dhermain" 1 => "P. Hau" 2 => "H. Lanfermann" 3 => "A.H. Jacobs" 4 => "M.J. van den Bent" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S1474-4422(10)70181-2" "Revista" => array:6 [ "tituloSerie" => "Lancet Neurol" "fecha" => "2010" "volumen" => "9" "paginaInicial" => "906" "paginaFinal" => "920" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20705518" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Hutterer" 1 => "E. Hattingen" 2 => "C. Palm" 3 => "M.A. Proescholdt" 4 => "P. Hau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/neuonc/nou322" "Revista" => array:6 [ "tituloSerie" => "Neuro Oncol" "fecha" => "2015" "volumen" => "17" "paginaInicial" => "784" "paginaFinal" => "800" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25543124" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High-grade glioma management and response assessment-recent advances and current challenges" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.N. Khan" 1 => "A.M. Sharma" 2 => "M. Pitz" 3 => "S.K. Loewen" 4 => "H. Quon" 5 => "A. Poulin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3747/co.23.3082" "Revista" => array:6 [ "tituloSerie" => "Curr Oncol" "fecha" => "2016" "volumen" => "23" "paginaInicial" => "e383" "paginaFinal" => "e391" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27536188" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pseudoprogression in high-grade glioma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K.M. Knudsen-Baas" 1 => "G. Moen" 2 => "Ø Fluge" 3 => "A. Storstein" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurol Scand Suppl" "fecha" => "2013" "volumen" => "196" "paginaInicial" => "31" "paginaFinal" => "37" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N.L. Jansen" 1 => "V. Graute" 2 => "L. Armbruster" 3 => "B. Suchorska" 4 => "J. Lutz" 5 => "S. Eigenbrod" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00259-012-2109-9" "Revista" => array:6 [ "tituloSerie" => "Eur J Nucl Med Mol Imaging" "fecha" => "2012" "volumen" => "39" "paginaInicial" => "1021" "paginaFinal" => "1029" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22491781" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Plotkin" 1 => "C. Blechschmidt" 2 => "G. Auf" 3 => "F. Nyuyki" 4 => "L. Geworski" 5 => "T. Denecke" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00330-010-1819-2" "Revista" => array:6 [ "tituloSerie" => "Eur Radiol" "fecha" => "2010" "volumen" => "20" "paginaInicial" => "2496" "paginaFinal" => "2502" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20521054" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "FDOPA PET-CT of nonenhancing brain tumors" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Bund" 1 => "C. Heimburger" 2 => "A. Imperiale" 3 => "B. Lhermitte" 4 => "M.P. Chenard" 5 => "F. Lefebvre" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/RLU.0000000000001540" "Revista" => array:6 [ "tituloSerie" => "Clin Nucl Med" "fecha" => "2017" "volumen" => "42" "paginaInicial" => "250" "paginaFinal" => "257" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28114224" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "13N-NH3 versus F-18 FDG in detection of intracranial meningioma: initial report" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Z. Xiangsong" 1 => "S. Xingchong" 2 => "Y. Chang" 3 => "W. Xiaoyan" 4 => "C. Zhifeng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/RLU.0b013e3182291c2a" "Revista" => array:6 [ "tituloSerie" => "Clin Nucl Med" "fecha" => "2011" "volumen" => "36" "paginaInicial" => "1003" "paginaFinal" => "1006" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21975388" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The combination of 13N-ammonia and 18F-FDG in predicting primary central nervous system lymphomas in immunocompetent patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "X. Shi" 1 => "X. Zhang" 2 => "C. Yi" 3 => "X. Wang" 4 => "Z. Chen" 5 => "B. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/RLU.0b013e318279b6cc" "Revista" => array:6 [ "tituloSerie" => "Clin Nucl Med" "fecha" => "2013" "volumen" => "38" "paginaInicial" => "98" "paginaFinal" => "102" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23334122" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "13N as a tracer for studying glutamate metabolism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.J. Cooper" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuint.2010.11.011" "Revista" => array:6 [ "tituloSerie" => "Neurochem Int" "fecha" => "2011" "volumen" => "59" "paginaInicial" => "456" "paginaFinal" => "464" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21108979" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "(68)Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D. Li" 1 => "X. Zhao" 2 => "L. Zhang" 3 => "F. Li" 4 => "N. Ji" 5 => "Z. Gao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1021/mp5003224" "Revista" => array:6 [ "tituloSerie" => "Mol Pharm" "fecha" => "2014" "volumen" => "11" "paginaInicial" => "3923" "paginaFinal" => "3929" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25093246" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Exploring the role of inflammation in the malignant transformation of low-grade gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "N. Michelson" 1 => "J. Rincon-Torroella" 2 => "A. Quiñones-Hinojosa" 3 => "J.P. Greenfield" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jneuroim.2016.05.019" "Revista" => array:6 [ "tituloSerie" => "J Neuroimmunol" "fecha" => "2016" "volumen" => "297" "paginaInicial" => "132" "paginaFinal" => "140" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27397086" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Biodistribution and estimation of radiation-absorbed doses in humans for 13N-ammonia PET" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Yi" 1 => "D. Yu" 2 => "X. Shi" 3 => "Q. He" 4 => "X. Zhang" 5 => "X. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s12149-015-1012-4" "Revista" => array:6 [ "tituloSerie" => "Ann Nucl Med" "fecha" => "2015" "volumen" => "29" "paginaInicial" => "810" "paginaFinal" => "815" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26243501" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:2 [ 0 => array:4 [ "identificador" => "xack452187" "titulo" => "Acknowledgements" "texto" => "<p id="par0135" class="elsevierStylePara elsevierViewall">This work was supported by the <span class="elsevierStyleGrantSponsor" id="gs0005">Science and Technology Planning Project of Guangdong Province</span> [<span class="elsevierStyleGrantNumber" refid="gs0005">2017B020210001</span>]; the <span class="elsevierStyleGrantSponsor" id="gs0010">Medical Science and Technique Foundation of Guangdong Province</span> [<span class="elsevierStyleGrantNumber" refid="gs0010">A2019516</span>]; the <span class="elsevierStyleGrantSponsor" id="gs0015">Science and Technology Program of Guangzhou</span> [<span class="elsevierStyleGrantNumber" refid="gs0015">201607010353</span>]. We thank Professor Ganghua Tang for advice and suggestions regarding the production of <span class="elsevierStyleSup">13</span>N-ammonia. We also appreciate the technical assistance and commitment of our staff.</p>" "vista" => "all" ] 1 => array:2 [ "identificador" => "xack452188" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/22538089/0000003900000002/v1_202002260643/S2253808919300965/v1_202002260643/en/main.assets" "Apartado" => array:4 [ "identificador" => "7926" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/22538089/0000003900000002/v1_202002260643/S2253808919300965/v1_202002260643/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2253808919300965?idApp=UINPBA00004N" ]
Journal Information
Share
Download PDF
More article options
Original Article
One-day protocol for 18F-FDG and 13N-ammonia PET/CT with uptake decoupling score in differentiating untreated low-grade glioma from inflammation
Protocolo de un día para la TEP/TC con amoníaco 18F-FDG y 13N con puntuación de desacoplamiento de la captación para diferenciar el glioma de bajo grado no tratado de la inflamación
Y. Changa,1, Y. Donglanb,1, S. Xinchonga, L. Ganhuaa, Z. Binga, L. Yaoc, Z. Rutongc, H. Qiaoa, Z. Xiangsonga,
Corresponding author
xiaolong-4310@163.com
Corresponding author at: Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University. Zhongshan Er Road 58#, Guangzhou, China.
Corresponding author at: Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University. Zhongshan Er Road 58#, Guangzhou, China.