metricas
covid
Buscar en
Revista Iberoamericana de Micología
Toda la web
Inicio Revista Iberoamericana de Micología Characterization, enzymatic activity and biofilm formation of Candida species is...
Journal Information
Vol. 38. Issue 4.
Pages 175-179 (October - December 2021)
Share
Share
Download PDF
More article options
Visits
2341
Vol. 38. Issue 4.
Pages 175-179 (October - December 2021)
Note
Open Access
Characterization, enzymatic activity and biofilm formation of Candida species isolated from goat milk
Caracterización, actividad enzimática y formación de biopelículas de especies de Candida aisladas de leche de cabra
Visits
2341
Carolina Segundo Zaragozaa,
Corresponding author
c_segund@yahoo.com.mx

Corresponding author.
, Itzel López Ortiza, David Alejandro Contreras Caro del Castillob, Yesmín María Domínguez Hernándeza, Juan Antonio Rodríguez Garcíaa
a Laboratorio de Micología Veterinaria, Unidad de Servicios de Diagnóstico y Constatación, Centro de Enseñanza, Investigación y Extensión en Producción Animal en Altiplano, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico
b Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico
This item has received

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (3)
Table 1. Identification of Candida isolates from the milk of clinically healthy goats.
Table 2. Enzymatic activity of Candida isolates from the milk of clinically healthy goats.
Table 3. Biofilm formation of Candida isolates from the milk of clinically healthy goats.
Show moreShow less
Abstract
Background

Data regarding yeast microbiota in goat milk is scarce.

Aims

To isolate and identify species of the genus Candida in milk samples from clinically healthy goats, and evaluate their enzymatic activity and biofilm formation.

Methods

1092 milk samples from clinically healthy goats were collected and processed. The yeast isolates were identified by phenotypic, methods and their enzymatic activity (phospholipase, hemolysin and protease) and biofilm formation evaluated.

Results

We obtained 221 Candida isolates belonging to six species: Candida kefyr (35.7%), Candida guilliermondii (33%), Candida famata (23.5%), Candida glabrata (5.9%), Candida albicans (1.35%) and Candida parapsilosissensu lato (0.45%). Protease activity was detected in all Candida species while hemolysin activity was only present in C. kefyr, C. guilliermondii, C. famata and C. albicans. Only C. albicans showed phospholipase activity. With the exception of C. parapsilosis sensu lato, all Candida species formed biofilm, with 60.19% of the isolates being poor producers, 9.93% moderate producers, and 1.35% strong producers.

Conclusions

The milk of clinically healthy goats contains several species of the genus Candida that could play a role as opportunistic pathogens in mastitis.

Keywords:
Yeast
Mastitis
Goat
Milk
Mexico
Resumen
Antecedentes

El conocimiento de la microbiota levaduriforme presente en la leche de cabra es escaso.

Objetivos

Aislar e identificar especies del género Candida en muestras de leche de cabras clínicamente sanas, evaluar su actividad enzimática y su capacidad de formar biopelículas.

Métodos

Se recogieron y procesaron 1092 muestras de leche de cabras clínicamente sanas. Las levaduras aisladas fueron identificadas mediante métodos fenotípicos, evaluándose posteriormente su actividad enzimática (producción de fosfolipasas, hemolisinas y proteasas) y la formación de biopelículas.

Resultados

Se obtuvieron 221 aislamientos de Candida de seis especies: Candida kefyr (35,7%), Candida guilliermondii (33%), Candida famata (23,5%), Candida glabrata (5,9%), Candida albicans (1,35%) y Candida parapsilosis sensu lato (0,45%). En todas las especies de Candida se detectó actividad proteolítica, y únicamente C. kefyr, C. guilliermondii, C. famata y C. albicans presentaron actividad hemolítica. Por su parte, C. albicans fue la única especie con actividad fosfolipasa. Con excepción de C. parapsilosissensu lato, todas las especies de Candida formaron biopelícula, con el 60,19% de los aislamientos poco formadores de biopelícula, el 9,93% moderadamente formadores y el 1,35% altamente formadores.

Conclusiones

La leche de cabras clínicamente sanas presenta diversas especies del género Candida que podrían actuar como patógenos oportunistas de mastitis.

Palabras clave:
Levadura
Mastitis
Cabra
Leche
México
Full Text

The mammary glands in ruminants are known to harbor diverse bacteria; little is known, however, about their fungal microbiota. In dairy cattle, studies report the presence of different species of the genus Candida.7,18,21,25,34,37 A variety of enzymatic activities, mainly proteases, hemolysins and phospholipases, allow different species of Candida to adhere, colonize and invade host tissues.8,10 In addition, biofilm production enables Candida infection and resistance to antimicrobials.13,33 The objective of this study was to isolate and identify Candida species in milk samples from clinically healthy goats, and to evaluate their enzymatic activity and biofilm formation.

We collected 1092 milk samples during a six month-period from a farm with Alpina goats clinically healthy (n = 100) in Querétaro, Mexico. The samples were centrifuged (4000rpm, 10min), the pellets resuspended into 2ml of yeast extract peptone dextrose (YEPD) broth (casein peptone 2%, dextrose 2%, yeast extract 1%), and incubated 48h at 37°C. Yeasts were isolated by plating 50μl from each suspension on Sabouraud dextrose agar (SDA) supplemented with 50mg/l chloramphenicol. Conventional phenotypic methods were used for yeast identification: Gram staining, germ tube production, pseudohyphae formation, sensitivity to 0.1% cycloheximide, film formation in liquid culture, urease production, carbohydrates assimilation and fermentation, and development in Biggy medium and CHROMagar Candida. 2,5,6,14,24,27,28,30,32,40 Each yeast isolate was evaluated for enzymatic activity and biofilm production. Phospholipase and protease activity were performed according to Kantarcioglu and Yücel,20 and hemolysin activity according to Luo et al.26 Briefly, 6mm diameter sterile filter discs were embedded with 10μl yeast suspension (1×106–5×106CFU/ml). These were placed onto SDA agar supplemented with 4% egg yolk, 0.2% bovine serum albumine or 7% sheep blood for phospholipase, protease and hemolysin activity evaluation, respectively. After incubation (37°C, 7 days), the yeast colony and the corresponding clear halo diameters were measured. The enzymatic activity was determined through the enzyme activity index according to Williamson's formula.41Candida biofilm formation was evaluated using the Gokce et al. safranine method.15 For each isolate a 1×108CFU/ml yeast suspension was prepared in yeast nitrogen base medium (YNBG) with 8% glucose. From this stock suspension a 1:100 dilution was made, and 96-well polystyrene flat-bottom microplates were filled (200μl/well) and incubated 48h at 37°C. Afterwards, the plates were washed three times with sterile phosphate-buffered saline (PBS, pH 7.4). The biofilms formed were fixed with methanol for 15min (200μl/well); methanol was discarded and the microplates were allowed to dry for 10min at 37°C. Thereafter, 1% safranin solution was added (200μl/well), and after 20min at room temperature a washing with PBS was done. Immediately after, 95% ethanol was added (200μl/well, 20min at room temperature). Finally, the optical density (OD) was determined at 490nm using a Biotek ELISA reader. Categorization of biofilm production was established through OD intervals as described by Stepanovic et al.16,39 Descriptive statistics were used to analyze the results.

Candida was the solely yeast genus found in the goat milk samples analyzed. We obtained 221 Candida isolates, further identified as Candida kefyr 35.74%, Candida guilliermondii 33%, Candida famata 23.53%, Candida glabrata 5.9%, Candida albicans 1.35%, and Candida parapsilosis(sensu lato)44 0.45% (Table 1). Concerning enzymatic activity, 98.65% of the isolates showed protease activity, 55.2% hemolytic activity, and 1.36% phospholipase activity. Protease activity varied among the species and within the isolates of a given species. C. kefyr, C. guilliermondii, and C. famata showed the whole range of protease activity, having more than 87% of them medium and high activity. All C. glabrata presented protease activity, circa 70% of them showing high activity. C. albicans and C. parapsilosis isolates exhibited only high protease activity. Hemolysin activity was observed in C. albicans (100%), C. guilliermondii (71.23%), C. famata (67.30%) and C. kefyr (40.50%). Phospholipase activity was just detected in C. albicans (Table 2). Regarding biofilm formation, four categories were determined: no biofilm formation, low biofilm formation, moderate biofilm formation, and high biofilm formation. Biofilm was produced in various degrees by 71.49% of all Candida isolates but C. parapsilosis (sensu lato) (Table 3).

Table 1.

Identification of Candida isolates from the milk of clinically healthy goats.

Candida species  Pseudohyphae formation  Yeast developmentUrease  Germ tube formation  Assimilation and fermentationYeast development 37°C
    SDA 37°C  YNB+cycloheximide (0.1%)  Sabouraud broth      glusaclacmalxylraftremelChromagar Candida  BIGGY 
                 
C. kefyr (n=79)  −  −  −  −  −  −  −  −  −  −  Matte light pink  Light brown 
C. guilliermondii (n=73)  −  −  −  −  −  −  −  −  Bright pink  Reddish brown 
C. famata (n=52)  −  −  −  −  −  −  −  Matte pale pink  Reddish brown 
C. glabrata (n=13)  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  Matte pale pink  Light brown 
C. albicans (n=3)  −  −  −  −  −  −  −  −  −  −  Emerald green  Brown and silver appearance on the surface 
C. parapsilosis (sensu lato) (n=1)  −  −  −  −  −  −  −  −  −  −  −  −  −  −  Matte pale pink  Reddish brown 

A: assimilation; F: fermentation; SDA: Sabouraud dextrose agar; YNB: yeast nitrogen base; glu: glucose; sac: saccharose; lac: lactose; mal: maltose; xyl: xylose; raf: raffinose; tre: trehalose; mel: melezitose; V: variable strains.

Table 2.

Enzymatic activity of Candida isolates from the milk of clinically healthy goats.

Candida species  Number of isolates (nScores of enzymatic activities (Pz)
    ProteasePhospholipaseHemolysin
   
C. kefyr  79  20  49  79  –  –  –  47  23  – 
C. guilliermondii  73  60  73  –  –  –  21  46  – 
C. famata  52  –  42  52  –  –  –  17  31  – 
C. glabrata  13  –  –  13  –  –  –  13  –  –  – 
C. albicans  –  –  –  –  –  –  – 
C.parapsilosis  –  –  –  –  –  –  –  –  – 
Total  221  14  40  164  218  –  99  101  21  – 

Enzyme activity: 1=null (Pz=1); 2=low (Pz=0.61–0.99); 3=medium (Pz=0.41–0.60); 4=high (Pz0.40).

Pz =Diameter of the colonyDiameter of the halo

Table 3.

Biofilm formation of Candida isolates from the milk of clinically healthy goats.

Candida species  Number of isolates (nNo biofilmLow biofilm formationModerate biofilm formationHigh biofilm formation
    OD0.120a  OD (0.121–0.240)  OD (0.241–0.480)  OD (≥0.481) 
C. kefyr  79  21  9.5  50  22.62  3.16  0.45 
C. guilliermondii  73  21  9.5  44  19.9  3.61  –  – 
C. famata  52  18  8.14  26  11.8  2.71  0.9 
C. glabrata  13  0.9  10  4.52  0.45  –  – 
C. albicans  –  –  1.35  –  –  –  – 
C.parapsilosis  0.45  –  –  –  –  –  – 
Total  221  63  28.49  133  60.19  22  9.93  1.35 

OD: optical density.

a

Cut-off point (mean OD value of negative controls+2 standard deviation).

Yeast identification was performed by conventional methods, which are the routine diagnostic methods used in our laboratory. Although known to be less sensitive and more time consuming than molecular methodologies, they are considered the gold Candida identification standard.1,43 Predominance of non-C. albicansCandida species in milk from clinically healthy goats, and from other ruminants with and without mastitis have been reported.9,17,19,21,22,25 Our findings support this since, out of the six Candida species found, C. albicans accounted only for 1.35% of the isolates. Little is known about the association of Candida spp. enzymatic production and biofilm formation with the yeasts virulence. Both proteases and hemolysins were detected in C. albicans, C. famata, C. kefyr, C. guilliermondii and C. parapsilosis, whereas phospholipases were only detected in C. albicans. These features are in agreement with previous studies.3,4,12,15,26,29,36In vitro production of these virulence factors are strain-dependent and may differ according to the anatomical site infected or the yeasts involvement in a pathological process.4,33 Biofilm formation has been described in C. albicans, C. tropicalis, C. parapsilosis and C. glabrata, and correlation between yeast virulence and high biofilm production has been demonstrated in human beings.11,13,15,23,31,33,42 In animals, a research studying milk from buffaloes with mastitis have shown high biofilm production in Candida zeylanoides, Candida rugosa and Candida kefyr.35 In this study, C. albicans, C. kefyr, C. guilliermondii, and C. famata isolates mostly showed a low production of biofilms. This might be related to the samples origin, clinically healthy animals, where formation of high density biofilms might not be crucial to yeasts persistence. Nevertheless, all these microorganisms could be opportunistic pathogens in mastitis.35,38

More research on Candida presence, both in milk of clinically healthy and diseased goats, and their virulence factors is needed to determine their relationship with the development of fungal mastitis in this animal species. Our study is the first of its kind in Mexico, demonstrating the presence of different species of the genus Candida in goat milk from clinically healthy animals; the isolates exhibited various virulence factors under laboratory conditions.

Financing

Program for Support to Projects for the Innovation and Improvement of Teaching (PAPIME) grant PE206819. DGAPA-UNAM. México.

Conflict of interests

The authors declare that they have no conflict of interest.

Acknowledgments

The authors are grateful to Dr.Cristina Escalante Ochoa for her valuable review of this manuscript.

References
[1]
M. Arvanitis, T. Anagnostou, B.B. Fuchs, A.M. Caliendo, E. Mylonakis.
Molecular and nonmolecular diagnostic methods for invasive fungal infections.
Clin Microbiol Rev, 27 (2014), pp. 490-526
[2]
J. Barnett, R. Payne, D. Yarrow.
Yeast: characteristics and identification.
Cambrige University Press, (1983),
[3]
R.É. Bezerra de Melo, R.P. Menezez, P.M.P. Amante, P.R. Dos Santos.
Enzymatic and hemolytic in different Candida species.
Rev Iberoam Micol, 32 (2015), pp. 79-82
[4]
A. Borst, A.C. Fluit.
High levels of hydrolytic enzymes secreted by Candida albicans isolates involved in respiratory infections.
J Med Microbiol, 52 (2003), pp. 971-974
[5]
M.C. Campbell, J.L. Stewart.
The medical mycology handbook.
University of Michigan, (1980),
[6]
P.R. Campos, G.R. Franco, C.A. Rosa, R.C. Hahn, J.S. Hamdan.
Phenotypic and genotypic identification of Candida spp. isolated from hospitalized patients.
Rev Iberoam Micol, 21 (2004), pp. 24-28
[7]
E.O. Costa, C.R. Gandra, M.F. Pires, S.D. Coutinho, W. Castillo, C.M. Teixeira.
Survey of bovine mycotic in dairy herds in the State of Sao Paulo, Brazil.
Mycopathologia, 124 (1993), pp. 7-13
[8]
K.R.C. Da Costa, J.C. Ferreira, M.C. Komesu, R.C. Candido.
Candidaalbicans and Candidatropicalis in oral candidosis: quantitative analysis, exoenzyme activity, and antifungal drug sensitivity.
Mycopathologia, 167 (2009), pp. 73-79
[9]
E. Delavenne, J. Mounier, K. Asmani, J.L. Jany, G. Barbier, G. Le Blay.
Fungal diversity in cow, goat and ewe milk.
Int J Food Microbiol, 151 (2011), pp. 247-251
[10]
R.N. De la Calle, V.C. Santa, C.N. Cardona.
Factores de virulencia para la infección de tejidos queratinizados por Candida albicans y hongos dermatofitos.
Rev CES Med, 26 (2012), pp. 43-55
[11]
J.L. Del Pozo, E. Cantón.
Candidiasis asociada a biopelículas.
Rev Iberoam Micol, 33 (2016), pp. 176-183
[12]
M. Fatahinia, M. Halvaeezadeh, A. Rezaei-Matehkolaei.
Comparison of enzymatic activities in different Candida species isolated from women with vulvovaginitis.
J Mycol Méd, 27 (2017), pp. 188-194
[13]
H.C. Flemming, J. Wingender.
The biofilm matrix.
Nat Rev Microbiol, 8 (2010), pp. 623-633
[14]
A.M. Freydere, R. Guinet, P. Boirin.
Yeast identification in the clinical microbiology laboratory: phenotyphical methods.
Med Mycol, 39 (2001), pp. 9-33
[15]
G. Gokce, N. Cerikcioglu, A. Yagci.
Acid proteinase, phospholipase, and biofilm production of Candida species isolates from blood cultures.
Mycopathologia, 164 (2007), pp. 265-269
[16]
J. Gómez, M.L. Gómez-Lus, P. Bas, C. Ramos, F. Cafini, J.R. Maestre, et al.
¿Es la cuantificación del biofilm un elemento diferenciador en la patogenia de bacilos gramnegativos?.
Rev Esp Quimioter, 26 (2013), pp. 97-102
[17]
A.A. Hassan, M.A. Hassan, M.H. Rasha, E.A. Sayed, A.S. Darwish.
Prevalence of yeast infections in small in ruminants with particular references to their treatment by some natural herbal extracts.
Bull Environ Pharmacol Life Sci, 1 (2012), pp. 12-22
[18]
T. Hayashi, T. Sugita, E. Hata, K. Katsuda, E. Zhang, Y. Kiku, et al.
Molecular-based identification of yeasts isolated from bovine clinical mastitis in Japan.
J Vet Med Sci, 75 (2013), pp. 387-390
[19]
Z. Ilhan, I.H. Ekin, S. Koltas, O. Gulaydın, C. Ozturk, A.E. Borum.
Occurrence of fungal agents in mastitis in dairy goats.
J Anim Plant Sci, 29 (2016), pp. 4691-4700
[20]
A.S. Kantarcioglu, A. Yücel.
Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains.
[21]
H. Krukowski, M. Tietze, T. Majewski, P. Rózański.
Survey of yeast mastitis in dairy herds of small-type farms in the Lublin region, Poland.
Mycopathologia, 150 (2001), pp. 5-7
[22]
S. Ksouri, S. Djebir, Y. Hadef, A. Benakhla.
Survey of bovine mycotic mastitis in different mammary gland statuses in two north-eastern regions of Algeria.
Mycopathologia, 179 (2015), pp. 327-331
[23]
D.M. Kuhn, J. Chandra, P.K. Mukherjee, M.A. Ghannoum.
Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces.
[24]
F.C. Kurtzman, S.J. Fell, S.T. Boekhout.
The yeast.
A taxonomic study, 5th ed., Elsevier Science, (2011),
[25]
P.E. Lagneau, K. Lebtahi, D. Swinne.
Isolation of yeast from bovine milk in Belgium.
Mycopathologia, 135 (1996), pp. 99-102
[26]
G. Luo, L.P. Samaranayake, J.Y. Yau.
Candida species exhibit differential in vitro hemolytic activities.
J Clin Microbiol, 39 (2001), pp. 2971-2974
[27]
J.F. MacFaddin.
Biochemical tests for identification of medical bacteria.
3rd ed., Jones and Bartlett Learning, (2000),
[28]
W.J. Nickerson.
Reduction of inorganic substances by yeasts: I. Extracellular reduction of sulfite by species of Candida.
J Infect Dis, 93 (1953), pp. 43-56
[29]
M.M. Panizo, V. Reviákina, Y. Flores, W. Montes, G. González.
Actividad de fosfolipasas y proteasas en aislados clínicos de Candida spp.
Rev Soc Venezol Microbiol [electronic journal], 25 (2005), pp. 64-71
[30]
J. Pontón.
Diagnóstico microbiológico de las micosis.
Rev Iberoam Micol, 19 (2002), pp. 25-29
[31]
G. Ramage, K. Vadewalle, L.B. Wickes, J. López-Ribbot.
Characteristics of biofilm formation by Candida albicans.
Rev Iberoam Micol, 18 (2001), pp. 163-170
[32]
A.J. Ruiz, M.P. García, J.L. Puerto, P. Marín, A. Saldarreaga, P. Moya.
Evaluación de un nuevo medio CHROMagar Candida para la identificación presuntiva de levaduras.
Rev Diagn Biol [electronic journal], 52 (2003), pp. 19-22
[33]
B. Sacristán, M.T. Blanco, M.A. Galán-Ladero, J. Blanco, C. Pérez-Giraldo, A.C. Gómez-García.
Aspartyl proteinase, phospholipase, hemolytic activities and biofilm production of Candida albicans isolated from bronchial aspirates of ICU patients.
Med Mycol, 49 (2011), pp. 94-97
[34]
Z.C. Segundo, O.R.A. Cervantes, W.A.E. Ducoing, M.A. De la Peña, T.L. Villa.
Yeasts isolation from bovine mammary glands under different mastitis status in the Mexican High Plateu.
Rev Iberoam Micol, 28 (2011), pp. 79-82
[35]
E. Seker, E. Zenc.
In vitro biofilm activity of Candida species isolated from Anatolian buffaloes with mastitis in Western Turkey.
Veterinaski Archiv, 81 (2011), pp. 723-730
[36]
S. Shirkahani, A. Sepahvand, M. Mirzaee, K. Anbari.
Phospholipase and proteinase activities of Candida spp. Isolates from vulvovaginitis in Iran.
J Mycol Méd, 26 (2016), pp. 255-260
[37]
A. Spanamberg, J.R.E.A. Wünder, P.D.I. Brayer, J. Argenta, S.E.M. Cavallini, F.P.V. Laerte.
Diversity of yeasts from bovine mastitis in Southern Brazil.
Rev Iberoam Micol, 25 (2008), pp. 154-156
[38]
A. Spanamberg, J.P. Ramos, O. Leoncini, S.H. Alves, P. Valente.
High frequency of potentially pathogenic yeast species in goat's raw milk and creamed cheese in Southern Brazil.
Scient Veter, 37 (2009), pp. 133-141
[39]
S. Stepanovic, D. Vukovic, I. Dakic, B. Savic, V.M. Svabic.
A modified microtiter-plate test for quantification of staphylococcal biofilm formation.
J Microbiol Methods, 40 (2000), pp. 175-179
[40]
G. St-Germain, R. Summerbell.
Identifying fungi.
A clinical laboratory handbook, 2nd ed., Star Publishing Company, Inc., (2011),
[41]
M.I. Williamson, L.P. Samaranayake, T.W. MacFarlane.
Phospholipase activity as a criterion for biotyping Candida albicans.
J Med Vet Mycol, 24 (1986), pp. 415-417
[42]
N. Yigit, E. Aktas, S. Dagistan, A. Ayyildiz.
Investigating biofilm production, coagulase and hemolytic activity in Candida species isolated from denture stomatitis patients.
Eurasian J Med, 43 (2011), pp. 27-32
[43]
R. Yis, M. Doluca.
Identification of Candida species by restriction enzyme analysis.
Turk J Med Sci, 48 (2018), pp. 1058-1106
[44]
M. Ziccardi, L.O. Souza, R.M. Gandra, A.C. Galdino, A.R. Baptista, A.P. Nunes, et al.
Candida parapsilosis (sensu lato) isolated from hospitals located in the Southeast of Brazil: Species distribution, antifungal susceptibility and virulence attributes.
Int J Med Microbiol, 305 (2015), pp. 848-859
Copyright © 2021. The Authors
Download PDF
Article options