covid
Buscar en
Angiología
Toda la web
Inicio Angiología Relación del óxido nítrico con el síndrome de isquemia/reperfusión en el pi...
Información de la revista
Vol. 57. Núm. 1.
Páginas 19-36 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 57. Núm. 1.
Páginas 19-36 (enero 2004)
Acceso a texto completo
Relación del óxido nítrico con el síndrome de isquemia/reperfusión en el pinzamiento aórtico
The relationship between nitric oxide and ischemia-reperfusion syndrome in aortic clamping
Relação do óxido nítrico com a síndroma de isquemia/reperfusão na clampagem aórtica
Visitas
3034
C. López-Espadaa,*, J.P. Linares-Palominoa, G. Escamesb, D. Acuña-Castroviejob, E. Ros-Díea
a Servicio de Angiología y Cirugía Vascular.
b Departamento de Fisiología. Universidad de Granada. Hospital Clínico Universitario San Cecilio. Granada, España.
Este artículo ha recibido
Información del artículo
Resumen
Introducción

El pinzamiento aórtico (PA) provoca un síndrome de isquemia/ reperfusión (SIR) de consecuencias multiorgánicas, que actualmente se relaciona con el daño provocado por radicales libres y sustancias proinflamatorias. El estrés oxidativo (EO) producido daña las membranas celulares y al endotelio, y se puede afectar la síntesis de óxido nítrico (NO).

Objetivos

1. Medir los niveles de lipoperoxidación (LPO) de las membranas: indicador del EO. 2. Valorar la influencia del PA en los niveles plasmáticos de NO. 3. Relacionar los niveles de NO con la LPO. 4. Valorar la relación entre la distribución de NO/LPO y la morbimortalidad de la cirugía aórtica.

Pacientes y métodos

21 pacientes con patología oclusiva aortoiliaca y 17 aneurismas, sometidos a un PA electivo. Se obtuvieron 10 muestras de sangre para las determinaciones bioquímicas (NO/LPO). Se recogieron las complicaciones sistémicas postoperatorias de cada paciente. Se analizaron los datos en función de la pertenencia a cada grupo.

Resultados

El PA produce en ambos grupos un aumento de la LPO y de los niveles de NO. Cuando el EO es excesivo (LPO), descienden los niveles de NO al reaccionar con los radicales libres. La acumulación de mayor número de complicaciones postoperatorias se produce en aquellos pacientes con mayores niveles de LPO y descenso de NO.

Conclusiones

El EO secundario al PA provoca una alteración en la fisiología del NO. La reperfusión estimula la síntesis de NO, que en casos extremos contribuye a aumentar el daño oxidativo. Existe una relación clara entre los niveles de LPO, de NO y la morbimortalidad asociada a esta cirugía.

Palabras clave.:
Aortic clamping
Free radicals
Ischemia-reperfusion syndrome
Lipoperoxidation
Nitric oxide
Oxidative stress
Summary
Introduction

Aortic clamping (AC) gives rise to an ischemia-reperfusion syndrome (IRS), with consequences affecting a number of organs, which is currently linked to the damage caused by free radicals and proinflammatory substances. The oxidative stress (OS) produced damages cell membranes and the endothelium, and the synthesis of nitric oxide (NO) may also be involved.

Aims

1. To measure the levels of lipoperoxidation (LPO) in the membranes: an OS indicator. 2. To evaluate the influence of AC on levels of NO in plasma. 3. To establish the relation between NO and LPO. 4. To evaluate the relation between the distribution of NO/LPO and the rates of morbidity and mortality in aortic surgery.

Patients and methods

The study included 21 patients with an aortoiliac occlusive pathology and 17 aneurysms, who were submitted to elective AC. 10 blood samples were obtained for biochemical analysis (NO/LPO). The post-operative systemic complications of each patient were noted. The data were analysed according to which group they belonged to.

Results

AC produced an increase in LPO and levels of NO in both groups. When OS is excessive (LPO), NO levels drop as it reacts with the free radicals. A greater number of post-operative complications occur in patients who have higher levels of LPO and reduced NO.

Conclusions

OS secondary to AC gives rise to an alteration in NO physiology. Reperfusion stimulates the synthesis of NO, which in extreme cases plays a part in increasing oxidative damage. There is a relationship between LPO and NO levels and the rates of morbidity and mortality associated to this intervention.

Key words:
Estrés oxidativo
Lipoperoxidación
Óxido nítrico
Pinzamiento aórtico
Radicales libres
Síndrome de isquemia/ reperfusión
Resumo
Introdução

A clampagem aórtica (CA) provoca uma síndroma de isquemia/reperfusão (SIR) de consequências multiorgânicas, que actualmente se relaciona com a lesão provocada por radicais livres e substâncias pró-inflamatórias. O stress oxidativo (SO) produzido lesiona as membranas celulares e o endotélio, e pode afectar a síntese do óxido nítrico (NO).

Objectivos

1. Medir os níveis de lipoperoxidação (LPO) das membranas: indicador do SO. 2. Avaliar a influência da CA nos níveis plasmáticos de NO. 3. Relacionar os níveis de NO com a LPO. 4. Avaliar a relação entre a distribuição de NO/LPO e a morbimortalidade da cirurgia aórtica.

Doentes e métodos

21 doentes com patologia oclusiva aorto-ilíaca e 17 aneurismas, submetidos a CA electiva. Obtiveram-se 10 amostras de sangue para as determinações bioquímicas (NO/LPO). Recolheram-se as complicações sistémicas pós-operatórias de cada doente. Analisaram-se os dados em função da pertinência a cada grupo.

Resultados

A CA produz em ambos os grupos um aumento da LPO e dos níveis de NO. Quando o SO é excessivo (LPO), os níveis de NO descem ao reagir com os radicais livres. A acumulação de maior número de complicações pós-operatórias produz-se naqueles doentes com maiores níveis de LPO e descida de NO.

Conclusões

O SO secundário à CA provoca uma alteração na fisiologia do NO. A reperfusão estimula a síntese de NO, que em casos extremos contribui para aumentar a lesão oxidativa. Existe uma relação clara entre os níveis de LPO, de NO e a morbimortalidade associada a esta cirurgia.

Palavras chave:
Clampagem aórtica
Lipoperoxidação
Óxido nítrico
Radicais livres
Síndroma de isquemia/reperfusão
Stress oxidativo
El Texto completo está disponible en PDF
Bibliografía
[1.]
Lindsay T., Luo X., Lehotay D., Rubin B., Anderson M., Walker P., et al.
Ruptured abdominal aortic aneurysm, a apostwo-hitapos ischemia/ reperfusion injury: evidence from an analysis of oxidative products.
J Vasc Surg., 30 (1999), pp. 219-228
[2.]
Swartbol P., Truedsson L., Norgren L..
The inflammatory response and its consequence for the clinical outcome following aortic aneurysm repair.
Eur J Vasc Endovasc Surg., 21 (2001), pp. 393-400
[3.]
Bown M.J., Nicholson M.L., Bell R., Sayers R..
Citokines and inflammatory pathways in the pathogenesis of multiple organ failure following abdominal aortic aneurysm repair.
Eur J Vasc Endovasc Surg., 22 (2001), pp. 485-495
[4.]
Holmberg A., Bergqvist D., Westman B., Siegbahn A..
Cytokine and fibrinogen response in patients undergoing open abdominal aortic aneurysm surgery.
Eur J Vasc Endovasc Surg., 17 (1999), pp. 294-300
[5.]
Makhoul R., Fields C.H., Cassano A..
Nitric oxide and the vascular surgeon.
J Vasc Surg., 30 (1999), pp. 569-572
[6.]
Ward A., McBurney A., Lunec J..
Evidence for the involvement of oxygen-derived free radi cals in ischaemia-reperfusion injury.
Free Rad Res, 20 (1994), pp. 21-28
[7.]
Miniati M., Pistolesi M., Paoletti P., Giuntini C., Lebowitz M.D., Taylor A.E., et al.
Objective radiographic criteria to differentiate cardiac, renal and injury lung edema.
Invest Radiol., 23 (1988), pp. 433-440
[8.]
Khaira H.S., Maxwill S.R.J., Thomason H., Thorpe G.H.G., Green M.A., Shearman C.P..
Antioxidant depletion during aortic aneurysm repair.
Br J Surg., 83 (1996), pp. 401-403
[9.]
Kretzschmar M., Klein U., Palutke M., Schirrmeister W..
Reduction of ischemia-reperfusion syndrome after abdominal aortic aneurysmectomy by N-acetylcysteine but not mannitol..
Acta Anaesthesiol Scand, 40 (1996), pp. 657-664
[10.]
Wijnen M.H., Roumen R.M., Vader H.L., Goris R.J..
A multioxidant supplementation reduces damage from ischaemia reperfusion in patients after lower torso ischaemia. A Randomised trial.
Eur J Vasc Endovasc Surg., 23 (2002), pp. 486-490
[11.]
Esterbauer H., Cheeseman K.H..
Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal.
Methods Enzymol., 186 (1990), pp. 407-421
[12.]
Moshage H., Kok B., Huizenga J.R., Jansen P.L..
Nitrite and nitrate determinations in plasma: a critical evaluation.
Clin Chem., 41 (1995), pp. 892-896
[13.]
Granger D.L., Taintor R.R., Boockvar K.S., Hibbs J.B..
Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction.
Methods Enzimol., 268 (1996), pp. 142-151
[14.]
Hertzer N.R., Mascha E.J., Karafa M.T., OaposHara P.J., Krajewski L.P., Beven E.G..
Open infrarenal abdominal aortic aneurysm repair: the Cleveland Clinic experience from 1989 to 1998.
J Vasc Surg., 35 (2002), pp. 1145-1154
[15.]
Smeets H.J., Camps J., van Milligen de Wit A.W., Kievit J., van J.H., Hermans J., et al.
Influence of low dose allopurinol on ischaemia-reperfusion injury during abdominal aortic surgery.
Eur J Vasc Endovasc Surg., 9 (1995), pp. 162-169
[16.]
Cornu-Labat G., Serra M., Smith A., McGregor W.E., Kasirajan K., Hirko M.K., et al.
Systemic consequences of oxidative stress following aortic surgery correlate with the degree of antioxidant defenses.
Ann Vasc Surg., 14 (2000), pp. 31-36
[17.]
Vural K.M., Bayazit M..
Nitric oxide: implications for vascular and endovascular surgery.
Eur J Vasc Endovasc Surg., 22 (2001), pp. 285-293
[18.]
Michel T., Feron O..
Nitric oxide synthases: which, where, how and why?.
J Clin Invest., 100 (1997), pp. 2146-2152
[19.]
Quyyumi A.A., Dakak N., Andrews N.P., Husain S., Arora S., Gilligan D.M., et al.
Nitric oxide activity in the human coronary circulation. Impact of risk factors for atherosclerosis.
J Clin Invest., 95 (1995), pp. 1747-1755
[20.]
Lieberman E.H., Gerhard M.D., Uehata A., Selwyn A.P., Ganz P., Yeung A.C., et al.
Flowinduced vasodilation in human forearm is dependent on endothelium-derived nitric oxide.
Am J Physiol., 270 (1996), pp. 1432-1440
[21.]
Brown G.C..
Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration: implications for inflammatory, neurodegenerative and ischaemic pathologies.
Mol Cell BioChem., 174 (1997), pp. 189-192
[22.]
Sandau K., Pfeilschifter J., Brüne B..
The balance between nitric oxide and superoxide determines apoptotic and necrotic death of rat mesangial cells.
J Inmunol., 158 (1997), pp. 4938-4946
[23.]
Szabolcs M.J., Ravalli S., Minanov O., Sciacca R.R., Michler R.E., Cannon P.J..
Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection.
Transplantation, 65 (1998), pp. 804-812
[24.]
Pararajasingam R., Weight S.C., Bell P.R., Nicholson M.L., Sayers R.D..
Pulmonary nitric oxide metabolism following infrarenal aortic crossclamp-induced ischemia-reperfusion injury.
Eur J Vasc Endovasc Surg., 19 (2000), pp. 47-51
[25.]
Zhang Z.G., Chopp M., Bailey F., Malinski T..
Nitric-oxide changes in the rat-brain after transient middle cerebral-artery occlusion.
J Neurol Sci., 128 (1995), pp. 22-27
[26.]
Lefer A.M., Lefer D.J..
The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion.
Cardiovasc Res, 32 (1996), pp. 743-751
[27.]
Huk I., Nanobashvili J., Neumayer C., Punz A., Mueller M., Afkhampour K., et al.
L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle.
Circulation, 96 (1997), pp. 667-675
[28.]
Kobayashi K., Miki M..
A direct demostration of reaction of nitric oxide wity superoxide anion by the use of pulse radiolysis.
Frontiers of Reactive Oxygen Species in Biology and Medicine, pp. 223-224
[29.]
Oredsson S., Plate G., Qvarfordt P..
Experimental evaluation of oxygen free radical scanvengers in the prevention of reperfusion injury in skeletal muscle.
Eur J Surg., 23 (1994), pp. 229-235
[30.]
Radi R., Beckman J.S., Bush K.M., Freeman B.A..
Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide.
Arch Biochem Biophys, 288 (1991), pp. 481-487
[30.]
Davies M.G., Hagen P.O..
Systemic inflammatory response syndrome.
Br J Surg., 84 (1997), pp. 920-935
[32.]
Carden D.L., Granger D.N..
Pathophysiology of ischaemia-reperfusion injury.
[33.]
Rajimakers P.G., Groeneveld A.B., Rauwerda J.A., Teule G.J., Hack C.E.l..
Acute lung injury after aortic surgery: the relation between lung and leg microvascular permeability to 111indium-labelled transferrin and circulating mediators.
Thorax, 52 (1997), pp. 866-871
[34.]
Sayers R.D., Thompson M.M., Nasim A., Healey P., Taub N., Bell P.R..
Surgical management of 671 abdominal aortic aneurysms: A 13 years review from a single centre.
Eur J Vasc Endovasc Surg., 13 (1997), pp. 322-327
[35.]
RD Sayers.
Aortic aneurysms, inflammatory pathways and nitric oxide.
Ann R Coll Surg Engl, 84 (2002), pp. 239-246
[36.]
Jin J.S., Webb R.C., DaposAlecy L.G..
Inhibition of vascular nitric-oxide-cGMP pathway by plasma from ischemic hindlimb of rats.
Am J Physiol., 269 (1995), pp. 254-261
[37.]
Jin J.S., DaposAlecy L.G..
Stimulation of endogenous nitric oxide pathway by L-arginine reduces declamp mortality and attenuates hypertension associated with aortic cross-clampinduced hindlimb ischemia in rats.
Hypertension, 26 (1995), pp. 406-412
Copyright © 2005. SEACV
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos