covid
Buscar en
Angiología
Toda la web
Inicio Angiología Simulación numérica de flujo sanguíneo: una herramienta útil en cirugía vas...
Información de la revista
Vol. 55. Núm. 1.
Páginas 55-63 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 55. Núm. 1.
Páginas 55-63 (enero 2003)
Acceso a texto completo
Simulación numérica de flujo sanguíneo: una herramienta útil en cirugía vascular
The numerical simulation of blood flow: a useful tool in vascular surgery
Simulacao numérica do fluxo sanguíneo: uma ferramenta útil em cirurgia vascular
Visitas
3356
J. Rivera-Amoresa,
Autor para correspondencia
rivera@eupm.upc.es

Dr. Juanjo Rivera. Avda. de les Bases de Manresa, 61. E-08240 Manresa (Barcelona). Fax: +34 938777202.
, G. Houzeauxb
a Escuela Universitaria Politécnica de Manresa (Universidad Politécnica de Cataluña). Manresa, Barcelona.
b CIMNE (Universidad Politécnica de Cataluña). Barcelona, España.
Este artículo ha recibido
Información del artículo
Resumen
Objetivos

Revisar el método y las herramientas con las que se trabaja en la simulación numérica aplicada al estudio del flujo sanguíneo y mostrar su utilidad mediante el análisis de una aplicación sencilla en el campo de la cirugía vascular.

Desarrollo

Se exponen los pasos que conducen a la construcción del modelo que se va a analizar, los fundamentos físicos y las magnitudes, que se determinan mediante los métodos matemáticos de cálculo. Se analiza una derivación implantada en un tramo arterial con una estenosis del 75% y un injerto de igual diámetro que el de la arteria, se comparan dos opciones posibles con ángulos distintos entre el injerto y la arteria en la anastomosis distal y se evalúan las zonas con flujo retrógrado y tensiones de cizallamiento anormalmente bajas. Se utiliza un modelo geométrico simplificado en dos dimensiones, y el análisis se realiza con los programas informáticos GID y FAUST.

Conclusiones

Se pone de manifiesto la utilidad de la simulación numérica en los estudios hemodinámicos. Una de sus posibilidades es la de permitir al cirujano tener un conocimiento aproximado de las condiciones hemodinámicas y mecánicas que se darán tras la implantación de una derivación. En el ejemplo analizado se han detectado dos zonas donde se dan condiciones hemodinámicas favorables a la hiperplasia intimal (HI) durante buena parte del ciclo cardíaco, en buena correspondencia con los datos clínicos que aporta la literatura. Estas condiciones son más favorables a la HI cuanto mayor es el ángulo de incidencia en la anastomosis distal.

Palabras clave:
Anastomosis
Aterosclerosis
Derivación
Hiperplasia intimal
Reestenosis
Simulación numérica
Tensión de cizallamiento
Summery
Aims

The aim of this paper is to survey the method and the tools used in numerical simulation applied to the study of blood flow and to illustrate their usefulness by analysing a simple application in the field of vascular surgery.

Development

We describe the steps that lead to the construction of the model to be analysed, and the physical foundations and the magnitudes, which are determined by mathematical calculations. We analyse a shunt that was implanted in a section of artery with 75% stenosis and a graft with the same diameter as the artery; we compare two possible options with different angles between the graft and the artery in the distal anastomosis; and we assess the areas with a retrograde flow and abnormally low shear stresses. A simplified two-dimensional geometrical model is used, and the analysis is performed using the GID and FAUST computer applications.

Conclusions

The value of numerical simulation as a tool for use in haemodynamic studies is clearly demonstrated. One of the possibilities it offers is to enable the surgeon to gain an approximate idea of the haemodynamic and mechanical conditions that will occur after the implantation of a shunt. In the example analysed, two regions were detected in which the haemodynamic conditions were favourable for intimal hyperplasia (IH) throughout the better part of the heart cycle, which coincides well with the clinical data reported in the literature. The greater the angle of incidence in the distal anastomosis is, the more favourable these conditions will be for IH.

Key words:
Anastomosis
Atherosclerosis
Intimal hyperplasia
Numerical simulation
Restenosis
Shear stress
Shunt
Resumo
Objectivos

Rever o método e as ferramentas com que se trabalham na simulação numérica aplicada ao estudo do fluxo sanguíneo, e mostrar a sua utilidade analisando uma aplicação simples no campo da cirurgia vascular.

Desenvolvimiento

Expõem-se ospassos que conduzem à construção do modelo a analisar, os fundamentos físicos e as magnitudes, que se determinam mediante os métodos matemáticos de cálculo. Analisa-se uma derivação implantada num canal arterial com uma estenose de 75% e um enxerto com igual diâmetro à artéria, comparam-se duas opções possíveis com àngulos distintos entre o enxerto e a artéria com a anastomose distal, e avaliam-se as zonas com fluxo retrógrado e tensões de cisalhamento anormalmente baixas. Utilizase um modelo geométrico simplificado bidimensional, e a análise é realizada com os programas informáticos GID e FAUST.

Conclusões

Evidenciase a utilidade da simulação numérica como ferramenta a utilizar nos estudos hemodinâmicos. Uma das suas possibilidades é a de permitir ao cirurgiao ter um conhecimento aproximado das condicoes hemodinàmicas e mecánicas que ocorrerao após o implante de uma derivacao. No exemplo analisado detectaramse duas zonas onde se verificam condicoes hemodinâmicas favoráveis á hiperplasia intimal (HI) durante boa parte do ciclo cardíaco, em boa correspondéncia com os dados clínicos apresentados na literatura. Estas condições são mais favoráveis à HI, quanto maior for o ângulo de incidéncia da anastomose distal.

Palavras chave:
Anastomose
Aterosclerose
Derivacao
Hiperplasia intimal
Re-estenose
Si-mulacao numérica
Tensao de cisalhamento
El Texto completo está disponible en PDF
References
[1.]
Cebral J.R., Löhner R., Yim P.J..
Accurate reconstruction of vessels from MR images.
International Journal of Bioelectromagnetism, 3 (2001), pp. 2
[2.]
Cebral JR. Blood flow simulations in realistic models reconstructed from medical images. Laboratory for Computational Fluid Dynamics. School of Computational Sciences, George Mason University. http://www.scs.gmu.edu/ ∼jcebral/research_indx.html. Fecha última consulta: 20.12.2002.
[3.]
The cardiovascular biomechanics research Laboratory. Stanford University. http://www.stanford.edu/group/vsrl/index.html. Fecha última consulta: 15.12.2002.
[4.]
The group of Quarteroni, A. Simulation of blood flow in human vascular districts. École Polytechnique Fédérale de Lausanne. http://dmawww.epfl.ch/Quarteroni-Chaire/NewResearch/vascular.php3. Fecha última consulta: 22.12.2002.
[5.]
Laboratoire de Biorhéologie et d'Hydrodynamique Physico-chimique. University Paris 7 -Denis Diderot. http://www.lbhp.jussieu.fr/ WORK/recherch.html. Fecha última consulta: 07.01.2003.
[6.]
Lei M., Giddens D.P., Jones S.A., Loth F., Bassiouny H..
Pulsatile flow in a end-to-side vascular graft model: comparison of computations with experimental data.
J Biomech Eng, 123 (2001), pp. 80-87
[7.]
Bertolotti C., Deplano V., Fuseri J., Dupouy P..
Numerical and experimental models of postoperative realistic flows in stenosed coronary bypasses.
J Biomech, 34 (2001), pp. 1049-1064
[8.]
Ku D.N..
Blood flow in arteries.
Ann Rev Fluid Mech, 29 (1997), pp. 399-434
[9.]
Leuprecht A., Perktold K., Prosi M., Berk T., Trubel W., Schima H..
Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
J Biomech, 35 (2002), pp. 225-236
[10.]
Friedman M.H., Bargeron C.B., Deters O.J., Hutchins G.M., Mark F.F..
Correlation between wall shear and intimal thickness at a coronary artery branch.
Atherosclerosis, 68 (1987), pp. 27-33
[11.]
Giddens D.P., Zarins C.K., Glagov S..
The role of fluid mechanics in the localization and detection of atherosclerosis.
J Biomech Eng, 115 (1993), pp. 588-594
[12.]
Friedman M.H., Hutchins G.M., Bargeron G.M., Deters O.J., Mark F.F..
Correlation between intimal thickness and fluid shear in human arteries.
Atherosclerosis, 39 (1981), pp. 425-436
[13.]
Moore J.E. Jr., Xu C.H., Glagov S., Zarins C.K., Ku D.N..
Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis.
Atherosclerosis, 110 (1994), pp. 225-240
[14.]
Vijayan V., Smith F.C.T., Angelini G.D., Bulbulia R.A., Jeremy J.Y..
External supports and the prevention of neointima formation in vein grafts.
Eur J Vasc Endovasc Surg., 24 (2002), pp. 13-22
[15.]
Codina R.A..
Nodal-based implementation of a stabilized finite element method for incompressible flow problems.
Int J Num Meth Fluids, 33 (2000), pp. 737-766
[16.]
Taylor C.A., Hughes T.J.R., Zarins C.K..
Finite element modeling of blood flow in arteries.
Comput Methods Appl Mech Eng, 158 (1998), pp. 155-196
[17.]
González H., Codina R..
Simulación del flujo coronario en 3 dimensiones.
XV Congreso Anual de la Asociación Española de Ingeniería Biomédica, pp. 57-60
[18.]
Taylor C.A., Draney M.T., Ku J.P., Parker D., Steele B.N., Wang K., et al.
Predictive medicine: computational techniques in therapeutic decision-making.
[19.]
Badimon L., Badimon J.J., Gálvez A., Chesebro J.H., Fuster V..
Influence of arterial damage and wall shear rate on platelet deposition. Ex vivo study in a swine model.
Arteriosclerosis, 6 (1986), pp. 312
[20.]
Li X.M., Rittgers S..
Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft different POS:DOS flow ratios.
J Bio-mech Eng, 123 (2001), pp. 370-376
[21.]
Loth F., Jones S.A., Zarins C.K., Giddens D.P., Nassar R.F., Glagov S., et al.
Relative contribution of wall stress and injury in experimental intimal thickening at PFTE end-to-side arterial anastomosis.
J Biomech Eng, 124 (2002), pp. 44-51
[22.]
White S.S., Zarins C.K., Giddens D.P., Bassiouny H., Loth F., Jones S.A., et al.
Hemodynamic patterns in two models of end-to-side vascular grafts anastomoses: effects of pulsatily, flow division, Reynolds number, and hood length.
ASME J Biomech Eng, 115 (1993), pp. 104-111
[23.]
Ku D.N., Zarins C.K., Giddens D.P., Glagov S..
Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque localization and low and oscillating shear stress.
Arteriosclerosis, 5 (1985), pp. 292-302
[24.]
Keynton R.S., Evancho M.M., Sims R.L., Rodway N.V., Gobin A., Rittgers S.E..
Intimal hyperplasia and wall shear in arterial bypass graft distal anastomosis: an in vivo model study.
J Biomech Eng, 123 (2001), pp. 464-473
[25.]
Bassiouny H., White S., Glagov S., Choi E., Giddens D.P., Zarins Z.K..
Anastomotic intimal hyperplasia: mechanical injury or flow induced.
J.Vasc Surg., 15 (1992), pp. 708-717
[26.]
Perktold K., Hofer M., Rappitsch G., Loew M., Kuban B.D., Friedman M.H..
Validated computation of physiological flow in a realistic coronary artery branch.
J Biomech, 31 (1998), pp. 217-228
[27.]
Kleinstreuer C., Lei M., Archie J.P..
Flow input waveform effects on the temporal and spatial wall shear stress gradients in a new femoral graft-artery connector. ASME.
J Biomech Eng, 118 (1996), pp. 506-510
[28.]
Hofer M., Rappitsch G., Perktold K., Trubel W., Schima H..
Numerical study of wall mechanics and fluid dynamics in end-to-side anastomosis and correlation to intimal hyperplasia.
J Biomech, 29 (1996), pp. 1297-1308
[29.]
Bertolotti C., Deplano V..
Three-dimensional numerical simulations of flow through a stenosed coronary bypass.
J Biomech, 33 (2000), pp. 1011-1022
[30.]
Glagov S., Zarins C.K., Giddens D.P., Ku D.N..
Hemodynamics and atherosclerosis; insights and perspectives gained from studies of human arteries.
Arch Pathol Lab Med., 112 (1988), pp. 1018-1031
Copyright © 2003. SEACV
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos