Micromanufacturing has increased rapidly at scientific, technological and industrial levels. However, this evolution has not been followed by a parallel development of Non Destructive Testing (NDT) techniques. The available techniques are, generally, unable to detect microdefects. In this work, two types of microgeometries were produced by Micro Powder Injection Molding (μPIM) of stainless steel AISI316L: specimens for tensile tests (simple geometry) and microscrews (complex geometry). During the process optimization, different injection conditions of temperature and pressure were tested, as well as various temperatures for thermal debinding and sintering. Throughout the process, detectable and undetectable defects by NDT techniques were produced, which were used in the assays to assess the role of bacteria in the detection of defects. After adding bacterial suspensions of Staphylococcus aureus or Rhodococcus erythropolis cells, the microcomponents were subjected to magnetic or electric fields to facilitate mobility of bacteria towards the defects. This new methodology to detect defects produced during microfabrication can be a good solution for inspection of microdefects.
Información de la revista
Acceso a texto completo
Nondestructive testing in microfabrication using bacteria
Visitas
1191
T.J. Ferreiraa, A.R. Farinhaa,
, T.G. Santosb, R. Mirandab, C.C.C.R. Carvalhoc, M.T. Vieiraa
Autor para correspondencia
a CEMUC (Group of Nanomaterials and Micromanufacturing), Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
b UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
c iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
Micromanufacturing
non destructive testing (NDT)
bacteria
El Texto completo está disponible en PDF
References
[1]
L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor.
Powder Technol., 206 (2011), pp. 246
[2]
J. Meng, N.H. Loh, G. Fu, S.B. Tor, B.Y. Tay.
J. Alloys Compd., 496 (2010), pp. 293
[3]
C. Quinard, T. Barrière, J.C. Gelin.
Int. J. Mater. Form, 25 (2008), pp. 8
[4]
F.M. Barreiros, M.T. Vieira, J.M. Castanho.
Met. Powder Rep., 64 (2009), pp. 18
[5]
B.Y. Tay, N.H. Loh, S.B. Tor, F.L. Ng, G. Fu, X.H. Lu.
Powder Technol., 188 (2009), pp. 179
[6]
C. Quinard, T. Barrière, J.C. Gelin.
Powder Technol., 190 (2009), pp. 123
[7]
T.G. Santos, R.M. Miranda, C.C.C.R. de Carvalho.
NDT&E Int, 63 (2014), pp. 43
[8]
T.J. Ferreira, M.T. Vieira, M. Silva, P.T. Gago.
O Molde – Tooling na Aeronáutica, 95 (2012), pp. 46
[9]
C.C.C.R. de Carvalho.
Res. Microbiol., 163 (2012), pp. 125
[10]
C.C.C.R. de Carvalho, L.Y. Wick, H.J. Heipieper.
Appl. Microbiol. Biotechnol., 82 (2009), pp. 311
[11]
T.G. Santos, R.M. Miranda, M.T. Vieira, A.R. Farinha, T.J. Ferreira, L. Quintino, P. Vilaça, C.C.C.R. de Carvalho.
NDT&E Int, 78 (2016), pp. 20
Copyright © 2017. Portuguese Society of Materials (SPM)