Electrospun nanofibres are highly attractive products taking advantage of their remarkable specific surface area, high porosity and good transport properties that are ideal requirements for efficient molecule detection. In this work, fibres of polyacrylonitrile (PAN) were first prepared by electrospinning. These fibres were then coated with silver nanoparticles or silver/graphene nanocomposites (fillers) following two different methodologies. The fibres were used without and with a pre-functionalization treatment with hydroxylamine. With this functionalization, amidoxime groups at PAN fibres surface are expected to promote the linkage with the fillers. Both methodologies resulted in a fibre network covered with the fillers. The resulting membranes were tested as substrates for the detection of probe molecules by surface-enhanced Raman scattering (SERS). The results obtained show that easy to handle SERS substrates can be prepared using the electrospun fibres.
Información de la revista
Vol. 26. Núm. 2.
Páginas 102-107 (julio - diciembre 2014)
Vol. 26. Núm. 2.
Páginas 102-107 (julio - diciembre 2014)
Acceso a texto completo
Potentialities of polymeric electrospun membranes decorated with silver nanoparticles and graphene oxide for biodetection by SERS
Visitas
1846
Este artículo ha recibido
Información del artículo
Abstract
Keywords:
SERS
graphene
nanoparticles
electrospinning.
El Texto completo está disponible en PDF
References
[1]
S. Abalde-Cela, P. Aldeanueva-Potel, C. Mateo-Mateo, L. Rodríguez-Lorenzo, R.A. Alvarez-Puebla, L.M. Liz-Marzán.
J. R. Soc. Interface, 7 (2010), pp. S435
[2]
R.A. Alvarez-Puebla, L.M. Liz-Marzan.
Chem. Soc.Rev, 41 (2012),
[3]
J. Liu, I. White, D.L. DeVoe.
Anal Chem, 83 (2011), pp. 2119
[4]
P.A.A.P. Marques, H.I.S. Nogueira, R.J.B. Pinto, C.P. Neto, T. Trindade.
J. Raman Spectrosc, 39 (2008), pp. 439
[5]
H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, C. Zhu.
Adv. Funct. Mater, 22 (2012), pp. 218
[6]
Y. Fan, H. Chen, C. Zhou, X. Xie, Y. Liu, L. Dai, J. Zhang, L. Qu.
Nanoscale, 4 (2012), pp. 1776
[7]
Y. Qian, G. Meng, Q. Huang, C. Zhu, Z. Huang, K. Suna, B. Chen.
Nanoscale, 6 (2014), pp. 4781
[8]
G. Dong, X. Xiao, X. Liu, B. Qiana, Y. Liao, C. Wang, D. Chen, J. Qiu.
Appl. Surf. Sci., 255 (2009), pp. 7623
[9]
A. Amarjargal, L.D. Tijing, H.K. Shon, C.H. Park, C.S. Kim.
Appl. Surf. Sci., 308 (2014), pp. 396
[10]
H. Yang, C.Z. Huang.
RSC Adv, 4 (2014), pp. 38783
[11]
X. Li, M. Cao, H. Zhang, L. Zhou, S. Cheng, J.-L. Yao, Li-J. Fan.
J. Colloid Interf. Sci, 382 (2012), pp. 28
[12]
M. Cao, S. Cheng, X. Zhou, Z. Tao, J. Yao, L.-J. Fan.
J. Polym. Res, 19 (2012),
[13]
D. He, B. Hu, Q.F. Yao, K. Wang, S.H. Yu.
ACS Nano, 3 (2009), pp. 3993
[14]
X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, Y. Qu.
Carbon, 66 (2014), pp. 713
[15]
Y. Bao, C. Lai, Z. Zhu, H. Fong, C. Jiang.
RSC Adv, 3 (2013), pp. 8998
[16]
C.H. Lee, L. Tian, A. Abbas, R. Kattumenu, S. Singamaneni.
Nanotechnology, 22 (2011),
[17]
W. Xu, N. Mao, J. Jin Zhang.
Small, 9 (2013), pp. 1206
[18]
G. Gonçalves, P.A.A.P. Marques, C. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio.
Chem. Mater., 21 (2009), pp. 4796
[19]
P.C. Lee, D. Meisel.
J. Phys. Chem, 86 (1982), pp. 3391-3395
[20]
X.S. Zhao, J.Z. Ma, J.T. Zhang, Z.G. Xiong, Y. Yong.
J. Mater. Chem, 21 (2011), pp. 3350
[21]
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour.
ACS Nano, 4 (2010), pp. 4806
[22]
X. Lin, Y. Cui, Y. Xu, B. Ren, Z. Tian.
Analytical and Bioanalytical Chemistry, 394 (2009), pp. 1729
[24]
X.-M. Qian, S.M. Nie.
Chemical Society Reviews, 37 (2008), pp. 912
[25]
S.T. Sun, P.Y. Wu.
Phys. Chem. Chem. Phys, 13 (2011), pp. 21116
[26]
F. Cataldo, O. Ursini, G. Angelini.
European Chemical Bulletin, 2 (2013), pp. 700
[27]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, J.G. Hou.
ACS Nano, 5 (2011), pp. 952
[28]
W. Fan, Y.H. Lee, S. Pedireddy, Q. Zhang, T. Liu, X.Y. Ling.
Nanoscale, 6 (2014), pp. 4843
[29]
X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo.
Journal of Physical Chemistry C, 115 (2011), pp. 11957