metricas
covid
Buscar en
Cirugía Española
Toda la web
Inicio Cirugía Española Transfusión sanguínea perioperatoria en el paciente neoplásico. I. Alteracion...
Información de la revista
Vol. 72. Núm. 3.
Páginas 160-168 (septiembre 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 72. Núm. 3.
Páginas 160-168 (septiembre 2002)
Acceso a texto completo
Transfusión sanguínea perioperatoria en el paciente neoplásico. I. Alteraciones inmunológicas y consecuencias clínicas
Perioperative blood transfusion in the neoplastic patient. I. immunological Alterations and clinical consequences
Visitas
13434
Manuel Muñoz Gómeza,1
Autor para correspondencia
mmunoz@uma.es

Correspondencia: Prof. M. Muñoz Gómez. GIEMSA. Bioquímica y Biología Molecular. Facultad de Medicina de Málaga. Campus de Teatinos, s/n. 29071 Málaga.
, Juan Vicente Llau Pitarchb, Santiago Ramón Leal Novalc, José Antonio García Erced, Jesús Manuel Culebras Fernándeze
a Doctor en Medicina. Profesor titular de GIEMSA. Bioquímica y Biología Molecular. Facultad de Medicina. Málaga
b Médico especialista. Servicio de Anestesiología y Reanimación. Hospital Clínico. Valencia
c Doctor en Medicina. Servicio de Cuidados Intensivos. Hospital Clínico Universitario Virgen del Rocío. Sevilla
d Doctor en Medicina. Servicio de Hematología y Hemoterapia. Hospital Clínico Universitario Miguel Servet. Zaragoza
e Doctor en Medicina. Jefe del Servicio de Cirugía II. Hospital de León
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La administración perioperatoria de hemoderivados alogénicos (TSA) es relativamente frecuente en los pacientes oncológicos sometidos a cirugía y, aunque nunca antes habían sido tan seguros como en la actualidad, sobre todo con respecto a la transmisión de enfermedades infecciosas, sabemos que esta práctica no está exenta de efectos adversos. Uno de ellos es la inmunomodulación inducida por transfusiones alogénicas (IMITA), que mediante mecanismos no completamente esclarecidos induce un predominio de la respuesta Th2, caracterizada por la liberación de interleucina-4 (IL-4), IL-5, IL-6, IL-10 e IL- 13 que inducen un predominio de la inmunidad humoral y una disminución o anulación de la inmunidad celular, creando un estado de susceptibilidad a la enfermedad. Tampoco se conocen con exactitud los componentes de la TSA que participan en la inducción de IMITA, aunque diversos estudios han implicado a los leucocitos del donante o los productos liberados por los mismos durante la conservación. En el paciente neoplásico sometido a cirugía, el grado de IMITA parece depender del volumen transfundido y va a potenciar otras alteraciones del sistema inmunitario producidas por la enfermedad de base, el estado nutricional e inflamatorio del paciente, el tipo de anestesia que se emplee, la magnitud del trauma quirúrgico y la medicación perioperatoria. Este estado de inmunodepresión, junto con las alteraciones de la microcirculación y la hipoxia tisular regional provocadas por la lesión de almacenamiento de los eritrocitos, puede llevar a un aumento de las infecciones postoperatorias y de la recurrencia del tumor, aumentando por tanto la morbimortalidad de estos pacientes. Por ello, es necesario el desarrollo de programas multidisciplinarios para optimizar el manejo transfusional del paciente oncológico y reducir el número de TSA al mínimo indispensable, disminuyendo los riesgos inherentes a las mismas.

Palabras clave:
Cirugía oncológica
Transfusión alogénica
IMITA (TRIM)
Respuesta Th2
Lesión de almacenamiento
Infección postoperatoria
Recidiva tumoral

Perioperative allogeneic blood transfusion (ABT) is relatively frequent in cancer patients undergoing surgery. Although these products are safer than ever before, especially concerning the transmission of infectious diseases, the process is not free of adverse effects. One of these adverse effects is the transfusion-related immunomodulatory (TRIM) effect, which, through mechanisms that are not entirely understood, induce a predominance of the Th2 response, characterized by the release of interleukin-4 (IL-4), IL-5, IL-6, IL-10 and IL-13. This induces a predominance of humoral immunity and reduces or suppresses cellular immunity, creating a state of disease susceptibility. The components of ABT that participate in the induction of TRIM have not been fully identified, although several studies have implicated donor leucocytes and/or the products released by these during conservation. In cancer patients undergoing surgery, the degree of TRIM seems to depend on the volume transfused, which aggravates other immune system alterations produced by the underlying disease, the patient’s nutritional and inflammatory status, the type of anesthesia used, the degree of surgical trauma and the perioperative medication. This state of immunosuppression, together with alterations in microcirculation and regional tissue hypoxia provoked by the erythrocyte storage lesion, may lead to an increase in postoperative infections and to tumoral recurrence, thus increasing morbidity and mortality in these patients. Consequently, multidisciplinary programs should be developed to optimize transfusion in oncological patients and to reduce the number of ABT to the minimum, thus decreasing the risks inherent to this procedure.

Key words:
Oncological surgery
Allogenic transfusion
TRIM
Th2 response
Storage lesion
Postoperative infection
Tumoral recurrence
El Texto completo está disponible en PDF
Bibliografía
[1.]
M.D. Ruiz, N.J. Pascual, M.I. Muñoz, J. Maldonado, G. García, J. Maldonado Eloy-García.
Efectos adversos de las transfusiones.
Autotransfusión y otras alternativas al uso de sangre homóloga en cirugía, pp. p. 69-p. 84
[2.]
F. Fariñas, M. Muñoz, J.J. García-Vallejo, M.D. Ruiz, M. Morell.
Inmunodepresión inducida por transfusión de sangre homóloga.
Sangre, 43 (1998), pp. 213-217
[3.]
H.G. Klein.
Immunomodulatory aspects of transfusion.
Anesthesiology, 91 (1999), pp. 861-865
[4.]
L.T. Goodnough, M.E. Brecher, M.H. Kanter, J.P. AuBuchon.
Transfusion medicine: first of two parts –blood transfusion.
N Engl J Med, 340 (1999), pp. 438-447
[5.]
E.C. Vamvakas, M.A. Blajchman.
Deleterious clinical effects of transfusion- associated immunomodulation: fact or fiction?.
Blood, 97 (2001), pp. 1180-1195
[6.]
N. Blumberg, J.M. Heal.
The transfusion immunomodulation theory: the Th1/Th2 paradigm and an analogy with pregnance as a unifying mechanism.
Semin Hematol, 33 (1996), pp. 328-340
[7.]
M.A. Blajchman.
Immunomodulatory effects of allogenic blood transfusion: clinical manifestations and mechanisms.
Vox Sang, 74 (1998), pp. 315-319
[8.]
S.R. Leal, I. Jara, M.J. Román.
Transfusión de concentrado de hematíes e infección posquirúrgica en pacientes críticos.
Med Clin (Barc, 115 (2000), pp. 625-629
[9.]
A. Lanzavecchia.
Identifying strategies for immune intervention.
Science, 260 (1993), pp. 937-944
[10.]
M.S. Mincheff, H.T. Meryman.
Blood transfusion, blood storage and immunomodulation.
Immunol Invest, 24 (1995), pp. 303-309
[11.]
M.S. Mincheff.
Changes in donor leukocytes during blood storage. Implications on post-transfusion immunomodulation and transfusion-associated GVHD.
Vox Sang, 74 (1998), pp. 189-200
[12.]
F.H.J. Claas, E.L. Lagaay, J.J. Van Rood.
Immunological consequences of blood transfusions.
Schweiz Med Wschr, 121 (1991), pp. 70-72
[13.]
C. Verove, I. Jollet, T. Lobbedez, G. Dumont, A.M. Griveau, B. Hurault de Ligny, et al.
Compared effects of random and one HLA semi-identical transfusions on alloinmunization and acute rejection episodes in first renal allograft recipients.
Transplant Proc, 30 (1998), pp. 2863-2864
[14.]
M.A. Blajchman, L. Bardossy, R. Carmen.
Allogeneic blood transfusion- induced enhancement of tumour growth: two animal models showing amelioration by leukodepletion and passive transfer using spleen cells.
Blood, 81 (1993), pp. 1880-1882
[15.]
H.J. Nielsen, C.M. Reimer, A.N. Pedersen, N. Brünner, L. Edvardsen, E. Dybkjaer, et al.
Time-dependent, spontaneous release of white cell- and platelet-derived bioactive substance from stored human blood.
Transfusion, 36 (1996), pp. 960-965
[16.]
W.C. Vliet, N.L. Drock, F.R. Davey.
Factors in the liquid portion of stored blood inhibit the proliferative response in mixed lymphocytes cultures.
Transfusion, 29 (1989), pp. 41-45
[17.]
W.B. Ross.
Blood transfusions and prognosis in colorectal cancer.
N Engl J Med, 329 (1993), pp. 1354-1355
[18.]
M. Clerici, G.M. Shearer.
The Th1-Th2 hypothesis of HIV infection: new insights.
Immunol Today, 15 (1994), pp. 575-581
[19.]
G.F. Babcock, J.W. Alexander.
The effect of blood transfusion on cytokine production Th1 and Th2 lymphocytes in the mouse.
Transplantation, 61 (1996), pp. 465-468
[20.]
Y. Kalechman, U. Gafter, D. Sobelman.
The effect of a single whole blood transfusion on cytokine secretion.
J Clin Immunol, 10 (1990), pp. 99-105
[21.]
T. Mynster, E. Dybkjoer, G. Kronborg, H.J. Nielsen.
Immunomodulating effect of blood transfusion: is storaged time important?.
Vox Sang, 74 (1998), pp. 176-181
[22.]
M.M. Heiss, P. Farunberger, C. Delanoff, R. Stets, H. Allgayer, M.A. Strohlein, et al.
Modulation of immune response by blood transfusion: evidence for a differential effect of allogenic and autologous blood in colorectal cancer surgery.
Shock, 8 (1977), pp. 402-408
[23.]
M.M. Heiss, K. Fasol-Merten, H. Allgayer, M.A. Strohlein, A. Tarabichi, S. Wallner, et al.
Influence of autologous blood transfusion on natural killer and lymphokine-activated killer cell activities in cancer surgery.
Vox Sang, 73 (1997), pp. 237-245
[24.]
K.L. Isaacs, R.B. Sartor, S. Haskill.
Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification.
Gastroenterology, 103 (1992), pp. 1587-1595
[25.]
W.R. Peters, R.D. Fry, J.W. Fleshman, I.J. Kodner.
Multiple blood transfusion reduce the recurrence rate of Crohn’s disease.
Dis Colon Rectum, 32 (1989), pp. 749-753
[26.]
A.S. Peña.
Patogenia de la enfermedad inflamatoria intestinal.
Rev Gastroenterol, 1 (1998), pp. 390-403
[27.]
J.L. Carson, D.G. Altman, A. Duff, H. Noveck, M.P. Weinstein, F.A. Sonenberg, et al.
Risk of bacterial infection associated with allogenic blood transfusion among patients undergoing hip fracture repair.
Transfusion, 39 (1999), pp. 694-700
[28.]
B.E. Bierbaum, J.J. Callaghan, J.O. Galante, H.E. Rubash, R.E. Tooms, R.B. Welch.
An analysis of blood management in patients having a total hip or knee arthroplasty.
J Bone Joint Surg, 81-A (1999), pp. 2-10
[29.]
S.R. Leal, J.A. Márquez, A. García-Curiel, P. Camacho, M.D. Rincón, A. Ordóñez, et al.
Nosocomial pneumonia in patients undergoing heart surgery.
Crit Care Med, 28 (2000), pp. 935-940
[30.]
S.R. Leal-Noval, M.D. Rincon-Ferrari, A. García-Curiel, A. Herruzo-Avilés, P. Camacho-Larana, J. Garnacho-Montero, et al.
Transfusion of blood components and postoperative infection in patients undergoing cardiac surgery.
Chest, 119 (2001), pp. 1461-1468
[31.]
L.S. Jensen, A.J. Andersen, P.M. Christensen, P. Hokland, C.O. Juhl, G. Madsen, et al.
Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery.
Br J Surg, 79 (1992), pp. 513
[34.]
L.S. Jensen, P. Kissmeyer-Nielsen, B. Wolff, N. Qvist.
Randomised comparison of leukocyte-depleted versus buffy-coat-poor blood transfusion on infectious complication after colorectal surgery.
[35.]
J.G. Houbiers, C.J. Van de Velde, L.M. Van de Watering, J. Hermans, S. Schreuder, A.B. Bijnen, et al.
Transfusion of red cells is associated with increased incidence of bacterial infection after colorectal surgery: a prospective study.
Transfusion, 37 (1997), pp. 126-134
[36.]
P.I. Tatter, K. Mohandas, P. Azar, J. Endres, J. Kaplan, M. Spivack.
Randomised trial comparing packed red blood cell transfusion with or without leukocyte depletion for gastrointestinal surgery.
Am J Surg, 176 (1998), pp. 462-466
[37.]
K. Wether, I.J. Christensen, H.J. Nielsen, Danish RANX05 Colorectal Cancer Study Group..
The association between preoperative concentration of soluble vascular endotelial growth factor, perioperative blood transfusion, and survival in patients with primary colorectal cancer.
Eur J Surg, 167 (2001), pp. 287-292
[38.]
M.W. Wichman, C. Müller, H.M. Hornung, U. Lau-Werner, F.W. Schilberg, Colorectal Cancer Study Group..
Gender differences in long-term survival of patients with colorectal cancer.
Br J Surg, 88 (2001), pp. 1092-1098
[39.]
T. Nozoe, T. Matsumata, M. Kitamura, K. Sugimachi.
Significance of preoperative elevation of serum C-reactive protein as an indicator for prognosis incolorectal cancer.
Am J Surg, 176 (1998), pp. 335-338
[40.]
H.J. Nielsen, H. Pappot, I.J. Christensen, N. Brünner, O. Thorlacius-Ussing, F. Moesgaard, et al.
Assocciation between plasma concentration of plasminogen activator inhibitor-1 and survival in patients with colorectal cancer.
BMJ, 316 (1998), pp. 829-830
[41.]
T. Nozoe, T. Matsumata, K. Sugimachi.
Preoperative elevation of serum C-reactive protein is related to impaired immunity in patients with colorectal cancer.
Am J Clin Oncol, 23 (2000), pp. 263-266
[42.]
S.J. Wigmore, A.J. McMahon, C.M. Sturgeron, K.C. Fearon.
Acute-phase response, survival and tumour recurrence in patients with colorectal cancer.
[43.]
H.J. Nielsen, I.J. Christensen, S. Sorensen, F. Moesgaard, N. Brünner.
Preoperative plasma plasminogen activator inhibitor type-1 and serum C-reactive protein levels in patients with colorectal cancer.
Ann Surg Oncol, 7 (2000), pp. 617-623
[44.]
T.H. Edna, T. Bjerkeset.
Association between transfusión of stored blood and infective bacterial complications after resection for colorectal cancer.
Eur J Surg, 164 (1998), pp. 449-456
[45.]
T.H. Edna, T. Bjerkeset.
Perioperative blood transfusion reduce longterm survival following surgery for colorectal cancer.
Dis Colon Rectum, 41 (1998), pp. 451-459
[46.]
H.J. Nielsen, L. Edvardsen, K. Vangsgaard, E. Dybkjaer, P.S. Skov.
Time-dependent histamine release from stored human blood products.
Br J Surg, 83 (1996), pp. 259-262
[47.]
M. Kristiansson, M. Soop, A. Shanwell, K.G. Sundqvist.
Prestorage versus bedside white blood cell filtration of red blood cell concentrates: effects on the content of cytokines and soluble tumor necrosis factor receptors.
J Trauma, 40 (1996), pp. 379-383
[48.]
V. Weisbach, C. Wanke, J. Zingsem, R. Zimmermann, R. Eckstein.
Cytokine generation in whole blood, leukocyte-depleted and temporarily warmed red blood cell concentrates.
Vox Sang, 76 (1999), pp. 100-106
[49.]
K.E. Jacobi, C. Wanke, A. Jacobi, V. Weisbach, T.M. Hemmerling.
Determination od eicosanoid and cytokine production in salvaged blood, stored red blood cells concentrates, and whole blood.
J Clin Anesth, 12 (2000), pp. 94-99
[50.]
R.P. Phipps, J. Kaufman, N. Blumberg.
Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion.
Lancet, 357 (2001), pp. 2023-2024
[51.]
M. Muñoz, Y. Sánchez, J.J. García-Vallejo, F.J. Mérida, M.D. Ruiz, J. Maldonado.
Autotransfusión pre y postoperatoria. Estudio comparativo de la hematología, bioquímica y metabolismo eritrocitario en sangre predonada y sangre de drenaje postoperatorio.
Sangre, 44 (1999), pp. 443-450
[52.]
I. Messana, L. Ferroni, F. Misisti, G. Girelli, S. Pupella, M. Castagnola, et al.
Blood bank conditions and RBCs: the progressive loss of metabolic modulation.
Transfusion, 40 (2000), pp. 353-360
[53.]
P.S. Low, B.M. Willardson, N. Mohandas.
Contribution of band 3-ankyrin interaction to erythrocyte membrane mechanical stability.
Blood, 77 (1991), pp. 1581-1586
[54.]
R. Moriyama, C.R. Lombardo, R.F. Workman, P.S. Low.
Regulation of linkages between the erythrocyte membrane and its skeleton by 2,3-diphosphoglycerate.
J Biol Chem, 268 (1993), pp. 10990-10996
[55.]
A. Rasia, A. Bolini.
Red blood cell shape as a function of medium’s ionic strength and pH.
Biochim Biophys Acta, 1372 (1998), pp. 198-204
[56.]
M.J. Wilson, K. Richter-Lowney, D.L. Daleke.
Hyperglucemia induces a loss of phospholipid asymmetry in human erythrocytes.
Biochemistry, 32 (1993), pp. 11302-11310
[57.]
C. Closse, J. Dachary-Prigent, M.R. Boisseau.
Phosphatidylserine-related adhesión of human erythrocyte to vascular endothelium.
Br J Haematol, 107 (1999), pp. 300-302
[58.]
O. Eichelbronner, A. Sielenkamper, G. Cepinskas, W.J. Sibbald, I.H. Chin-Yee.
Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow.
Crit Care Med, 28 (2000), pp. 1865-1870
[59.]
P.E. Marik, W.J. Sibbald.
Effect of stored-blood transfusion on oxigen delivery in patients with sepsis.
JAMA, 269 (1993), pp. 3024-3029
[60.]
R.D. Fitzgerald, C. Martin, G.E. Dietz, G.S. Doig, R.F. Potter, W.J. Sibbald.
Transfusing red blood cells stored in citrate phosphate dextrose adenine-1 for 28 days fails to improve tissue oxygenation in rats.
Crit Care Med, 25 (1997), pp. 726-732
[61.]
H.W. Hopf, T.K. Hunt, J.M. West, P. Blomquist, W.H. Goodson, J.A. Jensen, et al.
Wound tissue tesion predicts the risk of wound infection in surgical patients.
Arch Surg, 132 (1997), pp. 997-1004
[62.]
R. Saadia, M. Schein, C. MacFarlane, K.D. Boffard.
Gut barrier function and the surgeon.
Br J Surg, 77 (1990), pp. 487-492
[63.]
J.W. Alexander, S.T. Boyce, G.F. Babcock, L. Gianotti, M.D. Peck, D.L. Dunn, et al.
The process of microbial translocation.
Ann Surg, 212 (1990), pp. 496-510
[64.]
T. Mynster, H.J. Nielsen.
The impact of storage time of transfused blood on postoperative infectious complications in rectal cancer surgery. Danish RANX05 Colorectal Cancer Study Group.
Scand J Gastroenterol, 35 (2000), pp. 212-217
[65.]
E.C. Vamvakas, J.H. Carven.
Transfusion and postoperative pneumonia in coronary artery bypass graft surgery. Effect of the lenght of storage of transfused red cells.
Transfusion, 39 (1999), pp. 701-710
[66.]
E. Fransen, J. Maessen, M. Dentener, N. Senden, W. Baurman.
Impact of blood transfusion on inflammatory mediators release in patients undergoing cardiac surgery.
Chest, 116 (1999), pp. 1233-1239
[67.]
C.C. Silliman, A.J. Paterson, W.O. Dickey, D.F. Stroncek, M.A. Popovsky, S.A. Cadwell, et al.
The association of biologically active lipids with the development of transfusion-related acute lung injury: a retrospective study.
Transfusion, 37 (1997), pp. 719-726
[68.]
C.C. Silliman, N.F. Volekel, J.D. Allard, D.J. Elzi, R.M. Tuder, J.L. Johnson, et al.
Plasma and lipids from stored packed red blood cells cause acute lung injury in an animal model.
J Clin Invest, 101 (1998), pp. 1458-1467
[69.]
N. Faraday, R.B. Scharp, J.M. Doddo, E.A. Martínez, B. Rosenfeld, T. Dorman.
Leukocytes can enhance platelet-mediated aggregation and thromboxane release via interaction of P-selectin glycoprotein ligand 1 with P-selectin.
Anesthesiology, 94 (2001), pp. 145-151
[70.]
X.F. Zhang, M.F. Feng.
Adherence of human monocytes and NK cells to human TNFa-stimulated porcine endothelial cells.
Immunol Cell Biol, 78 (2000), pp. 633-640
[71.]
L.M.G. Van de Watering, A. Brand, J.G.A. Houbiers, W.M. Klein Kranenbarg, J. Hermans, C.J.H. Van de Velde.
Perioperative blood transfusions, with or without allogeneic leucocytes, relates to survival, not to cancer recurrence.
[72.]
T. Mynster, I.J. Christensen, F. Moesgaard, H.J. Nielsen.
Effects of the combination of blood transfusión and postoperative infectious complications on prognosis after surgery for colorectal cancer.
Br J Surg, 87 (2000), pp. 1553-1562
[73.]
H.J. Nielsen, K. Werther, T. Mynster, M.N. Svendsen, S. Rosendahl, T. Elley, F. Skov.
Bacteria-induced release of white cell- and plateletderived vascular endothelial growth factor in vitro.
Vox Sang, 80 (2001), pp. 170-178
[74.]
H.J. Nielsen, K. Werther, T. Mynster, N. Brünner.
Soluble vascular endothelial growth factor in various blood transfusion components.
Transfusion, 39 (1999), pp. 1078-1083
[75.]
I. Zachary.
Vascular endothelial growth factor.
Int J Biochem Cell Biol, 30 (1998), pp. 1169-1174
[76.]
C.M. Lennard, A. Patel, J. Wilson, B. Reinhardt, C. Tuman, C. Fenton, et al.
Intesity of vascular endothelial growth factor expressión is associated with increased risk of recurrence and decrease disease-free survival in papillary thyroid cancer.
Surgery, 129 (2001), pp. 552-558
[77.]
L.K. Shawver, D. Slamon, A. Ullrich.
Smart drugs: tyrosine kinase inhibitors in cancer therapy.
Cancer Cell, 1 (2002), pp. 117-123
[78.]
J.M. Culebras, R. De Paz, F. Jorquera, A. García de Lorenzo.
Nutrición en el paciente quirúrgico: inmunonutrición.
Nutr Hosp, 16 (2001), pp. 67-77
[79.]
M. Navarro.
Inmunomodulación en cirugía.
Aspectos inmunológicos de la cirugía, pp. p. 301-p. 331
[80.]
A. López-Andrade, A. Almazán, J.L. Martín, F. Samaniego, M.A. López-Andrade, A. Del Campo.
Respuesta inmune en el paciente quirúrgico: influencia de la anestesia y la transfusión sanguínea.
Rev Esp Anestesiol Reanim, 47 (2000), pp. 67-80
[81.]
J. Salas, N. De Vega, J. Carmona, S. Negri, J.J. García-Vallejo, M. Muñoz.
Autotransfusión postoperatoria en cirugía cardíaca. Características hematológicas, bioquímicas e inmunológicas de la sangre recuperada del drenaje mediastínico.
Rev Esp Anestesiol Reanim, 48 (2001), pp. 122-130
[82.]
C. Sebastián, R. Romero, E. Olalla, C. Ferrer, J.J. García-Vallejo, M. Muñoz.
Postoperative blood salvage and reinfusion in spinal surgery. Blood quality, effectiveness and impact on patient blood parameters.
Eur Spine J, 9 (2000), pp. 458-465
[83.]
M.D. Ruiz, J. Maldonado Taillefer, M. Muñoz, J. Maldonado.
Modificaciones de las subpoblaciones linfocitarias en respuesta a la cirugía.
Respuestas del sistema inmunitario a la cirugía, pp. p. 97-p. 121
[84.]
M. Navarro-Zorraquino, R. Lozano, J. Deus, C. Pastor, L. Larrad, E. Tejero, et al.
Determination of the immunoglobulin E postoperative variation as a measure of surgical injury.
World J Surg, 25 (2001), pp. 585-591
[85.]
M. Algora, A. Fernández, J.L. Gómez, C. Martín, I. Prats, N. Puig, et al.
Guía sobre la indicación de la transfusión de glóbulos rojos, plaquetas y productos plasmáticos lábiles.
Med Clin (Barc, 113 (1999), pp. 471-474
[86.]
A. Fernández Montoya.
Variaciones de la práctica de la transfusión en España.
Sangre, 44 (1999), pp. 30-37
[87.]
J.V. Llau, A.M. Sánchez.
Práctica transfusional entre los anestesiólogos en España.
Rev Esp Anestesiol Reanim, 45 (1998), pp. 226-232
[88.]
J.V. Llau.
Medicina transfusional perioperatoria.
Rev Esp Anestesiol Reanim, 48 (2002), pp. 103-105
[89.]
M. García-Caballero, J.J. García-Vallejo, M. Muñoz.
Medidas no farmacológicas de ahorro de sangre en cirugía.
Cir Esp, 66 (1999), pp. 250-255
[90.]
M. García-Caballero, A. Gómez, J. Pavía, J.A. Villalobos, J.J. García-Vallejo, M. Muñoz.
Medidas farmacológicas de ahorro de sangre en cirugía.
Cir Esp, 69 (2001), pp. 146-158
Copyright © 2002. Asociación Española de Cirujanos
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos