metricas
covid
Buscar en
Cirugía Española (English Edition)
Toda la web
Inicio Cirugía Española (English Edition) Postoperative morbidity after anatomical lung resections by VATS vs thoracotomy:...
Información de la revista
Vol. 101. Núm. 11.
Páginas 778-786 (noviembre 2023)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
60
Vol. 101. Núm. 11.
Páginas 778-786 (noviembre 2023)
Original article
Acceso a texto completo
Postoperative morbidity after anatomical lung resections by VATS vs thoracotomy: Treatment and intention-to-treat analysis of the Spanish Video-Assisted Thoracic Surgery Group
Morbilidad postoperatoria después de una resección pulmonar anatómica mediante cirugía toracoscópica frente a cirugía abierta: análisis por tratamiento y por intención de tratar del Grupo Español de Cirugía Torácica Videoasistida
Visitas
60
Sara Fra-Fernándeza,
Autor para correspondencia
sara.fra@salud.madrid.org

Corresponding author.
, Gemma María Muñoz-Molinaa, Alberto Cabañero-Sáncheza, Laura del Campo-Albendeab, Sergio Bolufer-Nadalc, Raúl Embún-Flord, Néstor J. Martínez-Hernándeze, Nicolás Moreno-Mataa, on the behalf of GEVATS
a Department of Thoracic Surgery, Hospital Universitario Ramón y Cajal, Madrid, Spain
b Department of Clinical Statistics, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
c Department of Thoracic Surgery, Hospital General Universitario de Alicante, Alicante, Spain
d Department of Thoracic Surgery, Hospital Universitario Miguel Servet, Zaragoza, Spain
e Department of Thoracic Surgery, Hospital Universitario La Ribera, Alcira, Valencia, Spain
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Tablas (5)
Table 1. Distribution of baseline characteristics of patients included before propensity-score matching.
Table 2. Distribution of baseline patient characteristics included after propensity-score matching.
Table 3. Postoperative outcomes (not matched).
Table 4. Postoperative outcomes (matched).
Table 5. Baseline characteristics and postoperative outcomes of converted from VATS to open patients.
Mostrar másMostrar menos
Figuras (1)
Abstract
Objectives

In recent years, video-assisted thoracoscopic lung resections (VATS) have been associated with lower morbidity than open surgery. The aim of our study is to compare postoperative morbidity among patients from the national database of the Spanish Group of Video-Assisted Thoracic Surgery (GE-VATS) after open and video-assisted anatomic lung resections using a propensity score analysis.

Methods

From December 2016 to March 2018, a total of 3533 patients underwent anatomical lung resection at 33 centers. Pneumonectomies and extended resections were excluded. A propensity score analysis was performed to compare the morbidity of the thoracotomy group (TG) vs the VATS group (VATSG). Treatment and intention-to-treat (ITT) analyses were conducted.

Results

In total, 2981 patients were finally included in the study: 1092 (37%) in the TG and 1889 (63%) in the VATSG for the treatment analysis; and 816 (27.4%) in the TG and 2165 patients (72.6%) in the VATSG for the ITT analysis. After propensity score matching, in the treatment analysis, the VATSG was significantly associated with fewer overall complications than the TG OR 0.680 [95%CI 0.616, 0.750]), fewer respiratory (OR 0.571 [0.529, 0.616]) cardiovascular (OR 0.529 [0.478, 0.609]) and surgical (OR 0.875 [0.802, 0.955]) complications, lower readmission rate (OR 0.669 [0.578, 0.775]) and a reduction of hospital length of stay (−1.741 ([−2.073, −1.410]). Intention-to-treat analysis showed only statistically significant differences in overall complications (OR 0.76 [0.54–0.99]) in favor of the VATSG.

Conclusion

In this multicenter population, VATS anatomical lung resections have been associated with lower morbidity than those performed by thoracotomy. However, when an intention-to-treat analysis was performed, the benefits of the VATS approach were less prominent.

Keywords:
VATS
Propensity score
Video-assisted thoracic surgery
Thoracotomy
Morbidity
Abbreviations:
VATS
VATSG
TG
Resumen
Introducción

El objetivo de nuestro estudio es comparar la morbilidad postoperatoria entre los pacientes de la base de datos nacional del Grupo Español de Cirugia Torácica Videoasistida (GE-VATS) después de resecciones pulmonares anatómicas abiertas y videoasistidas mediante un análisis de emparejamiento por índice de propensión.

Métodos

Desde Diciembre de 2016 hasta Marzo de 2018, un total 3533 pacientes fueron intervenidos de resección pulmonar anatómica en 33 centros. Se excluyeron las neumonectomías y las resecciones extendidas. Se realizó un análisis de índice de propensión para comparar la morbilidad de cirugía abierta (TG) frente a VATS (VATSG). Se realizó un análisis por tratamiento y por intención de tratar (ITT).

Resultados

En el estudio se incluyeron finalmente 2981 pacientes: 1092 (37%) en TG y 1889 (63%) en VATSG. En el análisis por tratamiento, la VATS se asoció significativamente con menor tasa de complicaciones que la cirugía abierta (OR 0.680 [95%CI 0.616, 0.750]), de complicaciones respiratorias (OR 0.571 [0.529, 0.616]), cardiovasculares (OR 0.529 [0.478, 0.609]) y quirúrgicas (OR 0.875 [0.802, 0.955]), menor tasa de reingresos (OR 0.669 [0.578, 0.775]) y menor estancia (−1.741 ([−2.073, −1.410]). En el de intención de tratar, se observaron diferencias estadísticamente significativas a favor de la VATS solo en las complicaciones en general (OR 0.76 [0.54–0.99]).

Conclusiones

En esta población multicéntrica, las lobectomías y segmentectomias anatómicas por VATS se han asociado con menor tasa de complicaciones que las realizadas por toracotomía. Sin embargo, en el análisis por intención de tratar, los beneficios de la VATS no fueron tan evidentes.

Palabras clave:
VATS
Cirugía toracoscópica videosasistida
Toracotomía
Morbilidad
Texto completo
Introduction

Video-assisted thoracic surgery (VATS) is becoming one of the most widely used approaches worldwide for the treatment of lung cancer. Meanwhile, the open thoracotomy approach continues to be performed, especially for advanced stages and large tumors. It is either selected by the surgeon, due to training or preferences, or it may be determined by the characteristics of the medical center and health care system.

According to published data, minimally invasive lung resections are reproducible, safe and offer our patients potential advantages over open surgery (especially in early stages [I and II]) with similar survival rates.1,2 In published randomized and propensity score studies, VATS showed significantly lower morbidity and shorter hospital stay than open procedures3–7 as well as less postoperative pain and better quality of life.8 However, these studies included a much higher percentage of patients operated by thoracotomy than by VATS. Also, most of the databases analyzed are retrospective and are not audited. Regarding selection bias, the studies do not include surgeon experience in the propensity score, which is considered a major deciding factor for the selection of the surgical approach. Moreover, the information about conversion from VATS to open surgery is not registered, even in the case of international registries.3,6

In 2016, the Spanish Society of Thoracic Surgery (SECT) developed a multicenter database to collect the data of all anatomical lung resections performed by 33 certified Spanish thoracic surgery centers, all of them members of the Spanish Video-Assisted Thoracic Surgery Group (GE-VATS). This project was primarily designed to determine the effect of VATS on the 90-day postoperative mortality rate after anatomic lung resection for lung cancer.9 The GE-VATS database is a prospective, audited database that represents the most ambitious prospective study of Spanish thoracic surgery to date due to the number of medical centers involved, the total number of patients, and the audit systems implemented to guarantee excellent data quality.

The objective of our study is to analyze postoperative morbidity among patients from the prospective, audited GE-VATS database after anatomic lung resection, comparing the VATS group (VATSG) and thoracotomy group (TG) using a propensity score analysis.

MethodsData source, patient population and ethical statement

In 2016, the Spanish Society of Thoracic Surgery (SECT) developed a prospective, multicenter database with the participation of 33 certified Spanish thoracic surgery centers, all members of the GE-VATS group. The project was approved by the ethics committee at each medical center, and informed consent was obtained from recruited patients to use their clinical data for scientific purposes. The necessary sample size was calculated based on the primary objective of the GE-VATS group9 (i.e., to demonstrate differences in the 90-day mortality rate based on the type of surgical approach). In total, 3533 patients who had undergone anatomical lung resections from December 2016 to March 2018 at participating GE-VATS hospitals were prospectively included. The inclusion criteria were: patients over 18 years of age who had undergone anatomical lung resections. In our study, patients who had undergone pneumonectomy (236 patients; 7%) were excluded. Also, patients who had undergone extended resections and sleeve resections were excluded (316 patients; 9%). There was no randomization in this study. Initially, interventions that had been converted to open procedures were included in the TG (treatment analysis). Then, a second analysis was conducted including conversions in VATSG with the aim of performing an intention-to-treat (ITT) analysis.

Definition of result

All descriptive and outcome variables were adapted from the standardization documents of the Society of Thoracic Surgeons (STS) and the European Society of Thoracic Surgeons (ESTS).10 Postoperative morbidity cases included those that occurred within 30 days of surgery or before hospital discharge. Complications were classified according to whether they were respiratory, cardiovascular, surgical, or other. Pulmonary complications included atelectasis requiring bronchoscopy, pneumonia, acute respiratory distress syndrome (ARDS), reintubation and prolonged intubation. Cardiovascular complications included deep vein thrombosis and pulmonary embolism, arrhythmia, stroke, acute coronary events, acute heart failure, and postoperative blood transfusion. Surgical complications included bronchial fistula, prolonged air leak (>5 days), hemothorax requiring reoperation, chylothorax, empyema, and wound infection. Other complications included hematologic, urologic, gastric, psychiatric, metabolic, and urologic complications not previously described. VATS was defined by consensus as the absence of a rib retractor, regardless of the number of ports performed. Lymphadenectomy was performed by sampling or systematic lymph node dissection.11 The predicted postoperative forced expiratory volume in one second (ppoFEV1) and the predicted postoperative lung diffusion capacity (ppoDLCO) were calculated automatically, taking into account the number of segments resected in previous surgeries. Readmission was defined as the unscheduled admission of a patient within 30 days of discharge. Surgeon experience with VATS was defined as having performed more than 50 anatomical lung resections by VATS. Regarding tumor location, peripheral tumors were those located in the outer third of the lung. Induction treatments were chemotherapy, radiotherapy and immunotherapy.

Statistical analysis

The data collected from each patient included continuous variables (age, BMI [2.2% data missing], ppoFEV1 [1.3% data missing], ppoDLCO [16.2% data missing]), described as mean and standard deviation, and categorical variables (sex, American Society of Anesthesiologists [ASA] risk scale, smoking history, arterial hypertension, congestive heart failure, stroke, coronary artery disease, diabetes mellitus, peripheral vascular disease, arrhythmia, chronic renal failure, tumor location [13.8% missing], histology, stage [16.9% missing], induction treatment, previous thoracic surgery, type of resection, surgeon experience with VATS). Continuous variables were compared using the Student’s t test and Wilcoxon’s rank sum, and categorical variables were analyzed using Fisher’s exact test.

All missing data were handled via the multivariate imputation by chained equations (MICE) method.12 Incomplete dichotomous variables were imputed using a logistic regression model, categorical variables with more than 2 groups were imputed using a logistic multinomial model, and linear regression was used to impute incomplete continuous variables. Ten imputed data sets were generated.

In order to determine the effect of the type of approach on developing complications, a logistic model was calculated with age, sex, BMI, ASA, smoking history, arterial hypertension, congestive heart failure, cerebrovascular accident, coronary disease, diabetes mellitus, peripheral vascular disease, arrhythmia, chronic kidney disease, tumor location, histology, stage, induction treatment, previous thoracic surgery, type of resection, surgeon experience with VATS, ppoFEV1 and ppoDLCO variable as confounders. All variables included in the model were selected according to clinical relevance. Following the recommendations, we used a caliper width equal to 0.2 of the standard deviation of the logit of the propensity score of this model taking into account total imputed data.13

Propensity score matching (1:1) was constructed using the STATA (College Station, TX) psmatch2 package in each of the imputed data sets.

To estimate the effect of the approach on morbidity, a random effects logistic model and a random effects linear model were used in matched patients, as appropriate. The models were adjusted for those variables with a standardized difference greater than 10%. The estimation of the effect of the approach in each of the 10 imputed samples was combined using Rubin’s rule. A P-value <0.05 was considered statistically significant.

For the sensitivity analysis, we performed a logistic model using the inverse probability of treatment weighting (IPTW), calculated as 1/(1-p) for patients who underwent thoracotomy and 1/p for patients who underwent VATS.

Results

A total of 2981 patients were finally included in the study: VATS was the initial approach in 2165 patients (72.6%), representing the treatment group in the ITT analysis. However, 276 cases (9.2%) were converted to thoracotomy; therefore, the VATSG in the treatment analysis consisted of 1889 (63%) patients. Patient baseline characteristics are given in Table 1.

Table 1.

Distribution of baseline characteristics of patients included before propensity-score matching.

Variables  Treatment analysisITT analysis
  TG  VATSG  Sd  TG  VATSG  Sd  Missing (%) 
  n = 1092  n = 1889    n = 816  n = 2165     
Age, mean (SD)  64.7 (10.3)  65.4 (9.8)  0.221  64.3 (10.3)  65.5 (9.9)  0.378  0 (0.0) 
Gender              1 (<0.1) 
Male  781 (71.6)  1251 (66.2)  [Reference]  568 (69.7)  1464 (67.6)  [Reference]   
Female  310 (28.4)  638 (33.8)  0.117  247 (30.3)  701 (32.4)  0.045   
BMI, mean (SD)  27.1 (4.7)  26.9 (4.6)  −0.093  26.7 (4.6)  27.0 (4.6)  0.140  65 (2.2) 
ASA              6 (0.2) 
17 (1.6)  51 (2.7)  [Reference]  15 (1.8)  53 (2.5)  [Reference]   
II  432 (39.7)  833 (44.2)  0.091  320 (39.4)  945 (43.7)  0.087   
III  610 (56.0)  966 (51.2)  −0.096  455 (56.0)  1121 (51.9)  −0.082   
IV  30 (2.7)  36 (1.9)  −0.053  23 (2.8)  43 (2.0)  −0.052   
History of smoking  893 (81.8)  1537 (81.4)  −0.010  660 (83.5)  1770 (82.9)  −0.016  57 (1.9) 
Hypertension  477 (3.7)  862 (45.6)  1.113  345 (42.3)  994 (46.0)  0.075  3 (0.1) 
Congestive cardiac failure  31 (2.8)  41 (2.2)  −0.038  17 (2.1)  55 (2.5)  0.027  0 (0.0) 
Coronary artery disease  98 (9.0)  175 (9.3)  0.010  65 (8.0)  208 (9.6)  0.057  0 (0.0) 
Stroke  58 (5.3)  95 (5.0)  −0.014  44 (5.4)  109 (5.0)  −0.018  0 (0.0) 
Diabetes mellitus              1 (<0.1) 
No  879 (80.5)  1557 (82.4)  [Reference]  663 (81.3)  1773 (81.9)  [Reference]   
Type I  24 (2.2)  24 (1.3)  −0.069  17 (2.1)  31 (1.4)  −0.053   
Type II  188 (17.2)  308 (16.3)  −0.024  135 (16.6)  361 (16.7)  0.003   
Peripheral vascular disease  104 (9.5)  171 (9.1)  −0.014  81 (9.9)  194 (9.0)  −0.031  1 (<0.1) 
Arrhythmia  93 (8.5)  148 (7.8)  −0.026  59 (7.2)  182 (8.4)  0.045  0 (0.0) 
Chronic renal failure  27 (2.5)  55 (2.9)  0.025  20 (2.5)  62 (2.9)  0.025  0 (0.0) 
Tumor location              413 (13.8) 
Central  427 (39.1)  404 (21.4)  [Reference]  347 (49.6)  484 (25.9)  [Reference]   
Peripheric  514 (47.1)  1223 (64.7)  0.360  353 (50.4)  1384 (74.1)  0.504   
Histology              421 (14.1) 
Adenocarcinoma  493 (45.2)  997 (52.8)  [Reference]  365 (52.5)  1125 (60.3)  [Reference]   
Squamous cell  298 (27.3)  412 (21.8)  −0.128  225 (32.4)  485 (26.0)  −0.141   
Others  144 (13.2)  216 (11.4)  −0.055  105 (15.1)  255 (13.7)  −0.040   
Stage              503 (16.9) 
450 (41.2)  1110 (58.8)  [Reference]  305 (45.9)  1255 (69.2)  [Reference]   
Others  449 (41.1)  469 (24.8)  −0.352  359 (54.1)  559 (30.8)  −0.485   
Induction treatment  93 (8.5)  67 (3.6)  −0.207  81 (9.9)  79 (3.6)  −0.253  0 (0.0) 
Previous thoracic surgery  102 (9.3)  89 (4.7)  −0.181  84 (10.3)  107 (4.9)  −0.205  0 (0.0) 
Surgeon VATS experience  378 (34.6)  1313 (69.5)  0.746  247 (30.3)  1444 (66.7)  0.782  0 (0.0) 
Type of resection              0 (0.0) 
Lobectomy  1019 (93.3)  1733 (91.7)  0.099  763 (93.5)  1989 (91.9)  [Reference]   
Segmentectomy  73 (6.7)  156 (8.3)  0.061  53 (6.5)  176 (8.1)  0.062   
ppoFEV1, mean (SD)  69.3 (16.4)  74.0 (17.8)  1.137  68.9 (16.3)  73.5 (17.7)  1.578  38 (1.3) 
ppoDLCO, mean (SD)  65.7 (17.9)  68.0 (18.0)  0.543  66.0 (17.9)  67.6 (18.0)  0.534  486 (16.3) 

All results are expressed as n (%) except where otherwise indicated. ITT, intention to treat; TG, thoracotomy group; VATSG, video-assisted thoracoscopic surgery group; Sd, standardized difference; SD, standard deviation; BMI, body mass index; ASA, American Society of Anesthesiologists risk scale; ppoFEV1, predicted postoperative forced expiratory volume in one second; ppoDLCO, predicted postoperative lung diffusion capacity.

After the imputation of missing data and performed the propensity score matching of patients, we obtained a mean of 804 patients matched (range 794–815) in the treatment analysis, and a mean of 541 patients matched in the ITT analysis (range 539–545). The baseline characteristics of the matched patients are shown in Table 2.

Table 2.

Distribution of baseline patient characteristics included after propensity-score matching.

Variables  Treatment analysisITT analysis
  TG  VATSG  Sd  TG  VATSG  Sd 
  n = 804  n = 804    n = 541  n = 541   
Age, mean (SD)  64.7 (10.3)  65.4 (9.8)  −0.8  65.0 (10.1)  64.8 (9.6)  −0.064 
Gender
Male  565 (70.3)  573 (71.3)  [Reference]  378 (69.9)  381 (70.4)  [Reference] 
Female  239 (29.7)  231 (28.7)  −2.2  163 (30.1)  160 (29.6)  −0.011 
BMI, mean (SD)  27.1 (4.7)  26.9 (4.6)  −1.7  26.8 (4.6)  26.5 (4.6)  −0.140 
ASA
15 (1.9)  12 (1.5)  [Reference]  10 (1.8)  9 (1.7)  [Reference] 
II  335 (41.7)  336 (41.8)  0.3  212 (39.2)  192 (35.5)  −0.077 
III  433 (53.9)  432 (53.7)  −0.2  303 (56.0)  325 (60.1)  0.083 
IV  21 (2.6)  24 (3.0)  2.5  16 (3.0)  15 (2.8)  −0.012 
History of smoking  669 (83.2)  676 (84.1)  2.3  472 (87.2)  473 (87.4)  0.006 
Hypertension  359 (44.6)  369 (45.9)  2.5  242 (44.7)  236 (43.6)  −0.022 
Congestive cardiac failure  24 (3.0)  24 (3.0)  13 (2.4)  9 (1.7)  −0.049 
Coronary artery disease  69 (8.6)  73 (9.1)  1.7  52 (9.6)  43 (7.9)  −0.060 
Stroke  46 (5.7)  42 (5.2)  −2.2  30 (5.5)  31 (5.7)  0.009 
Diabetes mellitus
No  654 (81.3)  641 (79.7)  [Reference]  432 (79.9)  431 (79.7)  [Reference] 
Type I  13 (1.6)  11 (1.4)  8 (1.5)  9 (1.7)  0.016 
Type II  137 (17.0)  149 (18.5)  101 (18.7)  101 (18.7)  0.000 
Peripheral vascular disease  77 (9.6)  80 (9.9)  1.3  63 (11.6)  65 (12.0)  0.012 
Arrhythmia  65 (8.1)  68 (8.5)  1.4  44 (8.1)  39 (7.2)  −0.034 
Chronic renal failure  23 (2.9)  20 (2.5)  −2.3  15 (2.8)  18 (3.3)  0.029 
Tumor location
Central  295 (36.7)  316 (39.3)  [Reference]  235 (43.4)  267 (49.4)  [Reference] 
Peripheric  509 (63.3)  488 (60.7)  −5.5  306 (56.6)  274 (50.6)  −0.121 
Histology
Adenocarcinoma  442 (55.0)  444 (55.2)  [Reference]  299 (55.3)  279 (51.6)  [Reference] 
Squamous cell  229 (28.5)  240 (29.8)  3.1  164 (30.3)  176 (32.5)  0.047 
Others  133 (16.5)  120 (14.9)  −4.5  78 (14.4)  86 (15.9)  0.042 
Stage
492 (61.19)  457 (56.8)  [Reference]  287 (53.0)  268 (49.5)  [Reference] 
Others  312 (38.8)  347 (43.2)  9.1  254 (47.0)  273 (50.5)  0.070 
Induction treatment  41 (5.1)  52 (6.5)  5.8  41 (7.6)  53 (9.8)  0.078 
Previous thoracic surgery  55 (6.8)  69 (8.6)  6.9  37 (6.8)  38 (7.0)  0.008 
Surgeon VATS experience  360 (44.8)  263 (32.7)  −25.8  204 (37.7)  137 (25.3)  −0.269 
Type of resection
Lobectomy  745 (92.7)  749 (93.2)  [Reference]  507 (93.7)  514 (95.0)  [Reference] 
Segmentectomy  59 (7.3)  55 (6.8)  −1.9  34 (6.3)  27 (5.0)  −0.056 
ppoFEV1, mean (SD)  69.4 (16.4)  73.9 (17.8)  −5.6  69.7 (15.7)  67.7 (16.4)  −0.499 
ppoDLCO, mean (SD)  65.8 (17.9)  68.0 (18.1)  −1.2  65.6 (17.4)  64.6 (18.7)  −0.235 

All results are expressed as n (%) except where otherwise indicated. ITT, intention to treat; Sd: standardized difference; TG, thoracotomy group; VATSG, video-assisted thoracoscopic surgery group; SD, standard deviation; BMI, body mass index; ASA, American Society of Anesthesiologists risk scale; ppoFEV1, predicted postoperative forced expiratory volume in one second; ppoDLCO, predicted postoperative lung diffusion capacity.

Postoperative outcomes of the unmatched cohort of patients in both analyses can be found in Table 3.

Table 3.

Postoperative outcomes (not matched).

  Treatment analysisITT analysis
  TG  VATSG  OR  TG  VATSG  OR 
  n = 1092  n = 1889  [95% CI]  n = 816  n = 2165  [95% CI] 
Any complication  362 (33.1)  447 (23.7)  0.63 [0.60; 0.66]  251 (30.8)  524 (24.2)  0.72 [0.60; 0.86] 
Respiratory complication  170 (15.6)  157 (8.3)  0.492 [0.458; 0.527]  118 (14.5)  209 (9.7)  0.63 [0.50; 0.80] 
Prolongation of intubation  3 (0.3)  1 (0.1)    2 (0.2)  2 (0.1)   
Reintubation  25 (2.3)  13 (0.7)    16 (2.0)  22 (1.0)   
Atelectasis  55 (5.0)  51 (2.7)    36 (4.4)  70 (3.2)   
Pneumothorax or pleural effusion  26 (2.4)  39 (2.1)    19 (2.3)  46 (2.1)   
Pneumonia  70 (6.4)  53 (2.8)    52 (6.4)  71 (3.3)   
ARDS  11 (1.0)  11 (0.6)    6 (0.7)  16 (0.7)   
Pulmonary embolism  5 (0.5)  3 (0.2)    4 (0.5)  4 (0.2)   
Other respiratory morbidity  36 (3.3)  25 (1.3)    22 (2.7)  39 (1.8)   
Cardiovascular complication  87 (8.0)  74 (3.9)  0.47 [0.43; 0.52]  57 (7.0)  104 (4.8)  0.67 [0.48; 0.94] 
Arrythmia  62 (5.7)  49 (2.6)    45 (5.5)  66 (3.0)   
Acute heart failure  6 (0.5)  9 (0.5)    2 (0.2)  13 (0.6)   
Acute coronary events  2 (0.2)  1 (0.1)    0 (0.0)  3 (0.1)   
Stroke  2 (0.2)  3 (0.2)    0 (0.0)  5 (0.2)   
Deep venous thrombosis  0 (0.0)  1 (0.1)    0 (0.0)  1 (0.0)   
Postoperative blood transfusion  19 (1.7)  11 (0.6)    11 (1.3)  19 (0.9)   
Other cardiovascular morbidity  8 (0.7)  8 (0.4)    5 (0.6)  11 (0.5)   
Surgical complication  184 (16.8)  267 (14.1)  0.81 [0.76, 0.86]  139 (17.0)  312 (14.4)  0.82 [0.66; 1.02] 
Prolonged air leak  146 (13.4)  236 (12.5)    112 (13.7)  270 (12.5)   
Bronchopleural fistula  9 (0.8)  2 (0.1)    5 (0.6)  6 (0.3)   
Empyema  16 (1.5)  8 (0.4)    13 (1.6)  11 (0.5)   
Chylothorax  5 (0.5)  4 (0.2)    5 (0.6)  4 (0.2)   
Wound infection  19 (1.7)  16 (0.8)    12 (1.5)  23 (1.1)   
Reoperation for bleeding  14 (1.3)  17 (0.9)    11 (1.3)  20 (0.9)   
Reoperations  32 (2.9)  48 (2.5)  0.86 [0.75, 0.99]  21 (2.6)  59 (2.7)  1.06 [0.64; 1.76] 
Readmissions  85 (8.4)  88 (4.9)  0.55 [0.52, 0.61]  66 (8.7)  107 (5.2)  0.57 [0.42; 0.79] 
Hospital length of stay (days), mean (SD)  7.6 (7.4)  5.6 (5.2)  −2.25 [−2.39; −2.11]*  6.0 (4.0; 8.0)  4.0 (3.0; 7.0)  −1.81 [−2.31; −1.31]* 

All results are expressed as n (%) except where otherwise indicated. TG, thoracotomy group; VATSG, video-assisted thoracoscopic surgery group; SD, standard deviation.

*

Coef. [95% CI].

Analysis of the propensity-matched groups in the treatment analysis for postoperative outcomes demonstrated that the VATSG was significantly associated with fewer overall complications than the TG OR 0.680 [95%CI 0.616, 0.750]). A significant association was also observed with fewer respiratory (OR 0.571 [0.529, 0.616]) cardiovascular (OR 0.529 [0.478, 0.609]) and surgical (OR 0.875 [0.802, 0.955]) complications. In addition, statistically significant differences have been observed in readmissions (OR 0.669 [0.578, 0.775]) and a reduction of hospital length of stay (Coef. −1.741 ([−2.073, −1.410]) in favor of the VATSG. Fewer specific complications have been observed in VATSG patients: reintubation, pneumonia, atelectasis, ARDS, pneumothorax or pleural effusion, pulmonary thromboembolism, arrhythmia, stroke, acute coronary events, need for postoperative blood transfusion, prolonged air leak, empyema, bronchopleural fistula, chylothorax, and wound infection (Table 4).

Table 4.

Postoperative outcomes (matched).

  Treatment analysisITT analysis
  TG  VATSG  OR  TG  VATSG  OR 
  n = 804  n = 804  [95% CI]  n = 541  n = 541  [95% CI] 
Any complication  262 (32.6)  196 (24.4)  0.68 [0.62; 0.75]  160 (29.6)  147 (27.2)  0.76 [0.54; 0.99] 
Respiratory complication  122 (15.2)  72 (9.0)  0.57 [0.53; 0.62]  70 (12.9)  66 (12.2)  0.79 [0.47; 1.11] 
Prolongation of intubation  1 (0.1)  1 (0.1)    1 (0.2)  1 (0.2)   
Reintubation  17 (2.1)  7 (0.9)    7 (1.3)  9 (1.7)   
Atelectasis  39 (4.8)  21 (2.6)    25 (4.6)  19 (3.5)   
Pneumothorax or pleural effusion  22 (2.7)  19 (2.4)    11 (2.0)  11 (2.0)   
Pneumonia  45 (5.6)  25 (3.1)    24 (4.4)  23 (4.3)   
ARDS  7 (0.9)  5 (0.6)    5 (0.9)  2 (0.4)   
Pulmonary embolism  4 (0.5)  3 (0.4)    3 (0.6)  3 (0.6)   
Other respiratory morbidity  27 (3.4)  11 (1.4)    15 (2.8)  15 (2.8)   
Cardiovascular complication  66 (8.2)  35 (4.3)  0.53 [0.48; 0.61]  34 (6.3)  28 (5.2)  0.70 [0.29; 1.11] 
Arrythmia  47 (5.8)  24 (3.0)    29 (5.4)  16 (3.0)   
Acute heart failure  4 (0.5)  4 (0.5)    2 (0.4)  3 (0.6)   
Acute coronary events  2 (0.2)  0 (0.0)    0 (0.0)  1 (0.2)   
Stroke  2 (0.2)  1 (0.1)    0 (0.0)  2 (0.4)   
Deep venous thrombosis  0 (0)  1 (0.1)    0 (0.0)  1 (0.2)   
Postoperative blood transfusion  14 (1.7)  4 (0.5)    7 (1.3)  6 (1.1)   
Other cardiovascular morbidity  6 (0.7)  4 (0.5)    2 (0.4)  3 (0.6)   
Surgical complication  132 (16.4)  117 (14.5)  0.86 [0.80; 0.96]  89 (16.5)  91 (16.8)  0.91 [0.60; 1.22] 
Prolonged air leak  105 (13.1)  102 (12.7)    75 (13.9)  75 (13.9)   
Bronchopleural fistula  9 (1.1)  2 (0.2)    1 (0.2)  2 (0.4)   
Empyema  13 (1.6)  6 (0.7)    6 (1.1)  4 (0.7)   
Chylothorax  4 (0.5)  2 (0.2)    1 (0.2)  2 (0.4)   
Wound infection  16 (2.0)  8 (1.0)    5 (0.9)  11 (2.0)   
Reoperation for bleeding  8 (1.0)  7 (0.9)    8 (1.5)  4 (0.7)   
Reoperations  22 (2.7)  18 (2.2)  0.96 [0.72; 1.30]  13 (2.4)  12 (2.2)  0.87 [0.09; 1.64] 
Readmissions  59 (7.9)  43 (5.6)  0.67 [0.58; 0.78]  48 (9.4)  35 (6.8)  0.68 [0.34; 1.03] 
Hospital length of stay (days), mean (SD)  7.8 (7.6)  6.0 (5.6)  −1.74 [−2.07; −1.41]  6.0 [4.0; 8.0]  5.0 [4.0; 7.0]  −0.03 [−0.19; 0.13]* 

All results are expressed as n (%) except where otherwise indicated. TG, thoracotomy group; VATSG, video-assisted thoracoscopic surgery group; SD, standard deviation.

*

Coef. [95% CI].

Analysis of the propensity-matched groups in the ITT analysis (which includes conversions in VATSG) showed statistically significant differences in overall complications (OR 0.76 [0.54–0.99], whereas non-significant associations were observed in respiratory (OR 0.79 [0.47; 1.11], cardiovascular (OR 0.70 [0.29; 1.11]) and surgical complications (0.91 [0.60; 1.22]), either in reoperations (OR 0.87 [0.09; 1.64], readmissions (OR 0.68 [0.34; 1.03]) or hospital length of stay (Coef. −0.03 [−0.19; 0.13]). Similar rates of specific complications have been observed in both groups excluding atelectasis and arrythmia, which were higher in the TG.

The results of the sensitivity analysis of the logistic model weighted by IPTW are consistent with propensity score results: for the overall complications in the treatment analysis, it demonstrated that VATS was associated with significantly lower complications (OR 0.629 [95% CI 0.617–0.641]); the sensitivity analysis for overall complications in the ITT analysis showed a non-significant association in favor of VATS (OR 0.83 [0.61–1.05]).

The baseline characteristics and postoperative outcomes of converted procedures are shown in Table 5.

Table 5.

Baseline characteristics and postoperative outcomes of converted from VATS to open patients.

  Converted from VATS to open 
  n = 276 
Age, mean (SD)  65.90 (10.26) 
ASA III  56.16 (56.16%) 
Central tumor location  80 (33.20%) 
Stage I  145 (61%) 
Induction treatment  12 (4.35%) 
VATS surgeon’s experience  131 (47.46%) 
ppoFEV1, mean (SD)  79.46 (16.41) 
ppoDLCO, mean (SD)  64.91 (17.80) 
Any complication  101 (36.59%) 
Respiratory complication  79 (28.62%) 
Cardiovascular complication  30 (10.87%) 
Reoperations  11 (4%) 
Readmissions  19 (7.60%) 
Hospital length of stay (days), mean (SD)  8.21 (7.35) 

All results are expressed as n (%) except where otherwise indicated. BMI, body mass index; ASA, American Society of Anesthesiologists risk scale; ppoFEV1, predicted postoperative forced expiratory volume in one second; ppoDLCO, predicted postoperative lung diffusion capacity.

The data underlying this article will be shared on reasonable request to the corresponding author.

Discussion

For many years, the standard approach for anatomical lung resections was thoracotomy. In the 90s, minimally invasive surgery was adapted for lobectomies, and in 1991 the first VATS lobectomy was reported.14 During the last 3 decades, the use of VATS surgery has been increasing worldwide; however, VATS rates vary among different countries and institutions. In Spain, some studies describe the absence of VATS in the 1990s.15 As of 2010, approximately 30% of lobectomies were performed by thoracoscopy.16,17 In our study, the percentage of thoracoscopic resections almost doubled, which indicates the fast implementation of VATS in our country in the last decade.

Since first reports of VATS lobectomies, a great experience has been accumulated. Published data include large database analyses comparing with unmatched comparisons, meta-analyses, propensity score studies, outcome studies with results adjusted for other factors and some small, randomized studies. After randomized studies, propensity score analysis may provide some of the best evidence. Currently, there are no studies in the published literature about the postoperative complications of VATS lobectomies versus open procedures using a large database in Spain, which can reflect current practice in this country compared to other European countries and the rest of the world.

The GE-VATS database used in our study guarantees excellent data quality,9 due to the few missing data and the auditing systems implemented. Recently, several studies have been published with this database related to VATS postoperative outcomes.18–23

To our knowledge, our study is the first propensity score morbidity analysis of major lung resections that includes more patients operated by VATS than by thoracotomy (73% vs 27%). Among the studies published to date comparing VATS versus open surgery using the propensity score, ours includes more current patient data (2016–2018) and is the only study that includes surgeon experience as one of the major deciding factors for the selection of the surgical approach.

Analyzing the propensity-matched groups for postoperative outcomes in the treatment analysis, we have shown that major VATS resections are significantly associated with lower postoperative morbidity compared to thoracotomy, with a lower overall complication rate (24.4% vs 32.6%) and lower rates of cardiovascular (35% vs 66%) and respiratory (9.0% vs 15.2%) complications. In addition, fewer specific respiratory and cardiovascular complications have been observed in our VATSG patients, including reintubation, pneumonia, atelectasis, ARDS, arrhythmia, stroke and need for postoperative blood transfusion.

VATS resections also had a significantly lower surgical complication rate (14.4% vs 16.4%), especially emphasizing the higher incidence of bronchopleural fistula (0.2% vs 1.1%), lower rate of readmissions and shorter length of hospital stay in the treatment analysis.

However, this protective effect of VATS lost statistical significance when an ITT was performed, excluding the overall complication rate. When specific respiratory and cardiovascular complication rates were analyzed, lower rates of multiple complications in favor of VATSG in the treatment analysis became less noteworthy after performing the ITT analysis.

Our results in the treatment analysis coincide with other previous reports using international and national registries with similar methodology,3,6,24,25 where information about conversion from VATS to open surgery due to anatomic constraints or complications is not registered. The fact that ITT analysis could not be performed may inherently bias results against open surgery or in favor of VATS lobectomies, reporting better outcomes in the latter approach.

Intention-to-treat analysis is the gold standard for randomized clinical trials as it maintains prognostic balance. In recent years, ITT has been considered to show the real impact of VATS lobectomy and to provide more realistic findings.26 Laursen et al.27 found that patients who underwent VATS were less likely to have complications, compared with patients operated by thoracotomy, even performing an intention-to-treat analysis. These results are not consistent with ours, and this study was not matched.

In contrast, our findings are consistent with previously published results about the effect of VATS on mortality by our group.28 Recuero-Díaz et al. showed a 65%–70% reduction in mortality in patients after anatomical lung resection conducted with VATS, which decreased to the extent that statistically non-significant differences were obtained when an ITT analysis was performed.

Although the aim of our study was not to examine the outcomes of converted procedures, our results would indirectly support a negative effect associated with conversion.

The results must be interpreted carefully because of the differences observed according to the analysis performed and the differences among the published literature.

Although data collection was performed prospectively, the decision to perform each approach was not randomized and was left to the discretion of the surgeon. Also, this study includes a large number of centers, and case distribution is not homogeneous among them. In order to reduce this bias, we decided to include surgeon experience with VATS in the propensity analysis.

However, although the results of this study do not reach level 1 of evidence obtained from randomized trials, the propensity score used, treatment and ITT analyses, large patient cohort and characteristics of the database analyzed, all improve the quality of the evidence, making this study a good contribution to the literature.

In conclusion, in the GE-VATS cohort, VATS anatomic lung resections were associated with a lower incidence of postoperative complications, lower rate of readmissions and shorter hospital stay compared to thoracotomy. However, when a secondary analysis including converted procedures in the VATS group (intention-to treat) was performed, the differences between approaches lost statistical significance. In light of this, multicenter randomized trial results are still needed to confirm our findings.

Sources of funding

All costs related to the start-up and maintenance of the GE-VATS database were covered by Ethicon, Johnson & Johnson. The authors had research freedom and full control of the study design, the methods used, the outcomes and results, the data analysis, and the production of the written report. GE-VATS has received a research grant from the Spanish Society of Thoracic Surgery in 2015.

Conflict of interest

None declared.

Acknowledgements

To all members of the GE-VATS group: Borja Aguinagalde Valiente, Sergio Amor Alonso, Miguel Jesús Arrarás Martínez, Ana Isabel Blanco Orozco, Marc Boada Collado, Isabel Cal Vázquez, Sergi Call Caja, Ángel Cilleruelo Ramos, Miguel Congregado Loscertales, Silvana Crowley Carrasco, Raúl Embún Flor, Elena Fernández Martín, Juan José Fibla Alfara, Santiago García Barajas, María Dolores García Jiménez, Jose María García Prim, Jose Alberto García Salcedo, Carlos Fernando Giraldo Ospina, María Teresa Gómez Hernández, Juan José Guelbenzu Zazpe, Jorge Hernández Ferrández, Florentino Hernando Trancho, Jennifer D. Illana Wolf, Alberto Jauregui Abularach, Marcelo F. Jiménez López, Unai Jiménez, Cipriano López García, Iker López Sanz, Elisabeth Martínez Téllez, Lucía Milla Collado, Roberto Mongil Poce, Francisco Javier Moradiellos Díez, Ramón Moreno Balsalobre, Sergio B. Moreno Merino, Carme Obiols, Florencio Quero Valenzuela, María Elena Ramírez Gil, Ricard Ramos Izquierdo, José Luis Recuero Díaz, Eduardo Rivo Vazquez, Alberto Rodríguez Fuster, Rafael Rojo Marcos, Iñigo Royo Crespo, David Sánchez Lorente, Laura Sánchez Moreno, Julio Sesma Romero, Carlos Simón Adiego, Juan Carlos Trujillo-Reyes.

References
[1]
E. Taioli, D.S. Lee, M. Lesser, R. Flores.
Long-term survival in video-assisted thoracoscopic lobectomy vs open lobectomy in lung-cancer patients: a meta-analysis.
Eur J Cardiothorac Surg, 44 (2013), pp. 591-597
[2]
G. Ghaly, M. Kamel, A. Nasar, S. Paul, P.C. Lee, J.L. Port, et al.
Video-assisted thoracoscopic surgery is a safe and effective alternative to thoracotomy for anatomical segmentectomy in patients with clinical stage I non-small cell lung cancer.
Ann Thorac Surg, 101 (2016), pp. 465-472
[3]
P.E. Falcoz, M. Puyraveau, P.A. Thomas, H. Decaluwe, M. Hürtgen, R.H. Petersen, et al.
Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: a propensity-matched analysis of outcome from the European Society of Thoracic Surgeon database.
Eur J Cardiothorac Surg, 49 (2016), pp. 602-609
[4]
C. Cao, C. Manganas, S.C. Ang, S. Peeceeyen, T.D. Yan.
Video-assisted thoracic surgery versus open thoracotomy for non-small cell lung cancer: a meta-analysis of propensity score-matched patients.
Interact Cardiovasc Thorac Surg, 16 (2013), pp. 244-249
[5]
J. Xu, H. Ni, Y. Wu, J. Cao, X. Han, L. Liu, et al.
Perioperative comparison of video-assisted thoracic surgery and open lobectomy for pT1-stage non-small cell lung cancer patients in China: a multi-center propensity score-matched analysis.
Transl Lung Cancer Res, 10 (2021), pp. 402-414
[6]
S. Paul, A. Sedrakyan, Y.L. Chiu, A. Nasar, J.L. Port, P.C. Lee, et al.
Outcomes after lobectomy using thoracoscopy vs thoracotomy: a comparative effectiveness analysis utilizing the Nationwide Inpatient Sample database.
Eur J Cardiothorac Surg, 43 (2013), pp. 813-817
[7]
S. Paul, N.K. Altorki, S. Sheng, P.C. Lee, D.H. Harpole, M.W. Onaitis, et al.
Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: a propensity-matched analysis from the STS database.
J Thorac Cardiovasc Surg, 139 (2010), pp. 366-378
[8]
M. Bendixen, O.D. Jørgensen, C. Kronborg, C. Andersen, P.B. Licht.
Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial.
Lancet Oncol, 17 (2016), pp. 836-844
[9]
R. Embun, I. Royo-Crespo, J.L. Recuero Díaz, S. Bolufer, S. Call, M. Congregado, et al.
Spanish Video-Assisted Thoracic Surgery Group: method, auditing, and initial results from a national prospective cohort of patients receiving anatomical lung resections.
Arch Bronconeumol, 56 (2020), pp. 718-724
[10]
F.G. Fernandez, P.E. Falcoz, B.D. Kozower, M. Salati, C.D. Wright, A. Brunelli, et al.
The Society of Thoracic Surgeons and the European Society of Thoracic Surgeons general thoracic surgery databases: joint standardization of variable definitions and terminology.
Ann Thorac Surg, 99 (2015), pp. 368-376
[11]
D. Lardinois, P. De Leyn, P. Van Schil, R.R. Porta, D. Waller, B. Passlick, et al.
ESTS guidelines for intraoperative lymph node staging in non-small cell lung cancer.
Eur J Cardiothorac Surg, 30 (2006), pp. 787-792
[12]
S. Buuren, C. Groothuis-Oudshoorn.
MICE: multivariate imputation by chained equations in R.
J Stat Softw, 45 (2011),
[13]
P.C. Austin.
Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies.
Pharm Stat, 10 (2011), pp. 150-161
[14]
G. Roviaro, C. Rebuffat, F. Varoli, C. Vergani, C. Mariani, M. Maciocco.
Videoendoscopic pulmonary lobectomy for cancer.
Surg Laparosc Endosc, 2 (1992), pp. 244-247
[15]
J.L. Duque, R. Rami-Porta, A. Almaraz, M. Castanedo, J. Freixinet, A.F. De Rota, et al.
Parámetros de riesgo en la cirugía del carcinoma broncogénico.
Arch Bronconeumol, 43 (2007), pp. 143-149
[16]
J.J. Fibla, L. Molins, F. Quero, J.M. Izquierdo, D. Sánchez, J. Hernández.
Perioperative outcome of lung cancer surgery in women: results from a Spanish nationwide prospective cohort study.
J Thorac Dis, 11 (2019),
[17]
R. Embun, N. Martıínez Hernández, S. Call, B. de Olaiz Navarro, J. Zabaleta, R. Ramos, et al.
Cirugía torácica video-asistida y resecciones pulmonares anatómicas. ¿Dónde estamos? Encuesta nacional de la Sociedad Española de Cirugía Torácica.
[18]
B. Aguinagalde, A. Insausti, I. Lopez, L. Sanchez, S. Bolufer, R. Embun, et al.
VATS lobectomy morbidity and mortality is lower in patients with the same ppoDLCO: analysis of the database of the Spanish Video-Assisted Thoracic Surgery Group.
Arch Bronconeumol, (2021),
[19]
D. Gómez de Antonio, S. Crowley Carrasco, A. Romero Román, A. Royuela, Sánchez Calle Á, C. Obiols Fornell, et al.
Surgical risk following anatomic lung resection in thoracic surgery: a prediction model derived from a Spanish multicenter database.
Arch Bronconeumol., 58 (2022), pp. 398-405
[20]
A. Cabañero Sánchez, G.M. Muñoz Molina, S. Fra Fernández, A. Muriel García, A. Cilleruelo Ramos, N. Martínez Hernández, et al.
Impact of neoadjuvant therapy on postoperative complications in non-small-cell lung cancer patients subjected to anatomic lung resection.
Eur J Surg Oncol., 48 (2022), pp. 1947-1953
[21]
D. Gómez de Antonio, S. Crowley Carrasco, A. Romero Román, A. Royuela, M. Gil Barturen, C. Obiols, et al.
External validation of the European Society of Thoracic Surgeons morbidity and mortality risk models.
Eur J Cardiothorac Surg, (2022), pp. ezac170
[22]
A. Pons, Guirao Á, J.J. Fibla, C. Carvajal, R. Embun, D. Sánchez, et al.
National evaluation of risk factors for unplanned readmission after lung resection.
Eur J Cardiothorac Surg, (2022), pp. ezac081
[23]
C. Obiols, S. Call, R. Rami-Porta, Á. Jaén, D. Gómez de Antonio, S. Crowley Carrasco, et al.
Radicality of lymphadenectomy in lung cancer resections by thoracotomy and video-assisted thoracoscopic approach: a prospective, multicentre and propensity-score adjusted study.
Lung Cancer, 165 (2022), pp. 63-70
[24]
M. Al-Ameri, P. Bergman, A. Franco-Cereceda, U. Sartipy.
Video-assisted thoracoscopic versus open thoracotomy lobectomy: a Swedish nationwide cohort study.
J Thorac Dis, 10 (2018), pp. 3499-3506
[25]
P.B. Pagès, J.P. Delpy, B. Orsini, D. Gossot, J.M. Baste, P. Thomas, et al.
Propensity score analysis comparing videothoracoscopic lobectomy with thoracotomy: a French nationwide study.
Ann Thorac Surg, 101 (2016), pp. 1370-1378
[26]
A. Brunelli.
Video-assisted thoracoscopic lobectomy: intention-to-treat analysis to convey realistic outcomes.
Eur J Cardiothorac Surg, 49 (2016), pp. 876
[27]
L.Ø Laursen, R.H. Petersen, H.J. Hansen, T.K. Jensen, J. Ravn, L. Konge.
Video-assisted thoracoscopic surgery lobectomy for lung cancer is associated with a lower 30-day morbidity compared with lobectomy by thoracotomy.
Eur J Cardiothorac Surg, 49 (2016), pp. 870-875
[28]
R. Embun, I. Royo-Crespo, J.L. Recuero Díaz, S. Bolufer, S. Call, M. Congregado, et al.
Treatment and intention-to-treat propensity score analysis to evaluate the impact of video-assisted thoracic surgery on 90-day mortality after anatomical resection for lung cancer.
Eur J Cardiothorac Surg, (2022), pp. ezac122
Copyright © 2023. AEC
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos