metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Aterosclerosis e inflamación: papel central del factor de transcripción NF-κB
Información de la revista
Vol. 14. Núm. 2.
Páginas 77-84 (enero 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 14. Núm. 2.
Páginas 77-84 (enero 2002)
Acceso a texto completo
Aterosclerosis e inflamación: papel central del factor de transcripción NF-κB
Visitas
8966
C. Guijarro
Autor para correspondencia
cguijarro@fhalcorcon.es

Correspondencia: Instituto de Investigación. Fundación Hospital Alcorcón.Avda. Budapest, 1. 28922 Alcorcón. Madrid
Unidad de Medicina Interna. Instituto de Investigación. Fundación Hospital Alcorcón
J. Egidoa
a Instituto de Investigación Médica.Laboratorio de Patología Renal y Vascular. Servicio de Nefrología. Universidad Autónoma de Madrid. Fundación Jiménez Díaz
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
Bibliografía
[1.]
P. Rayer.
Mémoire de l’ossification morbide, considérée comme une terminaison de phlegmasies.
Arch Gén Méd J, 1 (1823), pp. 313-315
[2.]
R. Virchow.
Cellular Pathology as based upon physiological and pathological histology. English translation of the 2nd German edition (1859.
[3.]
R. Ross.
Atherosclerosis – An inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[4.]
F.J. Nieto.
Infections and Atherosclerosis: new clues from an old hypothesis?.
Am J Epidemiol, 148 (1998), pp. 937-948
[5.]
C. Guijarro, J. Tuñón, C. Bustos, M.A. Hernández-Presa, M. Ortego, J. Egido.
La formación de la placa aterosclerosa: Un proceso inflamatorio y fibroproliferativo.
Clin Invest Arteriosclerosis, 9 (1997), pp. 3-14
[6.]
A.G. Papavassiliou.
Molecular medicine. Transcription factors.
N Engl J Med, 332 (1995), pp. 45-47
[7.]
R. Sen, D. Baltimore.
Inducibility of the immunoglobulin enhancer- binding protein NF-κB by a postranslational mechanism.
Cell, 47 (1986), pp. 921-928
[8.]
P.A. Baeuerle, T. Henkel.
Function and activation of NF-κB in the immune system.
Annu Rev Immunol, 12 (1994), pp. 141-179
[9.]
A.S. Baldwin.
The NF-κB and IκB proteins: new discoveries and insights.
Annu Rev Immunol, 14 (1996), pp. 649-681
[10.]
S. Ghosh, M.J. May, E.B. Kopp.
NF-kappaB and Rel proteins: evolutionary conserved mediators of immune responses.
Annu Rev Immunol, 16 (1998), pp. 225-260
[11.]
M. Grilli, J.J.S. Chiu, M. Lenardo.
NF-kappa B and Rel: participants in a multiform transcriptional regulatory system.
Int Rev Cytol, 143 (1993), pp. 1-62
[12.]
P.J. Chiao, S. Miyamoto, I.M. Verma.
Autoregulation of Ik-Ba activity.
Proc Natl Acad Sci USA, 91 (1994), pp. 28-32
[13.]
P.J. Barnes, M. Karin.
Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases.
N Engl J Med, 336 (1997), pp. 1066-1071
[14.]
C. Guijarro, J. Egido.
Transcription factor-kappa B (NF-κB) and renal disease.
[15.]
J. Egido, M.A. Hernández-Presa, J. Tuñón, L.M. Blanco-Colio, M. Ortego, Y. Suzuki, et al.
Transcription factor-κB (NF-κB) and cardiovascular disease.
Cardiovascular Risk Factors, 9 (2000), pp. 146-155
[16.]
D.M. Rothwarf, M. Karin.
The NF-κB Activation pathway: a paradigm in information transfer from membrane to nucleus.
Science’s Signal Transduction Knowledge Environment, 5 (1999), pp. 1-16
[17.]
J.A. DiDonato, M. Hayakawa, D.M. Rothwarf, E. Zandi, M. Karin.
A cytokine-responsive IκB kinase that activates the transcription factor NF-κB.
Nature, 388 (1997), pp. 548-554
[18.]
K.A. Sheppard, D.E. Rose, Z.K. Haque, R. Kurokawa, E. McInerney, S. Westin, et al.
Transcriptional activation by NF-kappaB requires multiple coactivators.
Moll Cell Biol, 162 (1999), pp. 6367-6378
[19.]
M. Dlaska, G. Weiss.
Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression.
J Immunol, 162 (1999), pp. 6171-6177
[20.]
S.M. Dunn, L.S. Coles, R.K. Lang, S. Gerondakis, M.A. Vadas, M.F. Shannon.
Requirement for Nuclear Factor (NF)-kappa B p65 and NFinterleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter.
Blood, 83 (1994), pp. 2469-2479
[21.]
S. Akira, H. Isshiki, T. Sugita, O. Tanabe, S. Kinoshita, Y. Nishio, et al.
A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family.
EMBO J, 9 (1990), pp. 1897-1906
[22.]
S.A. Godambe, D.D. Chaplin, T. Takova, C.J. Bellone.
Upstream NFIL-6-like site located within a DNase I hypersensitivity region mediates LPS-induced transcription of the murine interleukin-1 beta gene.
J Immunol, 153 (1994), pp. 143-152
[23.]
K.P. LeClair, M.A. Blanar, P.A. Sharp.
The p50 subunit of NF-κB associates with the NF-IL6 transcription factor.
Proc Natl Acad Sci USA, 89 (1992), pp. 8145-8149
[24.]
T. Matsusaka, K. Fujikawa, Y. Nishio, N. Mukaida, K. Matsushima, T. Kishimoto, et al.
Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8.
Proc Natl Acad Sci USA, 90 (1993), pp. 10193-10197
[25.]
A. Ray, K.E. Prefontaine.
Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor.
Proc Natl Acad Sci USA, 91 (1994), pp. 752-756
[26.]
N. Auphan, J.A. DiDonato, C. Rosette, A. Helmberg, M. Karin.
Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis.
Science, 270 (1995), pp. 286-290
[27.]
R.I. Scheinman, P.C. Cogswell, A.K. Lofquist, A.S. Jr. Baldwin.
Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids.
Science, 270 (1995), pp. 283-286
[28.]
S.D. Cushing, J.A. Berliner, A.J. Valente, M.C. Territo, M. Navab, F. Parhami, et al.
Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.
Proc Natl Acad Sci USA, 87 (1990), pp. 5134-5138
[29.]
D. Li, T. Saldeen, F. Romeo, J.L. Mehta.
Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB.
Circulation, 102 (2000), pp. 1970-1976
[30.]
Z.A. Massy, Y. Kim, C. Guijarro, B.L. Kasiske, W.F. Keane, M.P. O’Donnell.
Low-density lipoprotein-induced expression of interleukin-6, a marker of human mesangial cell inflammation: effects of oxidation and modulation by lovastatin.
Biochem Biophys Res Commun, 267 (2000), pp. 536-540
[31.]
L.M. Blanco-Colio, M. Valderrama, L.A. Álvarez-Sala, C. Bustos, M. Ortego, M.A. Hernández-Presa, et al.
Red wine intake prevents nuclear factor-κB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia.
Circulation, 102 (2000), pp. 1020-1026
[32.]
X.P. Xu, S.R. Meisel, J.M. Ong, S. Kaul, B. Cercek, T.B. Rajavashisth, et al.
Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages.
Circulation, 99 (1999), pp. 993-998
[33.]
L. Cominacini, A.F. Pasini, U. Garbin, A. Davoli, M.L. Tosetti, M. Campagnola, et al.
Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species.
J Biol Chem, 275 (2000), pp. 12633-12638
[34.]
A. Andalibi, F. Liao, S. Imes, A.M. Fogelman, A.J. Lusis.
Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-κB.
Biochem Soc Trans, 21 (1993), pp. 651-655
[35.]
M. Ortego, C. Bustos, M.A. Hernández-Presa, J. Tuñón, C. Díaz, G. Hernández, et al.
Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells.
Atherosclerosis, 147 (1999), pp. 253-261
[36.]
M. Ruiz-Ortega, O. Lorenzo, M. Rupérez, S. Konig, B. Wittig, J. Egido.
Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms.
Circ Res, 86 (2000), pp. 1266-1272
[37.]
M.E. Pueyo, W. González, A. Nicoletti, F. Savoie, J.F. Arnal, J.B. Michel.
Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 645-651
[38.]
A. Bierhaus, T. Illmer, M. Kasper, T. Luther, P. Quehenberger, H. Tritschler, et al.
Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE.
Circulation, 96 (1997), pp. 2262-2271
[39.]
M. Morigi, S. Angioletti, B. Imberti, R. Donadelli, G. Micheletti, M. Figliuzzi, et al.
Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion.
J Clin Invest, 101 (1998), pp. 1905-1915
[40.]
K.K. Yerneni, W. Bai, B.V. Khan, R.M. Medford, R. Natarajan.
Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells.
Diabetes, 48 (1999), pp. 855-864
[41.]
L. Hajra, A.I. Evans, M. Chen, S.J. Hyduk, T. Collins, M.I. Cybulsky.
The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation.
Proc Natl Acad Sci USA, 97 (2000), pp. 9052-9057
[42.]
S. Mohan, N. Mohan, E. Sprague.
Differential activation of NF-kappaB in human aortic ednothelial cells conditioned to specific flow environments.
Am J Physiol, 273 (1997), pp. 572-578
[43.]
S.F. Penc, B. Pomahac, E. Eriksson, M. Detmar, R.L. Gallo.
Dermatan sulfate activates nuclear factor-kappab and induces endothelial and circulating intercellular adhesion molecule-1.
J Clin Invest, 103 (1999), pp. 1329-1335
[44.]
M. Gawaz, F.J. Neumann, T. Dickfeld, W. Koch, K.L. Laugwitz, H. Adelsberger, et al.
Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells.
Circulation, 98 (1998), pp. 1164-1171
[45.]
I. Maruyama, K. Shigeta, H. Miyahara, T. Nakajima, H. Shin, S. Ide, et al.
Thrombin activates NF-kappa B through thrombin receptor and results in proliferation of vascular smooth muscle cells: role of thrombin in atherosclerosis and restenosis.
Ann NY Acad Sci, 811 (1997), pp. 429-436
[46.]
T. Nakajima, I. Kitajima, H. Shin, I. Takasaki, K. Shigeta, K. Abeyama, et al.
Involvement of NF-kappa B activation in thrombin-induced human vascular smooth muscle cell proliferation.
Biochem Biophys Res Commun, 204 (1994), pp. 950-955
[47.]
H. Obata, S. Biro, N. Arima, H. Kaieda, T. Kihara, H. Eto, et al.
Nfkappa B is induced in the nuclei of cultured rat aortic smooth muscle cells by stimulation of various growth factors.
Biochem Biophys Res Commun, 224 (1996), pp. 27-32
[48.]
G. Welch, J. Loscalzo.
Homocysteine and atherothrombosis.
N Engl J Med, 338 (1998), pp. 1042-1050
[49.]
A.A. Beg, D. Baltimore.
An Essential Role for NF-κB in Preventing TNF-a-induced cell death.
Science, 274 (1996), pp. 782-784
[50.]
D.M. Stroka, A.Z. Badrichani, F.H. Bach, C. Ferran.
Overexpression of A1, an NF-kappaB-inducible anti-apoptotic bcl gene, inhibits endothelial cell activation.
Blood, 93 (1999), pp. 3803-3810
[51.]
C.Y. Wang, M.W. Mayo, R.G. Korneluk, D.V. Goeddel, A.S. Jr. Baldwin.
NF-kappa B antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.
Science, 281 (1998), pp. 1680-1683
[52.]
M.X. Wu, Z. Ao, K.V. Prasad, R. Wu, S.F. Schlossman.
IEX-1L an apoptosis inhibitor involved in NF-kappaB-mediated cell survival.
Science, 281 (1998), pp. 998-1001
[53.]
J. Hiscott, H. Known, P. Génin.
Hostile takeovers: viral appropriation of the NF-κB pathway.
J Clin Invest, 107 (2001), pp. 143-151
[54.]
D. Knight, W. Waldman, D. Sedmak.
Cytomegalovirus-mediated modulation of adhesion molecule expression by human arterial amd microvascular cells.
Transplantation, 68 (1999), pp. 1814-1818
[55.]
A. Kol, G. Sukhova, A. Litchman, P. Libby.
Chlamydial heat-shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression.
Circulation, 98 (1998), pp. 300-307
[56.]
R. Dechend, M. Maass, J. Gieffers, R. Dietz, C. Scheidereit, A. Leutz, et al.
Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappaB and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis.
Circulation, 100 (1999), pp. 1369-1373
[57.]
K. Brand, S. Page, G. Rogler, A. Bartsch, R. Brandl, R. Knuechel, et al.
Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion.
J Clin Invest, 97 (1996), pp. 1715-1722
[58.]
T. Bourcier, G. Sukhova, P. Libby.
The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis.
J Biol Chem, 272 (1997), pp. 15817-15824
[59.]
D.B. Landry, L.L. Couper, S.R. Bryant, V. Lindner.
Activation of the NFkappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1.
Am J Pathol, 151 (1997), pp. 1085-1095
[60.]
V. Lindner, T. Collins.
Expression of NF-kappa B and I kappa B alpha by aortic endothelium in an arterial injury model.
Am J Pathol, 148 (1996), pp. 427-438
[61.]
M.A. Hernández-Presa, C. Bustos, M. Ortego, J. Tuñón, G. Renedo, M. Ruiz-Ortega, et al.
Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis.
Circulation, 95 (1997), pp. 1532-1541
[62.]
M.A. Hernández-Presa, C. Bustos, M. Ortego, J. Tuñón, L. Ortega, J. Egido.
ACE inhibitor quinapril reduces the arterial expression of NF-kappa B-dependent proinflammatory factors but not of collagen I in a rabbit model of atherosclerosis.
Am J Pathol, 153 (1998), pp. 1825-1837
[63.]
M.A. Hernández-Presa, C. Gómez-Guerrero, J. Egido.
In situ non-radioactive detection of nuclear factors in paraffin sections by Southwestern histochemistry.
Kidney Int, 55 (1999), pp. 209-214
[64.]
F. Liao, A. Andalibi, F.C. DeBeer, A.M. Fogelman, A.J. Lusis.
Genetic control of inflammatory gene induction and NF-kappa B- like transcription factor activation in response to an atherogenic diet in mice.
J Clin Invest, 91 (1993), pp. 2572-2579
[65.]
S. Wilson, N. Caplice, R. Simari, D. Holmes Jr., P. Carlson, A. Lerman.
Activated nuclear factor-κB is present in the coronary vasculature in experimental hypercholesterolemia.
Atherosclerosis, 148 (2000), pp. 23-30
[66.]
M.E. Ritchie.
Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris.
Circulation, 98 (1998), pp. 1707-1713
[67.]
M.V. Autieri, T.L. Yue, G.Z. Ferstein, E. Ohlstein.
Antisense oligonucleotides to the p65 subunit of NF-κB inhibit human vascular smooth muscle cell adherence and proliferation and prevent neointima formation in rat carotid arteries.
Biochem Biophys Res Commun, 213 (1995), pp. 827-836
[68.]
E.M. Boyle Jr., J.C. Kovacich, T.G. Canty Jr., E.N. Morgan, E. Chi, E.D. Verrier, et al.
Inhibition of nuclear factor-kappa B nuclear localization reduces human E-selectin expression and the systemic inflammatory response.
Circulation, 98 (1998), pp. 282-288
[69.]
J.C. Kovacich, E.M. Boyle Jr., E.N. Morgan, T.G. Canty Jr., A.L. Farr, M.T. Caps, et al.
Inhibition of the transcriptional activator protein nuclear factor kappaB prevents hemodynamic instability associated with the whole-body inflammatory response syndrome.
J Thorac Cardiovasc Surg, 118 (1999), pp. 154-162
[70.]
S.F. Liu, X. Ye, A.B. Malik.
Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes.
Circulation, 100 (1999), pp. 1330-1337
[71.]
G.K. Rangan, Y. Wang, Y.C. Tay, D.C. Harris.
Inhibition of nuclear factor-kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats.
Kidney Int, 56 (1999), pp. 118-134
[72.]
H. Sakurai, Y. Hisada, M. Ueno, M. Sugiura, K. Kawashima, T. Sugita.
Activation of transcription factor NF-kappa B in experimental glomerulonephritis in rats.
Biochim Biophys Acta, 1316 (1996), pp. 132-138
[73.]
L.M. Khachigian, T. Collins, J.W. Fries.
N-acetyl cysteine blocks mesangial VCAM-1 and NF-kappa B expression in vivo.
Am J Pathol, 151 (1997), pp. 1225-1229
[74.]
J. Marx.
How the glucocorticoids suppress immunity.
Science, 270 (1995), pp. 232-233
[75.]
S.K. Manna, B.B. Aggarwal.
Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression.
J Immunol, 162 (1999), pp. 2095-2102
[76.]
M. Kaibori, K. Sakitani, M. Oda, Y. Kamiyama, Y. Masu, M. Nishizawa, et al.
Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-kappaB activation in rat hepatocytes.
J Hepatol, 30 (1999), pp. 1138-1145
[77.]
E. Mervaala, D.N. Muller, J.K. Park, R. Dechend, F. Schmidt, A. Fiebeler, et al.
Cyclosporin A protects against angiotensin II-induced end-organ damage in double transgenic rats harboring human rennin and angiotensinogen genes.
Hypertension, 35 (2000), pp. 360-366
[78.]
E. Kopp, S. Ghosh.
Inhibition of NF-kappa B by sodium salicylate and aspirin.
Science, 265 (1994), pp. 956-959
[79.]
P.M. Ridker, M. Cushman, M.J. Stampfer, R.P. Tracy, C.H. Hennekens.
Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.
N Engl J Med, 336 (1997), pp. 973-979
[80.]
P.J. Elliott, C.S. Pien, T.A. McCormack, I.D. Chapman, J. Adams.
Proteasome inhibition: a novel mechanism to combat asthma.
J Allergy Clin Immunol, 104 (1999), pp. 294-300
[81.]
M.R. Soma, E. Donetti, C. Parolini, G. Mazzini, C. Ferrari, R. Fumagalli, et al.
HMG CoA reductase inhibitors –In vivo effects on carotid intimal thickening in normocholesterolemic rabbits.
Arterioscler Thromb, 13 (1993), pp. 571-578
[82.]
S.Y. Kim, C. Guijarro, M.P. O’Donnell, B.L. Kasiske, Y. Kim, W.F. Keane.
Human mesangial cell production of monocyte chemoattractant protein-1: modulation by lovastatin.
Kidney Int, 48 (1995), pp. 363-371
[83.]
J. Martínez-González, L. Badimon.
Human and porcine smooth muscle cells share similar proliferation dependence on the mevalonate pathway: implication for in vivo interventions in the porcine model.
Eur J Clin Invest, 26 (1996), pp. 1023-1032
[84.]
A. Corsini, M. Mazzotti, M. Raiteri, M.R. Soma, G. Gabbiani, R. Fumagalli, et al.
Relationship between mevalonate pathway and arterial myocyte proliferation –In vitro studies with inhibitors of HMG-CoA reductase.
Atherosclerosis, 101 (1993), pp. 117-125
[85.]
Z.A. Massy, C. Guijarro, H. Oda, B.L. Kasiske, W.F. Keane, M.P. O’Donnell.
Importance of geranylgeranyl pyrophosphate for mesangial cell DNA synthesis.
Kidney Int, 71 (1999), pp. 80-83
[86.]
C. Guijarro, L.M. Blanco-Colio, M. Ortego, C. Alonso, A. Ortiz, J.J. Plaza, et al.
3-hydroxy-3-methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture.
Circ Res, 83 (1998), pp. 490-500
[87.]
C. Guijarro, L.M. Blanco-Colio, Z.A. Massy, M.P. O’Donnell, B.L. Kasiske, W.F. Keane, et al.
Lipophilic statins induce apoptosis of human vascular smooth muscle cells.
Kidney Int, 56 (1999), pp. 88-91
[88.]
C. Guijarro, Y. Kim, C.M. Schoonover, Z.A. Massy, M.P. O’Donnell, B.L. Kasiske, et al.
Lovastatin inhibits lypopolysaccharide-induced NF-κB activation in human mesangial cells.
Nephrol Dial Transplant, 11 (1996), pp. 990-996
[89.]
H. Kothe, K. Dalhoff, J. Rupp, A. Muller, J. Kreuzer, M. Maass, et al.
Hydroxymethylglutaryl coenzyme A reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae.
Circulation, 101 (2000), pp. 1760-1763
[90.]
C. Guijarro, J. Egido.
Modulation of the mevalonate pathway: potential mechanisms of vascular protection independent of cholesterol reduction.
Cardiovascular Risk Factors, 7 (1997), pp. 29-33
[91.]
P.M. Ridker, N. Rifai, M.A. Pfeffer, F.M. Sacks, L.A. Moye, S. Goldman, et al.
Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels.
Cholesterol and Recurrent Events (CARE) Investigators. Circulation, 98 (1998), pp. 839-844
[92.]
N. Marx, G.K. Sukhova, T. Collins, P. Libby, J. Plutzky.
PPAR a activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells.
Circulation, 99 (1999), pp. 3125-3131
[93.]
B. Staels, W. Koenig, A. Habib, R. Merval, M. Lebret, I.P. Torra, et al.
Activation of human aortic smooth-muscle cells is inhibited by PPAR α but not by PPAR γ activators.
Nature, 393 (1998), pp. 790-793
Copyright © 2002. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.arteri.2021.09.006
No mostrar más