metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Comparación de dos ensayos funcionales del receptor de lipoproteínas de baja d...
Información de la revista
Vol. 14. Núm. 3.
Páginas 123-134 (enero 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 14. Núm. 3.
Páginas 123-134 (enero 2002)
Acceso a texto completo
Comparación de dos ensayos funcionales del receptor de lipoproteínas de baja densidad para el diagnóstico de la hipercolesterolemia familiar
Comparison of two funcional ldl-receptor assays for the diagnosis of familiar hypercholesterolemia
Visitas
2953
Y. Suáreza, M.A. Lasuncióna,b,
Autor para correspondencia
miguel.a.lasuncion@hrc.es

Correspondencia: Servicio de Bioquímica-Investigación.Hospital Ramón y Cajal.Ctra. Colmenar, km 9. 28034 Madrid
a Servicio de Bioquímica-Investigación. Hospital Ramón y Cajal
b Universidad de Alcalá de Henares. Madrid
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Fundamento

La causa más común de hipercolesterolemia familiar es la deficiencia del receptor de lipoproteínas de baja densidad (rLDL). La determinación de su actividad en el laboratorio es dificultosa, por lo que se rehúye y, en la mayoría de los casos, los criterios clínicos son suficientes para el diagnóstico y tratamiento de la enfermedad. Por otra parte, la búsqueda de mutaciones en el gen del receptor, aunque permite establecer con alta probabilidad de acierto la causa de la enfermedad, puede ser en vano cuando la causa de la hipercolesterolemia no reside en el receptor, por lo que sigue siendo necesaria la caracterización bioquímica del rLDL

Métodos

Con esta finalidad se aislaron células mononucleares de sangre periférica de individuos con hipercolesterolemia, se incubaron en un medio libre de colesterol para estimular máximamente la expresión del rLDL y se determinó la captación de LDL marcadas con el fluorocromo 1,1’-dioctadecil-3,3,3’,3’-tetrametilindocarbocianina (DiI-LDL) mediante citometría de flujo, expresándose los resultados de Bmáx de “captación de DiI-LDL” en porcentaje respecto al control. Al mismo tiempo, se estudió la capacidad de las LDL para revertir la inhibición de la proliferación producida por la lovastatina in vitro, calculándose la “tasa derecuperación por LDL”

Resultados

Cualquiera de los métodos permitió distinguir claramente los pacientes con HF homozigota de los heterozigotos. Estos últimos presentaban disminuidas la “captación de DiI-LDL” (60,3 ± 1,5%) y la “tasa de recuperación por LDL” (56,4 ± 4,5%) con respecto a los controles. En conjunto, ambos parámetros están correlacionados pero existen casos que se alejan de este comportamiento, como los heterozigotos con defecto en la internalización y las alteraciones que no afectan al rLDL

Conclusión

Por tanto, ambos métodos son complementarios y permiten un diagnóstico fiable de la hipercolesterolemia

Palabras clave:
Receptor de LDL
Hipercolesterolemia familiar
Citometría de flujo
DiI
Proliferación celular
Background

LDL receptor (LDLr) deficiency is the most common cause of familial hypercholesterolemia (FH). The analysis of LDLr activity is time consuming and has many difficulties which, together with that hereditary trait and clinical criteria are often enough for its diagnosis and treatment, are the reasons for not being generally carried out in the laboratory. Identification of mutations in the LDLr gene is valuable and allows to establish the cause of the disease, but it may be in vain if the cause of the hypercholesterolemia does not reside in the LDLr. For this reason, the analysis of LDLr activity is still required for the biochemical characterisation of the disease. With this aim, in the present study we comparatively employed two functional assays for the analysis of the LDLr activity

Methods

Mononuclear cells from patients with hypercolesterolemia were isolated from whole blood and incubated in a cholesterol free medium to maximally stimulate the expression of the LDLr and the uptake of DiI-labelled LDL was analysed by flow cytometry. The results were expressed as “uptake of DiI-LDL” and are given as percent of Bmax of the control. In parallel we also analysed the ability of LDL to prevent the lovastatin-induced inhibition of cell proliferation, and the results were expressed as the “rate of recovery by LDL”

Results

Whichever of the methods employed allowed the clear distinction of patients homozygous from those heterozygous for familial hypercholesterolemia (FH). The latter ones showed an uptake of DiI-LDL (60.3 ± 1.5%) and a rate of recovery (56.4 ± 4.5%) approximately half of those in the controls. In the whole group of individualsstudied, these parameters were well correlated one to each other but there were some exceptions, as an heterozygote with an internalization defect in the LDLr and a case in whom the alteration did not affect the LDLr protein but the intracellular processing of LDL lipids

Conclusions

Thus, both methods are complementary and allow a trustworthy diagnosis of hypercholesterolemia

Key words:
LDL receptor
Familial hypercholesterolemia
Flow cytometry
DiI
Cell proliferation
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.L. Goldstein, M.S. Brown.
Binding and degradation of low-density lipoproteins by cultured human fibroblasts. Comparison of cells from normal and from a patient with homozygous hypercholesterolemia.
J Biol Chem, 249 (1974), pp. 5153-5162
[2.]
M.S. Brown, J.L. Goldstein.
A receptor-mediated pathway for cholesterol homeostasis.
Science, 232 (1986), pp. 34-47
[3.]
D.L. Sprecher, J.M. Hoeg, E.J. Schaefer.
The association of LDL receptor activity, LDL cholesterol level, and clinical course in homozygous familial hypercholesrolemia.
Metabolism, 34 (1985), pp. 294-299
[4.]
J.L. Goldstein, H.H. Hobbs, M.S. Brown.
Familial hypercholestrolemia.
The metabolic basis of inherited disease, pp. 1981-2030
[5.]
J.L. Teruel, M.A. Lasunción, M.A. Castañón, E. Herrera, J. Ortuño.
Aféresis de lipoproteínas con columnas de sulfato de dextrano.
Clin Invest Arterios, 3 (1991), pp. 5-10
[6.]
M.A. Lasunción, J.L. Teruel, J.J. Álvarez, P. Carrero, J. Ortuno, D. Gómez Coronado.
Changes in lipoprotein(a), LDL-cholesterol and apolipoprotein B in homozygous familial hypercholesterolaemic patients treated with dextran sulfate LDL-apheresis.
Eur J Clin Invest, 23 (1993), pp. 819-826
[7.]
M. Varret, J.P. Rabes, G.M. Thiart, M.J. Kotze, H. Baron, A. Cenarro, et al.
LDLR Database. 2nd ed. New additions to the database and software, and the results of the first molecular analysis.
Nucleic Acids Res, 26 (1998), pp. 248-252
[8.]
H.H. Hobbs, M.S. Brown, J.L. Goldstein.
Molecular genetics of the LDL receptor gene in familial hypercholesterolemia.
Hum Mutat, 1 (1992), pp. 445-466
[9.]
H.H. Hobbs, D.W. Russell, M.S. Brown, J.L. Goldstein.
The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein.
Annu Rev Genet, 24 (1990), pp. 133-170
[10.]
J.A. Cuthbert, P.E. Lipsky.
Provision of cholesterol to lymphocytes by high density and low density lipoproteins. Requirement for low density lipoprotein receptors.
J Biol Chem, 262 (1987), pp. 7808-7818
[11.]
H.W. Chen, A.A. Kandutsch, C. Waymouth.
Inhibition of cell growth by oxygenated derivatives of cholesterol.
Nature, 251 (1974), pp. 419-421
[12.]
M.S. Brown, J.L. Goldstein.
Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol.
J Biol Chem, 249 (1974), pp. 7306-7314
[13.]
Y. Suárez, C. Fernández, B. Ledo, A.J. Ferruelo, M. Martín, M.A. Vega, et al.
Differential effects of ergosterol and cholesterol on Cdk1 activation and SRE-driven transcription: sterol specifity for cell cycle progression in human cells.
Eur J Biochem, 269 (2002), pp. 1761-1771
[14.]
J. Martínez-Botas, Y. Suárez, A.J. Ferruelo, D. Gómez-Coronado, M.A. Lasunción.
Cholesterol starvation decreases p34cdc2 kinase activity and arrests the cell cycle at G2.
Faseb J, 13 (1999), pp. 1359-1370
[15.]
P. Carrero, D. Gómez-Coronado, J. Martínez-Botas, M.A. Lasunción.
Efecto de las lipoproteínas en la duplicación celular de linfocitos. Papel del receptor LDL.
Clin Invest Arterios, 6 (1994), pp. 113-123
[16.]
J.A. Cuthbert, C.A. East, D.W. Bilheimer, P.E. Lipsky.
Detection of familial hypercholesterolemia by assesing functional low-density-lipoprotein receptors on lymphocytes.
N Engl J Med, 314 (1986), pp. 879-883
[17.]
J. Martínez-Botas, Y. Suárez, A. Reshef, P. Carrero, H. Ortega, D. Gómez-Coronado, et al.
Impact of different low-density lipoprotein (LDL) receptor mutations on the ability of LDL to support lymphocyte proliferation.
Metabolism, 48 (1999), pp. 834-839
[18.]
P.V. Koivisto, U.M. Koivisto, P.T. Kovanen, H. Gylling, T.A. Miettinen, K. Kontula.
Deletion of exon 15 of the LDL receptor gene is associated with a mild form of familial hypercholesterolemia. FH-Espoo.
Arterioscler Thromb, 13 (1993), pp. 1680-1688
[19.]
B.W. Howell, J. Herz.
The LDL receptor gene family: signalling functions during development.
Curr Opin Neurobiol, 11 (2001), pp. 74-81
[20.]
B. Metzler, C. Li, Y. Hu, G. Sturn, N. Ghaffari-Tabrizi, Q. Xu.
LDL stimulates mitogen-activated protein kinase phosphatase-1 expression, independent of LDL receptors, in vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 1862-1871
[21.]
R.R. Williams, S.C. Hunt, R.H. Schumaker Hegele, M.F. Leppert, E.H. Ludwig.
Diagnosis of heterozygous hypercholesterolemia using new practical criteria validated by molecular genetics.
Am J Cardiol, 72 (1993), pp. 171-176
[22.]
D.W. Bilheimer, Y.K. Ho, M.S. Brown, R.G.W. Anderson, J.L. Goldstein.
Genetics of low density lipoprotein receptor diminished activity in limphocytes from heterozygous with familial hypercholesterolemia.
J Clin Invest, 61 (1978), pp. 678-696
[23.]
P.V. Koivisto, U.M. Koivisto, T.A. Miettinen, K. Kontula.
Diagnosis of heterozygous familial hypercholesterolemia. DNA analysis complements clinical examination andd analysis of serum lipids levels.
Arterioscler Thromb, 12 (1992), pp. 584-595
[24.]
K. May, F.B. Kramer, J. Chen, A.D. Cooper.
ELISA measurement of LDL receptors.
J Lipid Res, 31 (1990), pp. 1638-1689
[25.]
Z.F. Stephan, E.C. Yurachek.
Rapid fluorometric assay of LDL receptor activity by DiI-labeled LDL.
J Lipid Res, 34 (1993), pp. 325-330
[26.]
S. Benhamamouch, J.P. Kuznierz, G. Agnani, D. Marzin, J.M. Lecerf, V. Clavey.
Determination of LDL receptor binding capacity of human lymphocytes by immunocytofluorimetric assay.
Biophys Acta, 1002 (1988), pp. 45-53
[27.]
G. Schmitz, T. Bruning, E. Kovacs, S. Barlage.
Fluorescence flow cytometry of human leukocytes in the detection of LDL receptor defects in the differential diagnosis of hypercholesterolemia.
Arterioscler Thromb, 13 (1993), pp. 1053-1065
[28.]
Y.K. Ho, M.S. Brown, H.J. Kaiden, J.C. Goldstein.
Binding, internalization and hydrolysis of low density lipoprotein in long-term lymphoid cell lines from a normal subject and a patient with homozygous familial hypercholesterolemia.
J Exp Med, 144 (1976), pp. 444-455
[29.]
S. Ranganathan, H. Hattori, M.L. Kashyap.
A rapid flow cytometric assay for low-density lipoprotein receptors in human peripheral blood mononuclear cells.
J Lab Clin Med, 125 (1995), pp. 479-486
[30.]
G.D. Reynolds, R.W. St Clair.
A comparative microscopic and biochemical study of the uptake of fluorescent and 125I-labeled lipoproteins by skin fibroblasts, smooth muscle cells, and peritoneal macrophages in culture.
Am J Pathol, 121 (1985), pp. 200-211
[31.]
Y. Suárez, J. Martínez-Botas, H. Ortega, A.J. Ferruelo, D. Gómez-Coronado, J.L. Teruel, et al.
Determinación de la actividad del receptor de LDL en linfocitos mediante citometría de flujo para el diagnóstico de la hipercolesterolemia familiar.
Clin Invest Arterios, 9 (1997), pp. 47-54
[32.]
C.F. Yen, C.I. Kalunta, F.S. Chen, J.S. Kaptein, C.K. Lin, P.M. Lad.
Flow cytometric evaluation of LDL receptors using DiI-LDL uptake and its application to B and T lymphocytic cell lines.
J Immunol Methods, 177 (1994), pp. 55-67
[33.]
K. Lohne, P. Urdal, T.P. Leren, S. Tonstad, L. Ose.
Standardization of a flow cytometric method for measurement of low-density lipoprotein receptor activity on blood mononuclear cells.
Cytometry, 20 (1995), pp. 290-295
[34.]
J.L. Teruel, M.A. Lasuncion, J.F. Navarro, P. Carrero, J. Ortuno.
Pregnancy in a patient with homozygous familial hypercholesterolemia undergoing low-density lipoprotein apheresis by dextran sulfate adsorption.
Metabolism, 44 (1995), pp. 929-933
[35.]
A. Boyum.
Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation and granulocytes by combining centrifugation and sedimentation at 1 g.
Scand JClin Lab Invest, 21 (1968), pp. 77-89
[36.]
C. Gutiérrez, R.R. Bernabé, J. Vega, M. Kreiler.
Purification of human T and B cells by discontinuous density gradient of percoll.
J Immunol Methods, 29 (1979), pp. 57
[37.]
B.H. Chung, J.P. Segrest, M.J. Ray, J.D. Brunzell, J.E. Hokanson, R.M. Krauss.
Plasma lipoproteins, part A, Preparation, Structure, and Molecular Biology.
Orlando, pp. 181-209
[38.]
D.P. Via, L.C. Smith.
Fluorescent labeling of lipoproteins.
Methods Enzymol, 129 (1986), pp. 848-857
[39.]
R.E. Pitas, T.L. Innenarity, J.N. Weinstein.
Acetoacetylated lipoproteins used to distinguish fibroblast from macrophages in vitro by fluorescence microscopy.
Arteriosclerosis, 1 (1981), pp. 177-185
[40.]
J. Chaves, J.T. Real, O. Puig, J.F. Ascaso, J.L. Teruel, M.A. Lasunción, et al.
Hipercolesterolemia familiar: identificatión y caracterización molecular del primer homozigoto compuesto español.
Med Clin (Barc, 110 (1998), pp. 300-302
[41.]
J. Nimpf, W.J. Schneider.
From cholesterol transport to signal transduction: low density lipoprotein receptor, very low density lipoprotein receptor, and apolipoprotein E receptor-2.
Biochim Biophys Acta, 1529 (2000), pp. 287-298
[42.]
G. Schmitz, G. Assmann.
Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease.
Metabolic basis of inherited disease, pp. 1623-1644
[43.]
P. Lohse, L. Lohse, S. Chahrokh-Zadeh, D. Seidel.
Human lysosomal acid lipase/cholesteryl ester hydrolase and human gastric lipase:site-directed mutagenesis of Cys227 and Cys236 results in substrate-dependent reduction of enzymatic activity.
J Lipid Res, 38 (1997), pp. 1896-1905

Este trabajo ha sido realizado con una ayuda del Fondo de Investigación Sanitaria (FIS99/0286).

Copyright © 2002. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos