metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Implicación del receptor PPARα en las alteraciones del metabolismo lipídico h...
Información de la revista
Vol. 15. Núm. 5.
Páginas 184-192 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 15. Núm. 5.
Páginas 184-192 (enero 2003)
Acceso a texto completo
Implicación del receptor PPARα en las alteraciones del metabolismo lipídico hepático en ratas viejas
Implication of the peroxisome proliferator activated receptor α (ppar-α in alterations of hepatic lipid metabolism in elderly rats
Visitas
2687
E. Sanguino, M. Ramón, J.C. Laguna1
Autor para correspondencia
laguna@farmacia.far.ub.es

Correspondencia: Dr. Juan C. Laguna. Unidad de Farmacología y Farmacognosia. Facultad de Farmacia. Universidad de Barcelona. Avda. Diagonal 643. 08028 Barcelona. España. Correo electrónico:
Unidad de Farmacología y Farmacognosia. Facultad de Farmacia. Universidad de Barcelona. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Introducción-objetivos

Los mecanismos causantes de las alteraciones que se producen con la edad en el metabolismo lipídico no se conocen en su totalidad. El objetivo de este trabajo ha sido determinar posibles alteraciones asociadas al envejecimiento en la expresión y actividad hepatica de los factores PPARαy SREBP-1 en rata macho y estudiar su implicación en los desórdenes lipídicos que se producen con el envejecimiento.

Material y métodos

Se han utilizado ratas macho Sprague-Dawley de 3, 18 y 22 meses de edad. Se obtuvieron muestras plasmáticas para la determinación de valores lipídicos y hormonales, mediante distintos kits comerciales, y muestras de tejido hepático en las que se determinaron: valores relativos de ARNm para PPARα, SREBP-1 y genes diana, mediante la reacción de la transcriptase inversa acoplada a la reacción en cadena de la polimerasa, proteína PPARα y SREBP-1, mediante la técnica de Western-Blot y ensayos de retardación de la movilidad electroforética (EMSA), para estimar la actividad PPAR y SREBP-1.

Resultados

Las ratas macho de 18 y 22 meses presentaron en el ámbito hepático una marcada reducción en la expresión y en la actividad de unión PPARα, sin que se modificara la actividad NFNB. Este reducción iba acompañada de una disminución en la expresión del ARNm de la carnitina-palmitoiltransferasa-I hepática (CPT-I) (64,6 y 56,2%; p 0,01, para los grupos de 18 y 22 meses, respectivamente, frente a los valores del grupo de animales jóvenes), de la 3-hidroxi-3- metilglutaril-CoA-sintasa mitocondrial (18 y 70% para los grupos de 18 y 22 meses, respectivamente, frente a los valores del grupo de animales de 3 meses) y de una acumulación hepática de triglicéridos. Se incrementó de forma moderada la expresión hepática y la actividad de unión del factor de transcripción SREBP-1 (proteína de unión al elemento de respuesta a esteroles-1). Las ratas viejas eran hipercolesterolémicas e hipertrigliceridémicas, presentaban una menor concentración de ácidos grasos libres plasmáticos y valores elevados de insulina (3,4 y 1,9 veces para el grupo de 18 y 22 meses, respectivamente) y leptina (15,8 y 10,8 veces para los grupos de 18 y 22 meses, respectivamente). Los valores de ARNm de ucp2 en hígado, gen cuya expresión ésta regulada por leptina, se vieron reducidos con la edad.

Conclusiones

Los resultados de este trabajo parecen indicar que la reducción en el ámbito hepático en la expresión y en la actividad de union de PPARα desempeña un papel muy importante en las alteraciones del metabolismo lipídico que aparecen con el envejecimiento y que probablemente estén asociadas a un marcado estado de resistencia a la leptina.

Palabras clave:
Triglicéridos
Leptina
L-CPT-I
HMG-CoA-sintasa mitocondrial
Ácidos grasos libres
PPARα
Introduction

The mechanisms underlying alterations in lipid metabolism produced by aging are not completely understood. The aim of this study was to identify the possible changes produced by aging in liver expression and activity of nuclear factors PPAR-α and SREBP-1 in male rats, and their relationship with lipid disturbances produced by old age.

Material and methods

Male Sprague-Dawley rats 3, 18 and 22 month old were used. Plasma samples were obtained and concentrations of lipids and hormones were determined using commercial kits. Hepatic tissue samples were used for determination of mRNA relative levels for PPAR-α, SREBP-1 and target genes by RT-PCR, PPAR-α and SREBP-1 protein by Western-Blot, and PPAR and SREBP-1 binding activities by electrophoretic mobility shift assay (EMSA).

Results

The livers of 18- and 22-month old male Sprague-Dawley rats showed a marked decrease in PPAR-α expression and binding activity, with no changes in NFcB activity. Reductions were also found in mRNA expression of carnitine-palmitoyl transferase-I (L-CPT-I) (64.6 and 56.2%; p 0.01, for the 18 and 22-month old groups, respectively, compared with values in the group of young rats), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMG-CoA synthase) (18 and 70% for 18- and 22-month-old rats, respectively, compared with values in the group of 3 monthold rats) and hepatic triglyceride accumulation. Liver expression and binding activity of the lipogenic transcription factor sterol response element binding protein-1 (SREBP-1) showed a modest increase. Elderly rats were hypercholesterolemic and hypertriglyceridemic and had reduced concentrations of plasma fatty acids and high levels of plasma insulin (3.4 and 1.9-fold in the 18 and 22-month old groups, respectively) and leptin (15.8 and 10.8-fold in the 18 and 22-month old groups, respectively). The mRNA levels of the ucp2 gene, which is under transcriptional control by leptin, were also reduced in liver tissue.

Conclusions

The results of this study suggest that decreased expression and binding activity of hepatic PPAR-α play a prominent role in the production of lipid metabolism disturbances in old age. These changes are probably related to a marked state of leptin resistance.

Key words:
Triglycerides
Leptin
L-CPT-1
Mitochondrial HMG-CoA synthase
Free fatty acids
PPAR-α
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.A. Knight.
The biochemistry of aging.
Adv Clin Chem, 35 (2001), pp. 1-62
[2.]
N.F.L. Spencer, M.E. Poynter, I. Suhn-Young, R.A. Daynes.
Constitutive activation of NF-aB in an animal model of aging.
Int Immunol, 9 (1997), pp. 1581-1588
[3.]
M.E. Poynter, R.A. Daynes.
Peroxisome proliferator-activated receptor activation modulates cellular redox status, represses Nuclear Factor-FB signaling, and reduces inflammatory cytokine production in aging.
J Biol Chem, 273 (1998), pp. 32833-32841
[4.]
B.P. Neve, J.C. Fruchart, B. Staels.
Role of the peroxisome proliferator- activated receptors (PPAR) in atherosclerosis.
Biochem Pharmacol, 60 (2000), pp. 1245-1250
[5.]
O. Braissant, F. Foufelle, C. Scotto, M. Dauça, W. Wahli.
Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPARα-β y -λ in the adult rat.
Endocrinology, 137 (1996), pp. 354-366
[6.]
P. Escher, W. Wahli.
Peroxisome proliferator-activated receptors: insight into multiple cellular functions.
Mut Res, 448 (2000), pp. 121-138
[7.]
P. Parini, B. Angelin, M. Rudling.
Cholesterol and lipoprotein metabolism in aging: reversal of hypercholesterolemia by growth hormone treatment in old rats.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 832-839
[8.]
M.J. Toth, A. Tchernof.
Lipid metabolism in the elderly.
Eur J Clin Nutr, 54 (2000), pp. S121-S125
[9.]
J.C. Verd, C. Peris, M. Alegret, C. Díaz, G. Hernández, M. Vázquez, et al.
Different effect of simvastatin and atorvastatin on key enzymes involved in VLDL synthesis and catabolism in high fat/cholesterol fed rabbits.
Br J Pharmacol, 127 (1999), pp. 1479-1485
[10.]
W.M. Freeman, S.J. Walker, E.V. Vrana.
Quantitative RT-PCR: pitfalls and potential.
Bio Techniques, 26 (1999), pp. 112-125
[11.]
J.D. Dignam, R.M. Lebovitz, R.G. Roeder.
Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.
Nucleic Acid Res, 11 (1983), pp. 1475-1489
[12.]
J.L. Sonnenberg, P.F. Macgregor-Leon, T. Curran, J.I. Morgan.
Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure.
Neuron, 3 (1989), pp. 359-365
[13.]
M.M. Bradford.
A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principles of proteindye binding.
Anal Biochem, 72 (1976), pp. 248-254
[14.]
T. Lemberger, R. Saladin, M. Vázquez, F. Assimacopoulos, B. Staels, B. Desvergne, et al.
Expression of the peroxisome proliferator-activated receptor a gene is stimulated by stress and follows a diurnal rhythm.
J Biol Chem, 271 (1996), pp. 1764-1769
[15.]
J.B. Kim, G.D. Spotts, Y. Halvorsen, H. Shih, T. Ellenberger, H.C. Towle, et al.
Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain.
Mol Cell Biol, 15 (1995), pp. 2582-2588
[16.]
L.J. Kelly, P.P. Vicario, G.M. Thompson, M.R. Candelore, T.W. Doebber, J. Ventre, et al.
Peroxisome proliferator-activated receptors λ y α mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression.
Endocrinology, 139 (1998), pp. 4920-4927
[17.]
T.E. Akiyama, C.J. Nicol, C. Fieve, B. Staels, J.M. Ward, J. Auwerx, et al.
Peroxisome proliferator-activated receptor-α Pregulates lipid homeostasis, but is not associated with obesity. Studies with congenic mouse lines.
J Biol Chem, 276 (2001), pp. 39088-39093
[18.]
A. Galli, J. Pinaire, M. Fischer, R. Dorris, D.W. Crabb.
The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor α is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver.
J Biol Chem, 276 (2001), pp. 68-75
[19.]
J.F. Louet, C. Le May, J.P. Pégorier, J.F. Decaux, J. Girard.
Regulation of liver carnitine palmitoyltransferase I gene expression by hormones and fatty acids.
Biochem Soc Trans, 29 (2001), pp. 310-316
[20.]
S.S. Lee, T. Pineau, J. Drago, E.J. Lee, J.W. Owens, D.L. Kroetz, et al.
Targeted disruption of the alpha isoform of the peroxisome proliferator- activated receptor gene in mice results in abolishment of the pleiotropid effects of peroxisome proliferators.
Mol Cell Biol, 15 (1995), pp. 3012-3022
[21.]
M. Panadero, H. Vidal, E. Herrera, C. Bocos.
Nutritionally induced changes in the peroxisome proliferator activated receptor-α gene expression in liver of suckling rats are dependent on insulinaemia.
Arch Biochem Biophys, 394 (2001), pp. 182-188
[22.]
T. Lemberger, B. Staels, R. Saladin, B. Desvergne, J. Auwerx, W. Wahli.
Regulation of the peroxisome proliferator-activated receptor W gene by glucocorticoids.
J Biol Chem, 269 (1994), pp. 24527-24530
[23.]
L. Carlsson, D. Lindén, M. Jalouli, J. Oscarsson.
Effects of fatty acids and growth hormone on liver fatty acid binding protein and PPARα in rat liver.
Am J Physiol Endocrinol Metab, 281 (2001), pp. E772-E781
[24.]
Z.W. Wang, W.T. Pan, Y. Lee, T. Kakuma, Y.T. Zhou, R.H. Unger.
The role of leptin in the lipid abnormalities of aging.
Faseb J, 15 (2001), pp. 108-114
[25.]
Y. Lee, H. Hirose, Y.T. Zhou, V. Esser, J.D. McGarry, R.H. Unger.
Increased lipogenic capacity of the islets of obese rats: a role in the pathogenesis of NIDDM.
Diabetes, 46 (1997), pp. 408-413
[26.]
Y. Lee, M.Y. Wang, T. Kakuma, Z.W. Wang, E. Babcook, K. McCorkle, et al.
Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia.
J Biol Chem, 276 (2001), pp. 5629-5635
[27.]
Y.T. Zhou, Z.W. Wang, M. Higa, C.B. Newgard, R.H. Unger.
Reversing adipocyte differentiation: implications for treatment of obesity.
Proc Natl Acad Sci USA, 96 (1999), pp. 2391-2395
[28.]
J.M. Peters, N. Hennuyer, B. Staels, J.C. Fruchart, C. Fievet, F.J. González, et al.
Alterations in lipoprotein metabolism in peroxisome proliferator- activated receptor a-deficient mice.
J Biol Chem, 272 (1997), pp. 28307-28312
[29.]
K. Tordjman, C. Bernal-Mizrachi, L. Zemany, S. Weng, C. Feng, F. Zhang, et al.
PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice.
J Clin Invest, 107 (2001), pp. 1025-1034
[30.]
A.D. Mooradian, R. Hurd, J. Chehade, K. Pun, M.J. Haas.
Age-related changes in plasma leptin binding activity in rats: a comparison of a simple acid-ethanol precipitation technique with column chromatography.
Proc Soc Exp Biol Med, 224 (2000), pp. 273-277
[31.]
T. Yamauchi, J. Kamon, H. Waki, K. Murakami, K. Motojima, K. Komeda, et al.
The mechanisms by which both heterozygous peroxisome proliferator-activated receptor λ(PPARλ deficiency and PPARλ agonist improve insulin resistance.
J Biol Chem, 276 (2000), pp. 41245-41254
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos