metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Las estatinas como antioxidantes
Información de la revista
Vol. 17. Núm. S2.
Efectos pleiotrópicos de las estatinas
Páginas 23-30 (septiembre 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. S2.
Efectos pleiotrópicos de las estatinas
Páginas 23-30 (septiembre 2005)
Efectos pleiotrópicos de las estatinas
Acceso a texto completo
Las estatinas como antioxidantes
Statins as anti-oxidants
Visitas
355
N. de las Heras
Autor para correspondencia
nataliaheras@med.ucm.es

Correspondencia: N. de las Heras. Departamento de Fisiología. Facultad de Medicina. Universidad Complutense. Ciudad Universitaria, s/n. 28040 Madrid. España.
, D. Sanz-Rosa, M. Miana, B. Martín, V. Cachofeiro, V. Lahera
Departamento de Fisiología. Facultad de Medicina. Universidad Complutense. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La producción local exagerada de especies reactivas de oxígeno, especialmente de aniones superóxido, es un mecanismo importante que subyace al desarrollo aterosclerótico. Como consecuencia de este incremento del estrés oxidativo, la posibilidad de oxidación de las lipoproteínas de baja densidad (LDL) aumenta y éstas, a su vez, son capaces de estimular las enzimas implicadas en la producción de radicales libres, creándose un círculo vicioso. Numerosos estudios realizados con inhibidores de la HMG-CoA reductasa, o estatinas, han demostrado la eficacia de estos fármacos para disminuir la morbimortalidad cardiovascular. Este efecto beneficioso no sólo es debido a sus efectos reductores en la síntesis del colesterol, sino también a acciones pleiotrópicas, entre las que podemos mencionar su efecto antioxidante. Las estatinas inhiben la producción de aniones superóxido por los macrófagos y células endoteliales, además de actuar sobre las enzimas y los agentes de la regulación rédox. Así, las estatinas podrían disminuir la expresión y la actividad de la NAD(P)H oxidasa, reducir las ubicinonas, enzimas implicadas en el transporte mitocondrial de electrones, aumentar la actividad de las enzimas antioxidantes y la óxido nítrico sintasa. Por ello, los efectos antioxidantes de las estatinas podrían contribuir a su eficacia clínica en el tratamiento de enfermedades cardiovasculares, así como en otras situaciones asociadas a un incremento en el estrés oxidativo.

Palabras clave:
Estrés oxidativo
Especies reactivas de oxígeno
Estatinas
Aterosclerosis

Excessive local production of reactive oxygen species, especially superoxide anions, is an important mechanism underlying the development of atherosclerosis. As a consequence of this increase in oxidative stress, the possibility of lowdensity lipoprotein (LDL) oxidation increases, and LDL in turn are able to stimulate the enzymes involved in the production of free radicals, creating a vicious circle. Numerous studies performed with HMG-CoA reductase inhibitors, or statins, have demonstrated the efficacy of these drugs in reducing cardiovascular morbidity and mortality. This beneficial effect is due not only to their ability to reduce cholesterol synthesis but also to their pleiotropic effects, among which is their antioxidant effect. Statins inhibit superoxide anion production by macrophages and endothelial cells, in addition to acting on enzymes and redox regulation agents. Thus, statins could decrease the expression and activity of NAD(P)H-oxidase, reduce ubiquinones, the enzymes involved in mitochondrial electron transport, and increase the activity of anti-oxidant enzymes and nitric oxide synthase. Therefore, the anti-oxidant effects of statins could contribute to their clinical efficacy on treatment of cardiovascular diseases, as well as that of other processes associated with an increase in oxidative stress.

Key words:
Oxidative stress
Reactive oxygen species
Statins
Atherosclerosis
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.M. Li, A.M. Shah.
Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology.
Am J Physiol Regul Integr Comp Physiol, 287 (2004), pp. R1014-R1030
[2.]
Y. Taniyama, K.K. Griendling.
Reactive oxygen species in the vasculature: molecular and cellular mechanisms.
Hypertension, 42 (2003), pp. 1075-1081
[3.]
M. Valgimigli, E. Merli, P. Malagutti, O. Soukhomovskaia, G. Cicchitelli, G. Macri, et al.
Endothelial dysfunction in acute and chronic coronary syndromes: evidence for a pathogenetic role of oxidative stress.
Arch Biochem Biophys, 420 (2003), pp. 255-261
[4.]
R.J. Reiter.
Oxidative damage in the central nervous system: protection by melatonin.
Prog Neurobiol, 56 (1998), pp. 359-384
[5.]
F.H. Andrade.
Reactive oxygen species and skeletal muscle function.
Ed. Z Radak Human Kinetics, (2000), pp. 117-148
[6.]
T. Seno, N. Inoue, D. Gao, M. Okuda, Y. Sumi, K. Matsui, et al.
Involvement of NADH/NADPH oxidase in human platelet ROS production.
Thromb Res, 103 (2001), pp. 399-409
[7.]
B. Meier, A.R. Cross, J.T. Hancock, F.J. Kaup, O.T. Jones.
Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.
Biochem J, 275 (1991), pp. 241-245
[8.]
S.A. Jones, V.B. O’Donnell, J.D. Wood, J.P. Broughton, E.J. Hughes, O.T. Jones.
Expression of phagocyte NADPH oxidase components in human endothelial cells.
Am J Physiol, 271 (1996), pp. H1626-H1634
[9.]
K.K. Griendling, D. Sorescu, M. Ushio-Fukai.
NAD(P)H oxidase: role in cardiovascular biology and disease.
Circ Res, 86 (2000), pp. 494-501
[10.]
E. Cediel, D. Sanz-Rosa, M.P. Oubina, N. De las Heras, F.R. González Pacheco, O. Vegazo, et al.
Effect of AT1 receptor blockade on hepatic redox status in SHR: possible relevance for endothelial function?.
Am J Physiol Regul Integr Comp Physiol, 285 (2003), pp. R674-R681
[11.]
Sanz-Rosa D, Oubiña MP, Cediel E, De las Heras N, Aragoncillo P, Balfagón G, et al. Eplerenone reduces oxidative stress and enhances eNOS in SHR: vascular function and structural consequences. Antioxidants and Redox Signaling. 2005. En prensa.
[12.]
S. Dusi, M. Donini, D. Lissandrini, P. Mazzi, V.D. Bianca, F. Rossi.
Mechanisms of expression of NADPH oxidase components in human cultured monocytes: role of cytokines and transcriptional regulators involved.
[13.]
P.J. Pagano, S.J. Chanock, D.A. Siwik, W.S. Colucci, J.K. Clark.
Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts.
Hypertension, 32 (1998), pp. 331-337
[14.]
F. Cosentino, M. Eto, P. De Paolis, B. Van der Loo, M. Bachschmid, V. Ullrich, et al.
High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species.
Circulation, 107 (2003), pp. 1017-1023
[15.]
L.L. Ji, J. Hollander.
Antioxidant defense: effects of aging and exercise..
Ed. Z Radak Human Kinetics, (2000), pp. 117-148
[16.]
R. Ross.
Atherosclerosis. An inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[17.]
A.J. Lusis.
Atherosclerosis.
Nature (Lond), 407 (2000), pp. 233-241
[18.]
Y. Ohara, T.E. Peterson, D.G. Harrison.
Hypercholesterolemia increases endothelial superoxide anion production.
J Clin Invest, 91 (1993), pp. 2546-2551
[19.]
T.J. Guzik, B. Kapelak, B. Guzik, et al.
Mechanisms of increased vascular superoxide generation in human coronary arteries from patients with coronary artery disease.
Eur Heart J, 4 (2002), pp. 297
[20.]
R. Weber, E. Stroes, T.J. Rabelink.
Nitric oxide and Hypercholesterolemia: a matter of oxidation and reduction?.
Atherosclerosis, 137 (1998), pp. 51-60
[21.]
A. Warnholtz, G. Nickenig, E. Schulz, R. Macharzina, J.H. Brasen, M. Skatchkor, et al.
Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system.
Circulation, 99 (1999), pp. 2027-2033
[22.]
G.N. Levine, B. Frei, S.N. Koulouris, M.D. Gerhard, J.F. Keaney Jr, J.A. Vita.
Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease.
Circulation, 93 (1996), pp. 1107-1113
[23.]
B. Hornig, N. Arakawa, C. Kohler, H. Drexler.
Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure.
Circulation, 97 (1998), pp. 363-368
[24.]
C.R. White, T.A. Brock, L.Y. Chang, J. Crapo, P. Briscoe, D. Ku, et al.
Superoxide and peroxynitrite in atherosclerosis.
Proc Natl Acad Sci USA, 91 (1994), pp. 1044-1048
[25.]
L. Van Tits, J. De Graaf, H. Hak-Lemmers, S. Bredie, P. Demacker, P. Holvoet, et al.
Increase levels of low-density lipoprotein oxidation in patients with familiar hipercholesterolemia and in end-stage renal disease patients on hemodialysis.
Lab Invest, 83 (2003), pp. 13-21
[26.]
R.M. Hsu, S. Devaraj, I. Jialal.
Autoantibodies to oxidized low density lipoprotein in patients with Type 2 diabetes mellitus.
Clin Chim Acta, 317 (2002), pp. 145-150
[27.]
P. Holvoet, T.B. Harris, R.P. Tracy, P. Verhamme, A.B. Newman, S.E. Rubin, et al.
Association of high coronary heart disease risk status with circulating oxidized LDL in the well-functioning elderly. Findings from the health, aging, and body composition study.
Arterioscler Thromb Vasc Biol, 23 (2003), pp. 1444-1448
[28.]
S. Yla Erútala, W. Palinski, M.E. Rosenfeld, S. Parthasarathy, T.E. Carew, et al.
Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man.
J Clin Invest, 84 (1989), pp. 1086-1095
[29.]
J.T. Salonen, S. Yla Erútala, R. Yamamoto, S. Butler, H. Korpela, R. Salonen, et al.
Autoantibody against oxidized LDL and progression of carotid atherosclerosis.
Lancet, 339 (1992), pp. 883-887
[30.]
A. Negre Salvayre, M.T. Pieraggi, L. Mabile, R. Salvayre.
Protective effect of 17 beta-estradiol against the cytotoxicity of minimally oxidized LDL to cultured bovine aortic endothelial cells.
Atheroclerosis, 99 (1993), pp. 207-217
[31.]
L. Petit, P. Lesnik, C. Dachet, M. Moreau, M.J. Chapman.
Tissue factor pathway inhibitor is expressed by human monocyte-derived macrophages: relationship to tissue factor induction by cholesterol and oxidized LDL.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 309-315
[32.]
W. Dichtl, A. Stiko, P. Eriksson, I. Goncalves, F. Calara, C. Banfi, et al.
Oxidized LDL and lysophosphatidylcholine stimulate plasminogen activator inhibitor-1 expression in vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 3025-3032
[33.]
J. Orbe, R. Montes, J.A. Paramo.
The role of PAI-1 in thrombotic events.
Med Clin (Barc), 113 (1999), pp. 63-69
[34.]
J.K. Liao, W.S. Shin, W.Y. Lee, S.L. Clark.
Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase.
J Biol Chem, 270 (1995), pp. 319-324
[35.]
D.J. Lefer, D.N. Granger.
Oxidative stress and cardiac disease.
Am J Med, 109 (2000), pp. 315-323
[36.]
P. Libby.
Changing concepts of atherogénesis.
J Int Med, 247 (2000), pp. 349-358
[37.]
M. Takemoto, J.K. Liao.
Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductasa inhibitors.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 1712-1719
[38.]
U. Rueckschloss, J. Galle, J. Holtz, H.R. Zerkowski, H. Morawietz.
Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy.
Circulation, 104 (2001), pp. 1767-1772
[39.]
S. Wassmann, U. Laufs, A.T. Baumer, et al.
HMG-CoA reductasa inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species.
Hypertension, 37 (2001), pp. 1450-1457
[40.]
S. Wassmann, U. Laufs, K. Muller, et al.
Cellular antioxidant effects of atorvastatina in vitro and in vivo.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 300-305
[41.]
S. Delbosc, M. Morena, F. Djouad, C. Ledoucen, B. Descomps, J.P. Cristol.
Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes.
J Cardiovasc Pharmacol, 40 (2002), pp. 611-617
[42.]
S.M. Grundy.
HMG-CoA reductasa inhibitors for treatment of hypercholesterolemia.
N Engl J Med, 319 (1988), pp. 24-33
[43.]
I. Inoue, S. Goto, K. Mizotani, T. Awata, T. Mastunaga, S. Kawai, et al.
Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect. Reduction of mRNA levels for interleukin-1ß, interleukin- 6, cyclooxygenase-2, and p22phox by regulation of peroxisome proliferator-activated receptor α (PPARa) in primary endothelial cells.
Life Sci, 67 (2000), pp. 863-876
[44.]
S. Wassmann, U. Laufs, K. Muller, C. Konkol, K. Ahlbory, A.T. Baumer, et al.
Cellular antioxidant effects of atorvastatin in vitro and in vivo.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 300-305
[45.]
S. Wassmann, U. Laufs, A.T. Baumer, K. Muller, C. Konkol, H. Sauer, et al.
Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase.
Mol Pharmacol, 59 (2001), pp. 646-654
[46.]
C. Maack, T. Kartes, H. Kilter, H.J. Schafers, G. Nickenig, M. Bohm, et al.
Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment.
Circulation, 108 (2003), pp. 1567-1574
[47.]
S.M. Jeon, S.H. Bok, M.K. Jang, M.K. Lee, K.T. Nam, Y.B. Park, et al.
Antioxidative activity of naringin and lovastatin in high cholesterolfed rabbits.
Life Sci, 69 (2001), pp. 2855-2866
[48.]
J.D. Luo, W.W. Zhang, G.P. Zhang, B.H. Zhong, H.J. Ou.
Effects of simvastatin on activities of endogenous antioxidant enzymes and angiotensin-converting enzyme in rat myocardium with pressureoverload cardiac hypertrophy.
Acta Pharmacol Sin, 23 (2002), pp. 124-128
[49.]
U. Laufs.
Beyond lipid-lowering: effects of statins on endothelial nitric oxide.
Eur J Clin Pharmacol, 58 (2003), pp. 719-731
[50.]
E.M. Kurowsaka.
Nitric oxide therapies in vascular diseases.
Curr Pharm Des, 8 (2002), pp. 155-166
[51.]
K.Y. Stokes, D. Cooper, A. Tailor, D.N. Granger.
Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide.
Free Radic Biol Med, 33 (2002), pp. 1026-1036
[52.]
U. Laufs, K. Gertz, U. Dirnagl, M. Bohm, G. Nickenig, M. Endres.
Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice.
Brain Res, 942 (2002), pp. 23-30
[53.]
U. Laufs, V.L. La Fata, J. Plutzky, J.K. Liao.
Upregulation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors.
Circulation, 97 (1998), pp. 1129-1135
[54.]
O. Hernández-Perera, D. Pérez-Sala, J. Navarro-Antolín, R. Sánchez-Pascuala, G. Hernández, C. Díaz, et al.
Effects of the 3-hydroxy- 3methy-glutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells.
J Clin Invest, 101 (1998), pp. 2711-2719
Copyright © 2005. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.arteri.2019.11.005
No mostrar más