Información de la revista
Vol. 16. Núm. 4.
Páginas 154-159 (enero 2004)
Vol. 16. Núm. 4.
Páginas 154-159 (enero 2004)
Acceso a texto completo
LDL electronegativa: una LDL modificada presente en la circulación con características aterogénicas
Visitas
2711
S. Benítez
, J.L. Sánchez-Quesada, J. Ordóñez-Llanos
Autor para correspondencia
sbenitez@hsp.santpau.es
Correspondencia: Hospital de la Santa Creu i Sant Pau. Servicio de Bioquímica. Avda. Sant Antoni M. Claret, 167. 08025 Barcelona. España
Correspondencia: Hospital de la Santa Creu i Sant Pau. Servicio de Bioquímica. Avda. Sant Antoni M. Claret, 167. 08025 Barcelona. España
Servicio de Bioquímica. Institut de Recerca. Hospital de la Santa Creu i Sant Pau. Barcelona. España
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
Bibliografía
[1.]
R.M. Krauss.
Relationship of intermediate and low-density lipoprotein subspecies to risk of coronary artery disease.
Am Heart J, 113 (1987), pp. 578-582
[2.]
D. Steinberg.
LDL oxidation and its pathological significance.
J Biol Chem, 272 (1997), pp. 20963-20966
[3.]
R. Ross.
Atherosclerosis – an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[4.]
T.J.C. Berkel Van, Y.B. De Rijke, J.K. Kruijt.
Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. recognition by various scavenger receptors on kupffer and endothelial liver cells.
J Biol Chem, 266 (1991), pp. 2282-2289
[5.]
Y.B. De Rijke, C.J.M. Vogelezang, T.J.C. Van Berkel, H.M.G. Princen, H.F. Verwey, A. Van der Laarse, et al.
Susceptibility of low density lipoproteins to oxidation in coronary bypass patients.
Lancet, 340 (1992), pp. 858-859
[7.]
E. Maggi, R. Chiesa, G. Melissano, R. Castellano, D. Astore, A. Grossi, et al.
LDL oxidation in patients with severe atherosclerosis. a study of in-vitro and in-vivo markers.
Arterioscler Thromb, 14 (1994), pp. 1892-1899
[8.]
P. Holvoet, G. Pérez, Z. Zhao, E. Brouwers, H. Bernar, D. Collen.
Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease.
J Clin Invest, 95 (1995), pp. 2611-2619
[9.]
S. Toshima, A. Hasegawa, M. Kurabayashi, H. Itabe, T. Takano, J. Sugano, et al.
Circulating oxidized low density lipoprotein levels. a biochemical risk marker for coronary heart disease.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 2243-2247
[10.]
P. Holvoet, J. Van Cleemput, D. Collen, J. Vanhaecke.
Oxidized low density lipoprotein is a prognostic marker of transplant-associated coronary artery disease.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 698-702
[11.]
P. Holvoet, A. Mertens, P. Verhamme, K. Bogaerts, G. Beyens, R. Verhaeg, et al.
Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 844-848
[12.]
K. Nishi, H. Itabe, M. Uno, K.T. Kitazato, H. Horiguchi, K. Shinno, et al.
Oxidized LDL in carotid plaques and plasma associates with plaque instability.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 1649-1654
[13.]
J.T. Salonen, S. Yla-Herttuala, R. Yamamoto, S. Butler, H. Korpela, R. Salonen, et al.
Autoantibodies against oxidized LDL and progression of carotid atherosclerosis.
Lancet, 339 (1992), pp. 883-887
[14.]
M. Fukumoto, T. Shoji, M. Emoto, T. Kawagishi, Y. Okuno, Y. Nishizawa.
Antibodies against oxidized LDL and carotid artery intimamedia thickness in a healthy population.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 703-707
[15.]
T. Shoji, Y. Nishizawa, M. Fukumoto, K. Shimamura, J. Kimura, H. Kanda, et al.
Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects.
Atherosclerosis, 148 (2000), pp. 171-177
[16.]
J.L. Witztum, S. Horkko.
The role of oxidized LDL in atherogenesis: immunological response and anti-phospholipid antibodies.
Ann N Y Acad Sci, 811 (1997), pp. 88-96
[17.]
P. Avogaro, G. Bittolo Bon, G. Cazzolato.
Presence of a modified low density lipoprotein in humans.
Arteriosclerosis, 8 (1988), pp. 79-87
[18.]
G. Cazzolato, P. Avogaro, G. Bittolo-Bon.
Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC.
Free Rad Biol Med, 11 (1991), pp. 247-253
[19.]
P. Avogaro, G. Cazzolato, G. Bittolo-Bon.
Some questions concerning a small, more electronegative LDL circulating in human plasma.
Atherosclerosis, 91 (1991), pp. 163-171
[20.]
A. Sevanian, J. Hwang, H. Hodis, G. Cazzolato, P. Avogaro, G. Bittolo-Bon.
Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 784-793
[21.]
H.N. Hodis, D.M. Kramsch, P. Avogaro, G. Bittolo-Bon, G. Cazzolato, J. Hwang, et al.
Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (electronegative LDL).
J Lipid Res, 35 (1994), pp. 669-677
[22.]
A. Sevanian, H.N. Hodis, J. Hwang, L.L. McLeod, H. Peterson.
Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL.
J Lipid Res, 36 (1995), pp. 1971-1986
[23.]
A. Sevanian, G. Bittolo-Bon, G. Cazzolato, H. Hodis, J. Hwang, A. Zamburlini, et al.
Electronegative LDL is a lipid hydroperoxide-enriched circulating lipoprotein.
J Lipid Res, 38 (1997), pp. 419-428
[24.]
T. Parasassi, G. Bittolo-Bon, R. Brunelli, G. Cazzolato, E.K. Krasnowska, G. Mei, et al.
Loss of apo b-100 secondary structure and conformation in hydroxide rich, electronegative LDL(–).
Free Rad Biol Med, 31 (2001), pp. 82-89
[25.]
B. Vedie, I. Myara, M.A. Pech, J.C. Maziere, C. Maziere, A. Caprani, et al.
Fractionation of charge-modified low density lipoproteins by fast protein liquid chromatography.
J Lipid Res, 32 (1991), pp. 1359-1369
[26.]
B. Chappey, I. Myara, M.O. Benoir, C. Maziere, J.C. Maziere, N. Moatti.
Characteristics of ten charge-differing subfractions isolated from human native low density lipoprotein (LDL). no evidence of peroxidative modifications.
Biochim Biophys Acta, 1259 (1995), pp. 261-270
[27.]
K. Demuth, I. Myara, B. Chappey, B. Vedie, M.A. Pech-Ansellem, M.E. Haberland, et al.
A cytotoxic electronegative LDL subfraction is present in human plasma.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 773-783
[28.]
J.L. Sánchez-Quesada, M. Camacho, R. Antón, S. Benítez, L. Vila, J. Ordóñez-Llanos.
Electronegative LDL of fh subjects: chemical characterization and induction of chemokine release from human endothelial cells.
Atherosclerosis, 166 (2003), pp. 261-270
[29.]
B. Vedie, X. Jeunemaitre, J.L. Mégnien, I. Myara, H. Trébeden, A. Simon, et al.
Charge heterogeneity of LDL in asymptomatic hypercholesterolemic men is related to lipid parameters and variations in the apob and CIII genes.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 1780-1789
[30.]
C. De Castellarnau, J.L. Sánchez-Quesada, S. Benítez, R. Rosa, L. Caveda, L. Vila, et al.
Electronegative LDL from normolipemic subjects induces il-8 and monocyte chemotactic protein secretion by human endothelial cells.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 2281-2287
[31.]
J. Greilberger, X. Wang, G. Ledinski, Q. Chen, G. Jürgens.
Presence of aldehydic epitopes on a minor low-density lipoprotein fraction.
Free Radic Biol Med, 26 (1999), pp. 1489-1494
[32.]
K. Nyyssönen, J. Kaikkonen, J.T. Salonen.
Characterization and determinants of an electronegatively charged low-density lipoprotein in human plasma.
Scand J Clin Lab Invest, 56 (1996), pp. 681-689
[33.]
J.L. Sánchez-Quesada, R. Homs-Serradesanferm, J. Serrat-Serrat, J.R. Serra-Grima, F. González-Sastre, J. Ordóñez-Llanos.
Increase of LDL to susceptibility to oxidation occurring after intense, long duration aerobic exercise.
Atherosclerosis, 118 (1995), pp. 297-305
[34.]
J.L. Sánchez-Quesada, O. Jorba, A. Payés, C. Otal, J.R. Serra-Grima, F. González-Sastre, et al.
Ascorbic acid inhibits the increase in low-density lipoprotein (LDL) susceptibility to oxidation and the proportion of electronegative LDL induced by intense aerobic exercise.
Coronary Artery Dis, 9 (1998), pp. 249-255
[35.]
J.L. Sánchez-Quesada, H. Ortega, A. Payés-Romero, J. Serrat-Serrat, F. González-Sastre, M.A. Lasunción, et al.
LDL from aerobically-trained subjects shows higher resistance to oxidative modification than LDL from sedentary subjects.
Atherosclerosis, 132 (1997), pp. 207-213
[36.]
S. Benítez, J.L. Sánchez-Quesada, L. Lucero, R. Arcelus, V. Ribas, O. Jorba, et al.
Changes in low-density lipoprotein electronegativity and oxidizability after aerobic exercise are related to the increase in associated non-esterified fatty acids.
Atherosclerosis, 160 (2002), pp. 223-232
[37.]
J.L. Sánchez-Quesada, C. Otal-Entraigas, M. Franco, O. Jorba, F. González-Sastre, F. Blanco-Vaca, et al.
Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with familial hypercholesterolemia.
Am J Cardiol, 84 (1999), pp. 655-659
[38.]
E. Moro, C. Zambón, S. Pianetti, G. Cazzolato, M. Pais, G. Bittolo Bon.
Electronegative low density lipoprotein subform (LDL–) is increased in type 2 (non-insulin dependent) microalbuminuric diabetic patients and is closely associated with LDL susceptibility to oxidation.
Acta Diabetol, 35 (1998), pp. 161-164
[39.]
E. Moro, P. Alessandrini, C. Zambon, S. Pianetti, M. Pais, G. Cazzolato, et al.
Is glycation of low density lipoproteins in patients with type 2 diabetes mellitus a LDL pre-oxidative condition?.
Diabet Med, 16 (1999), pp. 663-669
[40.]
J.L. Sánchez-Quesada, A. Pérez, A. Caixàs, J. Ordóñez-Llanos, G. Carreras, A. Payés, et al.
Electronegative low density lipoprotein subform is increased in patients with short-duration IDDM and is closely related to glycaemic control.
Diabetologia, 39 (1996), pp. 1469-1476
[41.]
J.L. Sánchez-Quesada, A. Pérez, A. Caixàs, M. Rigla, A. Payés, S. Benítez, et al.
Effect of glycemic optimization on electronegative lowdensity lipoprotein in diabetes: nonenzymatic glycosylation and oxidative modifications.
J Clin Endocrin Metab, 86 (2001), pp. 3243-3249
[42.]
J.L. Sánchez-Quesada, S. Benítez, M. Franco, C. Otal, F. Blanco-Vaca, J. Ordóñez-Llanos.
Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects.
J Lipid Res, 43 (2002), pp. 699-705
[43.]
O. Ziouzenkova, L. Asatryan, M. Akmal, C. Tetta, M.L. Wratten, G. Loseto-Wich, et al.
Oxidative cross-linking of apob100 and hemoglobin results in low density lipoprotein modifications in blood.
J Biol Chem, 27 (1999), pp. 18916-18924
[44.]
O. Ziouzenkova, A. Sevanian.
Oxidative modification of low-density lipoprotein (LDL) in hd patients: role in electronegative formation.
Blood Purif, 18 (2000), pp. 169-176
[45.]
A. Lavy, G.J. Brook, G. Dankner, A.M. Amotz, M. Aviram.
Enhanced in-vitro oxidation of plasma lipoprotein derived from hypercholesterolemic patients.
Metabolism, 40 (1991), pp. 794-799
[46.]
C. Napoli, A. Postiglione, M. Triggiani, G. Corso, G. Palumbo, V. Carbone, et al.
Oxidative structural modifications of low density lipoprotein in homozygous familial hypercholesterolemia.
Atherosclerosis, 118 (1995), pp. 259-273
[47.]
F.J. Raal, A.J. Areias, R. Waisberg, M. Von Arb.
Susceptibility of low density lipoprotein to oxidation in familial hypercholesterolemia.
Atherosclerosis, 115 (1995), pp. 9-15
[48.]
A. Gugluicci-Creriche, A.J.C. Stahl.
Glycation and oxidation of human low density lipoproteins reduces heparin binding and modifies charge.
Scand J Clin Lab Invest, 53 (1993), pp. 125-132
[49.]
H. Shimano, N. Yamada, S. Ishibashi, H. Mokuno, N. Mori, T. Gotoda, et al.
Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.
J Lipid Res, 32 (1991), pp. 763-773
[50.]
H. Campos, G.O. Roederer, S. Lussier-Cacan, J. Davignon, R.M. Krauss.
Predominance of large LDL and reduced HDL2 cholesterol in normolipemic men with cardiovascular artery disease.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 1043-1048
[51.]
M. Aviram.
Modified forms of low density lipoprotein and atherosclerosis.
Atherosclerosis, 98 (1993), pp. 1-9
[52.]
K.J. Wiams, I. Tabas.
The response-to-retention hypothesis of early atherogenesis.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 551-561
[53.]
K.J. Wiams, I. Tabas.
The response-to-retention hypothesis of atherogenesis reinforced.
Curr Opin Lipidol, 9 (1998), pp. 471-474
[54.]
F. Nigon, P. Lesnik, M. Pouis, J. Chapman.
Discrete subspecies of human low density lipoprotein are heterogeneous in their interaction with the cellular LDL receptor.
J Lipid Res, 32 (1991), pp. 1741-1753
[55.]
H. Campos, K.S. Arnold, M.E. Balestra, T.L. Innerarity, R.M. Krauss.
Differences in receptor binding of LDL subfractions.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 794-801
[56.]
J.R. McNamara, D.M. Small, Z. Li, E.J. Schaefer.
Differences in LDL subspecies involve alterations in lipid composition and conformational changes in apolipoprotein b.
J Lipid Res, 37 (1996), pp. 1924-1935
[57.]
S. Lund-Katz, P.M. Laplaud, M.C. Philips, M.J. Chapman.
Apolipoprotein b-100 conformation and particle surface charge in human LDL subspecies implication for LDL receptor interaction.
Biochemistry, 37 (1998), pp. 12867-12874
[58.]
S. Benítez, J.L. Sánchez-Quesada, M. Camacho, L. Vila, J. Ordóñez-Llanos.
Caracterización de la subfracción electronegativa de la LDL en individuos con hipercolesterolemia familiar.
Clin Invest Arterioscl, 14 (2002), pp. 57-66
[59.]
C.H. Macphee, K.E. Moores, H.F. Boyd, D. Dhanak, R.J. Ife, C.A. Leach, et al.
Lipoprotein-associated phospholipase a2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor.
Biochem J, 338 (1999), pp. 479-487
[60.]
T. Hevonoja, M.O. Pentikainen, M.T. Hyvönen, P.T. Kovanen, M. Ala-Korpela.
Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL.
Biochim Biophys Acta, 1488 (2000), pp. 189-210
[61.]
S. Benítez, M. Camacho, R. Arcelus, O. Jorba, L. Vila, J.L. Sánchez-Quesada, et al.
LDL modificada con fosfolipasa a2. relación con la LDL electronegativa.
Clin Invest Arterioscler, 16 (2004), pp. 133-140
[62.]
S. Benítez, J.L. Sánchez-Quesada, V. Ribas, O. Jorba, F. Blanco-Vaca, F. González-Sastre, et al.
Platelet-activating factor acetylhidrolase (PAF-AH) is mainly associated with electronegative LDL subfraction.
Circulation, 108 (2003), pp. 92-96
[63.]
C.J. Packard, C.S.J. O’Reilly, M.J. Caslake, A.D. McMahon, H.I. Ford, J. Cooney, et al.
Lipoprotein-associated phospholipase a2 as an independent predictor of coronary heart disease.
N Engl J Med, 343 (2000), pp. 1148-1155
[64.]
M.J. Caslake, C.J. Packard, K.E. Suckling, S.D. Holmes, P. Chamberlain, C.H. Macphee.
Lipoprotein-associated phospholipase a2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary heart disease.
Atherosclerosis, 150 (2000), pp. 413-419
[65.]
M.T. Quinn, S. Parthasarathy, D. Steinberg.
Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role on atherogenesis.
Proc Natl Acad Sci USA, 85 (1988), pp. 20805-20809
[66.]
K.L.H. Carpenter, I.F. Dennis, I.R. Challis, D.P. Osborn, C.H. Macphee, D.S. Leake, et al.
Inhibition of lipoprotein-associated phospholipase a2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages.
FEBS letters, 505 (2001), pp. 357-363
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.