Información de la revista
Vol. 14. Núm. 6.
Páginas 297-308 (enero 2002)
Vol. 14. Núm. 6.
Páginas 297-308 (enero 2002)
Acceso a texto completo
Receptores activados por proliferadores peroxisómicos y aterosclerosis
Visitas
5022
M. Vázquez Carrera
Autor para correspondencia
mvaz@farmacia.far.ub.es
Correspondencia: Unidad de Farmacología. Facultad de Farmacia. Diagonal, 643. 08028 Barcelona. España
Correspondencia: Unidad de Farmacología. Facultad de Farmacia. Diagonal, 643. 08028 Barcelona. España
Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia. Universidad de Barcelona. España
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
Bibliografía
[1.]
A unified nomenclature system for the nuclear receptor superfamily.
Cell, 97 (1999), pp. 161-163
[2.]
B. Desvergne, W. Wahli.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev, 20 (1999), pp. 649-688
[3.]
O. Braissant, F. Foufelle, C. Scotto, M. Dauça, W. Wahli.
Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat.
Endocrinology, 137 (1996), pp. 354-366
[4.]
A.J. Vidal-Puig, R.V. Considine, M. Jimenez-Linan, A. Werman, W.J. Pories, J.F. Caro, et al.
Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoides.
J Clin Invest, 99 (1997), pp. 2416-2422
[5.]
T.E. Cullingford, K. Bhakoo, S. Peuchen, C.T. Dolphin, R. Patel, J.B. Clark.
Distribution of mRNAs encoding the peroxisome proliferator-activated receptor α, β and γ and the retinoid X receptor α, β and γ in rat central nervous system.
J Neurochem, 70 (1998), pp. 1366-1375
[6.]
P. Tontonoz, L. Nagy, J.G. Álvarez, V.A. Thomazy, R.M. Evans.
PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL.
Cell, 93 (1998), pp. 241-252
[7.]
M. Ricote, J. Huang, L. Fajas, A. Li, J. Welch, J. Najib, et al.
Expression of the peroxisome proliferator-activated receptor γ (PPARgamma) in human atherosclerosis and regulation of macrophages by colony stimulating factors and oxidized low density lipoproteins.
Proc Natl Acad Sci USA, 95 (1998), pp. 7614-7619
[8.]
B. Staels, W. Koenig, A. Habib, R. Merval, M. Lebret, I. Pineda-Torra, et al.
Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators.
Nature, 393 (1998), pp. 790-793
[9.]
J.C. Fruchart, P. Duriez, B. Staels.
Peroxisome proliferator-activated receptor alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis.
Curr Opin Lipidol, 10 (1999), pp. 245-257
[10.]
M. Göttlicher, E. Widmark, Q. Li, J.A. Gustafsson.
Fatty acids derivative activate chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.
Proc Natl Acad Sci USA, 89 (1992), pp. 4653-4657
[11.]
H. Keller, C. Dreyer, J. Medin, A. Mahfoudi, K. Ozato, W. Wahli.
Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers.
Proc Natl Acad Sci USA, 90 (1993), pp. 2160-2164
[12.]
B.M. Forman, J. Chen, R.M. Evans.
Hypolipidemic grugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and γ.
Proc Natl Acad Sci USA, 94 (1997), pp. 4318-4323
[13.]
S.A. Kliewer, S.S. Sundseth, S.A. Jones, P.J. Brown, G.B. Wisely, C. Koble, et al.
Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome-proliferator activated receptors α and γ.
Proc Natl Acad Sci USA, 94 (1997), pp. 4318-4323
[14.]
P.R. Devchand, H. Keller, J.M. Peters, M. Vázquez, F.J. Gonzalez, W. Wahli.
The PPARα-leukotriene B4 pathway to inflammatory control.
Nature, 384 (1996), pp. 39-43
[15.]
P. Delerive, C. Furman, E. Teisser, J-C. Fruchart, P. Duriez, B. Staels.
Oxidized phospholipids activate PPARα in a phospholipase A2-dependant manner.
FEBS Lett, 471 (2000), pp. 34-38
[16.]
L. Nagy, P. Tontonoz, J.G.A. Alvarez, H. Chen, R.M. Evans.
Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ.
Cell, 93 (1998), pp. 229-240
[17.]
S.A. Kliewer, J.M. Lenhard, T.M. Wilson, I. Patel, D.C. Morris, J.M. Lehmann.
A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation.
Cell, 83 (1995), pp. 813-819
[18.]
B.M. Forman, P. Tontonoz, J. Chen, R.P. Brun, B.M. Spiegelman, R.M. Evans.
15-Deoxy-Ä12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ.
Cell, 83 (1995), pp. 803-812
[19.]
J.M. Lehmann, L.B. Moore, T.A. Smith-Oliver, W.O. Willkinson, T.M. Willson, S.A. Kliewer.
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ.
J Biol Chem, 270 (1995), pp. 12953-12956
[20.]
D. Robyr, A.L. Wolffe, W. Wahli.
Nuclear hormone receptor coregulation in action: diversity for shared tasks.
Mol Endocrinol, 14 (2000), pp. 329-347
[21.]
P. Delerive, K. De Bosscher, S. Besnard, W. Vanden Berghe, J.M. Peters, F.J. Gonzalez, et al.
Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factor NF-kappaB and AP-1.
J Biol Chem, 274 (1999), pp. 32048-32054
[22.]
P. Delerive, F. Martin-Nizard, G. Chinetti, F. Trottein, J.C. Fruchart, P. Duriez, et al.
PPAR activators inhibit trombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the AP-1 signaling pathway.
Circ Res, 85 (1999), pp. 394-402
[23.]
Y.C. Zhou, D.J. Waxman.
Cross-talk between janus kinase-signal transducer activator of transcription (JAK-STAT) and peroxisomal proliferator activated receptor-α signaling pathway. Growth hormone inhibition of PPAR alpha transcriptional activity mediated by stat5b.
J Biol Chem, 274 (1999), pp. 2672-2681
[24.]
T. Lemberger, B. Staels, R. Saldin, B. Desvergne, J. Auwerx, W. Wahli.
Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids.
J Biol Chem, 269 (1994), pp. 24527-24530
[25.]
H.H. Steineger, H.N. Sorensen, J.D. Tugwood, S. Skrede, O. Spydevold, K.M. Gautvik.
Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA levels of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty acid-induced transcription.
Eur J Biochem, 225 (1994), pp. 967-974
[26.]
M.Y. Wang, R.H. Unger.
Novel form of lipolysis induced by leptin.
J Biol Chem, 274 (1999), pp. 17541-17544
[27.]
S. Kersten, J. Seydoux, J.M. Peters, F.J. González, B. Desvergne, W. Wahli.
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting.
J Clin Invest, 103 (1999), pp. 1489-1498
[28.]
T. Lemberger, R. Saladin, M. Vázquez, F. Assimacopoulos, B. Staels, B. Desvergne, et al.
Expression of the peroxisome proliferator-activated receptor α gene is stimulated by stress and follows a diurnal rhythm.
J Biol Chem, 271 (1996), pp. 1764-1769
[29.]
A. Werman, A. Hollenberg, G. Solanes, C. Bjorbaek, A.J. Vidal-Puig, J.S. Flier.
Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor gamma (PPAR gamma). Differential activity of PPARgamma1 and –2 isoforms and influence of insulin.
J Biol Chem, 272 (1997), pp. 20230-20235
[30.]
C.E. Juge-Aubry, E. Hammar, C. Siegrist-Kaiser, A. Pernin, A. Takeshita, W.W. Chin, et al.
Regulation of the transcriptional activity of the perosxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain.
J Biol Chem, 274 (1999), pp. 10505-10510
[31.]
D. Shao, S.M. Rangwala, S.T. Bailey, S.L. Krakow, M.J. Reinato, M.A. Lazar.
Interdomain communication regulating ligand binding by PPAR gamma.
Nature, 396 (1998), pp. 377-380
[32.]
A. Shalev, C.A. Siegrist-Kaiser, P.M. Yen, W. Wahli, A.G. Burger, W.W. Chin, et al.
The peroxisome proliferator-activated receptor alpha is a phosphoprotein: regulation by insulin.
Endocrinology, 137 (1996), pp. 4499-4502
[33.]
M. Adams, M.J. Reginato, D. Shao, M.A. Lazar, V.K. Chatterjee.
Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogenactivated protein kinase site.
J Biol Chem, 272 (1997), pp. 5128-5132
[34.]
E. Hu, J.B. Kim, P. Sarraf, B.M. Spiegelman.
Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma.
Science, 274 (1996), pp. 2100-2103
[35.]
H.S. Camp, S.R. Tafuri, T. Leff.
c-jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptorα-1 and negatively regulates its transcriptional activity.
Endocrinology, 140 (1999), pp. 392-397
[36.]
B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, J.C. Fruchart.
Mechanism of action of fibrates on lipid and lipoprotein metabolism.
Circulation, 98 (1998), pp. 2088-2093
[37.]
P. Gervois, I. Pineda Torra, J.C. Fruchart, B. Staels.
Regulation of lipid and lipoprotein metabolism by PPAR activators.
Clin Chem Lab Med, 38 (2000), pp. 3-11
[38.]
C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein, W. Wahli.
Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors.
Cell, 68 (1992), pp. 879-887
[39.]
K. Motojima, P. Passilly, J.M. Peters, F.J. González, N. Latruffe.
Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner.
J Biol Chem, 270 (1998), pp. 19269-19276
[40.]
J.M. Peters, N. Hennuyer, B. Staels, J.C. Fruchart, C. Fievert, F.J. Gonzalex, et al.
Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice.
J Biol Chem, 272 (1997), pp. 27307-27312
[41.]
B.I. Frohnert, T.Y. Hui, D.A. Bernlohr.
Identification of a functional peroxisome proliferator-activated responsive element in the murine fatty acid transport protein gene.
J Biol Chem, 274 (1999), pp. 3970-3977
[42.]
J.D. Tugwood, I. Issemann, R.G. Anderson, K.R. Budell, W.L. McPheat, S. Green.
The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene.
EMBO J, 11 (1992), pp. 433-439
[43.]
S.L. Marcus, K.S. Miyata, B.W. Zhang, S. Subramani, R.A. Rachubinski, J.P. Capone.
Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression.
Proc Natl Acad Sci USA, 90 (1993), pp. 5723-5727
[44.]
B.W. Zhang, S.L. Marcus, F.G. Sajjadi, K. Alvares, J.K. Reddy, S. Subramani, et al.
Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase.
Proc Natl Acad Sci USA, 89 (1993), pp. 7541-7545
[45.]
C. Mascaró, E. Acosta, J.A. Ortiz, P.F. Marrero, F.G. Hegardt, D. Haro.
Control of human muscle-type canitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor.
J Biol Chem, 273 (1998), pp. 8560-8563
[46.]
T. Gulick, S. Cresci, T. Caira, D.D. Moore, D.P. Kelly.
The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression.
Proc Natl Acad Sci USA, 91 (1993), pp. 11012-11016
[47.]
A.S. Muerhoff, K.J. Griffin, E.F. Johnson.
The peroxisome proliferator-activated receptor mediates the induction of CYP4A6, a cytochrome-P-450 fatty-acid ω-hydroxylase, by clofibric acid.
J Biol Chem, 267 (1992), pp. 19051-19053
[48.]
T.C. Aldridge, J.D. Tugwood, S. Green.
Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription.
Biochem J, 306 (1995), pp. 473-479
[49.]
K. Schoonjans, A.M. Peinado-Onsurbe, R.A. Heyman, M. Briggs, S. Deeb, B. Staels, et al.
PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene.
EMBO J, 15 (1996), pp. 5336-5348
[50.]
R. Hertz, J. Bishara-Shieban, J. Bar-Tana.
Mode of action of peroxisome proliferators as hypolipidemic drugs. Supression of apolipoprtoein C-III.
J Biol Chem, 270 (1995), pp. 13470-13475
[51.]
B. Staels, N. Vu-Dac, V. Kosykh, R. Saldin, J.C. Fruchart, J. Dallongeville, et al.
Fibrates down-regulate apolipoprotein C-III expression independent of induction of peroxysomal acyl co-enzyme A oxidase.
J Clin Invest, 95 (1995), pp. 705-712
[52.]
S. Sunayama, Y. Watanabe, H. Daida, H. Yamaguchi.
Thiazolidinediones, dyslipidaemia and insulin resistance syndrome.
Curr Opin Lipidol, 11 (2000), pp. 397-402
[53.]
A.M. Lefebvre, J. Peinado-Onsurbe, I. Leitersdorf, M.R. Briggs, J.R. Paterniti, J.C. Fruchart, et al.
Regulation of lipoprotein metabolism by thiazolidindiones occurs through a distinct but complementary mechanism relative to fibrates.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 1756-1764
[54.]
G.J. Miller, N.E. Miller.
Plasma high-density-lipoprotein concentration and development of ischaemic heart-disease.
Lancet, 1 (1975), pp. 16-19
[55.]
N. Vu-Dac, K. Schoonjans, V. Kosykh, J. Dallongeville, J.C. Fruchart, B. Staels, et al.
Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor.
J Clin Invest, 96 (1995), pp. 741-750
[56.]
N. Vu-Dac, K. Schoonjans, B. Laine, J.C. Fruchart, J. Auwerx, B. Staels.
Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element.
J Biol Chem, 269 (1994), pp. 31012-31018
[57.]
S. Acton, A. Rigotti, K.T. Landschulz, S. Xu, H.H. Hobbs, M. Krieger.
Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.
Science, 271 (1996), pp. 518-520
[58.]
D. Calvo, D. Gómez-Coronado, M.A. Lasunción, M.A. Vega.
CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL and VLDL) and modified (OxLDL and AcLDL) lipoproteins.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 2341-2349
[59.]
F. Gbaguidi, G. Chinetti, S. Griglio, M. Antonucci, J.C. Fruchart, J. Chapman, et al.
Regulation of CLA-1 (CD36 and LIMP II analogous I) by activators of proliferator-activated receptors (PPARs.
Atherosclerosis, 144 (1999), pp. 112
[60.]
G. Chinetti, G.F. Gbaguidi, S. Griglio, Z. Mallat, M. Antonucci, P. Poulain, et al.
CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors.
Circulation, 101 (2000), pp. 2411-2417
[61.]
K. Yamakawa-Kobayashi, H. Ishiguro, T. Arinami, R. Miyazaki, H. Hamagicho.
A Val227Ala polymorphism in the peroxisome proliferator activated receptor α (PPARα) gene is associated with variations in serum lipid levels.
J Med Genet, 39 (2002), pp. 189-191
[62.]
D.M. Flavell, Y. Jamshidi, E. Hawe, I. Pineda Torra, M.R. Taskinen, M.H. Frick, et al.
Peroxisome proliferator activated receptor α gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease.
Circulation, 105 (2002), pp. 1440-1445
[63.]
K. Bernal-Mizrachi, L. Zemany, S. Weng, C. Feng, F. Zhang, et al.
PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice.
J Clin Invest, 107 (2001), pp. 1025-1034
[64.]
J.R. Guyton.
The arterial wall and the atherosclerotic lesion.
Curr Opin Lipidol, 5 (1994), pp. 376-381
[65.]
T. Mazzone, C. Reardon.
Expression of heterologous human apolipoprotein E by J774 macrophages enhances cholesterol efflux to HDL3.
J Lipid Res, 35 (1994), pp. 1345-1353
[66.]
G. Chinetti, S. Griglio, M. Antonucci, I. Pineda Torra, P. Delerive, Z. Majd, et al.
Activation of proliferator-activates receptors α and γ induces apoptosis of human monocyte-derived macrophages.
J Biol Chem, 273 (1998), pp. 25573-25581
[67.]
A. Chawla, Y. Barak, L. Nagy, D. Liao, P. Tontonoz, R.M. Evans.
PPARγ-dependent and –independent effects on macrophage-gene expression in lipid metabolism and inflammation.
Nat Med, 7 (2001), pp. 48-52
[68.]
K.J. Moore, E.D. Rosen, M.L. Fitzgerald, F. Randow, L.P. Andersson, D. Altshuler, et al.
The role of PPARγ in macrophage differentiation and cholesterol uptake.
Nat Med, 7 (2001), pp. 41-47
[69.]
M. Ricote, A.C. Li, T.M. Willson, C.J. Kelly, C.K. Glass.
The peroxisome proliferator-activated receptor γ is a negative regulator of macrophage activation.
Nature, 391 (1998), pp. 79-82
[70.]
C. Jiang, A.T. Ting, B. Seed.
PPARγ agonists inhibit production of monocyte inflamamtory cytokines.
Nature, 391 (1998), pp. 82-86
[71.]
A.C. Li, K.K. Brown, M.J. Silvestre, T.M. Willson, W. Palinski, C.K. Glass.
Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice.
J Clin Invest, 106 (2000), pp. 523-531
[72.]
A.R. Collins, W.P. Meehan, U. Kintscher, S. Jackson, S. Wakino, G. Noh, et al.
Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 365-371
[73.]
Z. Chen, S. Ishibashi, S. Perrey, J.I. Osuga, T. Gotoda, T. Kitamine, et al.
Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 372-377
[74.]
T. Claudel, M.D. Leibowitz, C. Fievet, A. Tailleux, B. Wagner, J.J. Repa, et al.
Reduction of atherosclerosis in apolipoprotein E-knockout mice by activation of the retinoid X receptor.
Proc Natl Acad Sci USA, 98 (2001), pp. 2610-2615
[75.]
G. Chinetti, S. Lestavel, V. Bocher, A. Remaley, B. Neve, I. Pineda-Torra, et al.
PPARα and PPARγ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.
Nature Med, 7 (2001), pp. 53-58
[76.]
J. Han, D.P. Hajjar, X. Zhou, A.M. Gotto.
Nicholson AC Regulation of peroxisome proliferator-activated receptor-γ-mediated gene expression.
J Biol Chem, 277 (2002), pp. 23582-23586
[77.]
H. Vosper, L. Patel, T.L. Graham, G.A. Khoudoli, A. Hill, C.H. Macphee, et al.
The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages.
J Biol Chem, 276 (2001), pp. 44258-44265
[78.]
W.R. Oliver, J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, et al.
A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport.
Proc Natl Acad Sci USA, 98 (2001), pp. 5306-5311
[79.]
G. Jedlidstchky, E. Mayatepek, D. Keppler.
Peroxisomal leukotriene degradation: biochemical and clinical implications.
Adv Enzyme Regul, 33 (1993), pp. 181-194
[80.]
R. Ross.
Atherosclerosis: an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[81.]
K. Saitoh, T. Mori, H. Kasai, T. Nagayama, A. Tsuchiya, S. Ohbayashi.
Anti-atheromatous effectts of fenofibrate, a hypolipidemic drug. I: Atheromatous effects are independent of its hypolipidemic effect in cholesterol-fed rabbits.
Folia Pharmaco Jpn, 106 (1995), pp. 41-50
[82.]
M.H. Frick, M. Syvanne, M.S. Nieminen, H. Kauma, S. Majahalme, V. Virtanen, et al.
Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol.
Circulation, 96 (1997), pp. 2137-2143
[83.]
G. Ruotolo, C.G. Ericsson, C. Tettamanti, F. Karpe, L. Grip, B. Svane, et al.
Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT.
J Am Coll Cardiol, 32 (1998), pp. 1648-1656
[84.]
N. Marx, G. Sukhova, T. Collins, P. Libby, J. Plutzky.
PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells.
Circulation, 99 (1999), pp. 3125-3131
[85.]
B.P. Neve, D. Corseaux, G. Chinetti, C. Zawadzki, J.C. Fruchart, P. Duriez, et al.
PPARalpha agonists inhibit tissue factor expression in human monocytes and macrophages.
Circulation, 103 (2001), pp. 207-212
[86.]
M.E. Poynter, R.A. Daynes.
Peroxisome proliferator-activated receptor α activation modulates cellular redox status, represses nuclear factor-kB signaling, and reduces inflammatory cytokine production in aging.
J Biol Chem, 273 (1998), pp. 32833-32841
[87.]
C. Guijarro, J. Egido.
Aterosclerosis e inflamación: papel central del factor de transcripción NF-kB.
Clin Invest Arterioscler, 14 (2002), pp. 77-84
[88.]
E. Klucis, D. Crane, C. Masters.
Sequential alterations in the micro-localization of catalase in mouse liver after treatment with hypolipidemic drugs.
Mol Cell Biochem, 65 (1984), pp. 73-82
[89.]
P. Delerive, P. Gervois, J.C. Fruchart, B. Staels.
Induction of Ikappa-Balpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators.
J Biol Chem, 275 (2000), pp. 36703-36707
[90.]
J.C. Corton, L.Q. Fan, S. Brown, S.P. Anderson, C. Bocos, R.C. Cattley, et al.
Down-regulation of cytochrome P450 2C family members and positive acute-phase response gene expression by peroxisome proliferator chemicals.
Mol Pharmacol, 54 (1998), pp. 463-473
[91.]
A. Castrillo, M.J. Díaz-Guerra, S. Hortelano, P. Martin-Sanz, L. Bosca, J.M. Díaz-Guerra, et al.
Inhibition of IkB kinase and IkB phosphorylation by 15-deoxy d-12,14 prostaglandin J2 inactivated murine macrophages.
Mol Cell Biol, 20 (2000), pp. 1692-1698
[92.]
K. Murao, H. Imachi, A. Momoi, Y. Sayo, H. Hosokawa, M. Sato, et al.
Thiazolidinediones inhibit the production of monocyte chemoattractant protein-1 in cytokine-treated human vascular endothelial cells.
FEBS Lett, 454 (1999), pp. 27-30
[93.]
V. Pasceri, H.D. Wu, J.T. Willerson, E.T. Yeh.
Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-g activators.
Circulation, 101 (2000), pp. 235-238
[94.]
H. Satoh, K. Tsukamoto, Y. Hashimoto, N. Hashimoto, M. Togo, M. Hara, et al.
Thiazolidinediones supress endothelin-1 secretion from bovine vascular endotelial cells: a new posible role of PPARγ on vascular endothelial function.
Biochem Biophys Res Commun, 254 (1999), pp. 757-763
[95.]
A. Rossi, P. Kapahi, G. Natoli, T. Takahashi, Y. Chen, M. Karin, et al.
Anti-inflammatory cyclopentenone prostaglandins are direct.
Nature, 403 (2000), pp. 103-108
[96.]
D.S. Straus, G. Pascual, M. Li, J.S. Welch, M. Ricote, C.H. Hsiang, et al.
15-Deoxy-d-12,14-prostaglandin J2 inhibits multiple steps in the NF-kB signaling pathway.
Proc Natl Acad Sci USA, 97 (2000), pp. 4844-4849
[97.]
P.N. Durrington, M.I. Mackness, D. Bhatnagar, K. Julier, H. Prais, S. Arrol, et al.
Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type IIb hyperlipoproteinemia.
Atherosclerosis, 138 (1998), pp. 217-225
[98.]
M. Kockx, M.P. de Maat, H.C. Knipscheer, J.J. Kastelein, C. Kluft, H.M. Princen, et al.
Effects of gemfibrozil and ciprofibrate on plasma levels of tissue-type plasminogen activator, plasminogen activator inhibitor-1 and fibrinogen in hyperlipidaemic patients.
Thromb Haemost, 78 (1997), pp. 1167-1172
[99.]
M. Kockx, H.M. Princen, T. Kooistra.
Fibrate-modulated expression of fibrinogen, plasminogen activator inhibitor-1 and apolipoprotein A-I in cultured cynomolgus monkey hepatocytes: role of the peroxisome prolifeator-activated receptor-alpha.
Thromb Haemost, 80 (1998), pp. 942-948
[100.]
K. Kato, H. Satoh, Y. Endo, D. Yamada, S. Midorikawa, W. Sato, et al.
Thiazolidinediones down regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARγ in endothelial function.
Biochem Biophys Res Commun, 258 (1999), pp. 431-435
Copyright © 2002. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.