metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Receptores activados por proliferadores peroxisómicos tipo gamma en el síndrom...
Información de la revista
Vol. 17. Núm. S1.
Hot topics en Arteriosclerosis
Páginas 59-69 (mayo 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. S1.
Hot topics en Arteriosclerosis
Páginas 59-69 (mayo 2005)
Hot topics en arteriosclerosis
Acceso a texto completo
Receptores activados por proliferadores peroxisómicos tipo gamma en el síndrome metabólico: ¿amigos o enemigos?
Peroxisome proliferator-activated receptors (PPAR) –gamma in metabolic syndrome: friends or foes?
Visitas
488
M. Vázquez Carrera
Autor para correspondencia
mvazquezcarrera@ub.edu

Correspondencia: Dr. M. Vázquez Carrera. Unidad de Farmacología. Facultad de Farmacia. Diagonal, 643. 08028 Barcelona. España.
Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia. Universidad de Barcelona. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Las tizolidindionas o glitazonas, fármacos que activan los denominados receptores activados por proliferadores peroxisómicos (peroxisome proliferator-activated receptors [PPAR]) de tipo gamma (γ), parecen actuar sobre diferentes factores de riesgo asociados al síndrome metabólico, lo que los ha convertido en una firme promesa para combatir esta enfermedad. En esta revisión se repasa el mecanismo de acción de estos fármacos y sus efectos sobre cada una de las alteraciones asociadas con la presencia del síndrome metabólico (obesidad, resistencia a la insulina, hipertensión, dislipemia y estado protrombótico). Además, también se comentan los efectos adversos de estos fármacos y las nuevas estrategias desarrolladas para conseguir fármacos activadores de PPARγ más eficaces y con menos efectos adversos que las tizolidindionas actualmente comercializadas.

Palabras clave:
Tiazolidindionas
Glitazonas
Síndrome metabólico
PPAR

Thiazolidinediones (TZD), or glitazones, drugs that activate peroxisome proliferator-activated receptors (PPAR)-gamma, seem to act on various risk factors associated to metabolic syndrome, which makes them promising agents with which to combat this disease. The present review describes the mechanism of action of these drugs and their effects on each of the alterations associated with metabolic syndrome (obesity, insulin resistance, hypertension, dyslipidemia and prothrombotic state). Moreover, the adverse effects of these new drugs, and the new strategies developed to achieve more effective PPAR-gamma activating drugs and with fewer adverse effects than currently available TZDs are discussed.

Key words:
Thiazolidinediones
Glitazones
Metabolic syndrome
PPAR
El Texto completo está disponible en PDF
Bibliografía
[1.]
G.M. Reaven.
Role of insulin resistance in human-disease.
Diabetes, 37 (1988), pp. 1595-1607
[2.]
Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report.
Circulation, 106 (2002), pp. 3143-3221
[3.]
E. Mannucci, A. De Bellis, A.M. Cernigoi, C. Tortul, C.M. Rotella, H. Velussi.
Further data on the comparison between World Health Organization and American Diabetes Association diagnostic criteria.
Diabetes Care, 22 (1999), pp. 1755-1756
[4.]
E.S. Ford, W.H. Giles, W.H. Dietz.
Prevalence of the metabolic syndrome among US adults: Findings from the Third National Health and Nutrition Examination Survey.
JAMA, 287 (2002), pp. 356-359
[5.]
P. Zimmet, E.J. Boyko, G.R. Collier.
de Court. Etiology of the metabolic syndrome: potential role of insulin resistance, leptin resistance, and other players.
Ann NY Acad Sci, 892 (1999), pp. 25-44
[6.]
W.C. Knowler, E. Barrett-Connor, S.E. Fowler, R.F. Hamman, J.M. Lachin, E.A. Walker, et al.
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med, 346 (2002), pp. 393-403
[7.]
G.A. Francis, E. Fayard, F. Picard, J. Auwerx.
Nuclear receptors and the control of metabolism.
Ann Rev Physiol, 65 (2003), pp. 261-311
[8.]
O. Braissant, F. Foufelle, C. Scotto, M. Dauca, W. Wahli.
Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat.
Endocrinology, 137 (1996), pp. 354-366
[9.]
A.J. VidalPuig, R.V. Considine, M. Jiménez Linan, A. Werman, W.J. Pories, J.F. Caro, et al.
Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids.
J Clinical Invest, 99 (1997), pp. 2416-2422
[10.]
B. Staels, W. Koenig, A. Habib, R. Merval, M. Lebret, I.P. Torra, et al.
Activation of human aortic smooth-muscle cells is inhibited by PPAR alpha but not by PPAR gamma activators.
Nature, 393 (1998), pp. 790-793
[11.]
P. Tontonoz, L. Nagy, J.G.A. Álvarez, V.A. Thomazy, R.M. Evans.
PPAR gamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL.
Cell, 93 (1998), pp. 241-252
[12.]
H. Duez, Y.S. Chao, M. Hernández, G. Torpier, P. Poulain, S. Mundt, et al.
Reduction of atherosclerosis by the peroxisome proliferator-activated receptor alpha agonist fenofibrate in mice.
J Biol Chem, 277 (2002), pp. 48051-48057
[13.]
H.B. Rubins, S.J. Robins, D. Collins, C.L. Fye, J.W. Anderson, M.B. Elam, et al.
Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol.
N Engl J Med, 341 (1999), pp. 410-418
[14.]
G. Steiner, A. Hamsten, J. Hosking, D. Stewart, P. McLaughlin, P. Gladstone, et al.
Effect of fenofibrate on progression of coronary- artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study.
Lancet, 357 (2001), pp. 905-910
[15.]
D.M. Muoio, P.S. MacLean, D.B. Lang, S. Li, J.A. Houmard, J.M. Way, et al.
Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice: evidence for compensatory regulation by PPAR delta.
J Biological Chem, 277 (2002), pp. 26089-26097
[16.]
A.J. Gilde, K.A.J.M. Van der Lee, P.H.M. Willemsen, G. Chinetti, F.R. Van der Leij, G.J. Van der Vusse, et al.
Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism.
[17.]
L.H. Cheng, G.L. Ding, Q.H. Qin, Y. Huang, W. Lewis, N. He, et al.
Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy.
Nature Med, 10 (2004), pp. 1245-1250
[18.]
T.M. Willson, M.H. Lambert, S.A. Kliewer.
Peroxisome proliferatoractivated receptor gamma and metabolic disease.
Ann Rev Biochem, 70 (2001), pp. 341-367
[19.]
M. Dubois, F. Pattou, J. Kerr-Conte, V. Gmyr, B. Vandewalle, P. Desreumaux, et al.
Expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) in normal human pancreatic islet cells.
Diabetologia, 43 (2000), pp. 1165-1169
[20.]
B.M. Forman, P. Tontonoz, J. Chen, R.P. Brun, B.M. Spiegelman, R.M. Evans.
15-deoxy-delta(12,14)-prostaglandin J(2) is a ligand for the adipocyte determination factor PPAR-gamma.
Cell, 83 (1995), pp. 803-812
[21.]
J.T. Huang, J.S. Welch, M. Ricote, C.J. Binder, T.M. Willson, C. Kelly, et al.
Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase.
Nature, 400 (1999), pp. 378-382
[22.]
J.M. Lehmann, L.B. Moore, T.A. Smitholiver, W.O. Wilkison, T.M. Willson, S.A. Kliewer.
An antidiabetic thiazolidinedione is a high-affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR-gamma).
J Biol Chem, 270 (1995), pp. 12953-12956
[23.]
K.K. Brown, B.R. Henke, S.G. Blanchard, J.E. Cobb, R. Mook, I. Kaldor, et al.
A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-gamma reverses the diabetic phenotype of the Zucker diabetic fatty rat.
Diabetes, 48 (1999), pp. 1415-1424
[24.]
J.M. Lehmann, J.M. Lenhard, B.B. Oliver, G.M. Ringold, S.A. Kliewer.
Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs.
J Biol Chem, 272 (1997), pp. 3406-3410
[25.]
J. Berger, D.E. Moller.
The mechanisms of action of PPARs.
[26.]
O. Barbier, I.P. Torra, Y. Duguay, C. Blanquart, J.C. Fruchart, C. Glineur, et al.
Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis.
Arterioscl Thromb Vasc Biol, 22 (2002), pp. 717-726
[27.]
G. Chinetti, J.C. Fruchart, B. Staels.
Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation.
Inflamm Res, 49 (2000), pp. 497-505
[28.]
J.P. Berger, A.E. Petro, K.L. MacNaul, L.J. Kelly, B.B. Zhang, K. Richards, et al.
Distinct properties and advantages of a novel peroxisome proliferator-activated protein gamma selective modulator.
Mol Endocrinol, 17 (2003), pp. 662-676
[29.]
R.A. Daynes, D.C. Jones.
Emerging roles of PPAR in inflammation and immunity.
Nature Rev Immunol, 2 (2002), pp. 748-759
[30.]
E.D. Rosen, C.J. Walkey, P. Puigserver, B.M. Spiegelman.
Transcriptional regulation of adipogenesis.
Genes Develop, 14 (2000), pp. 1293-1307
[31.]
E.D. Rosen, B.M. Spiegelman.
PPAR gamma: a nuclear regulator of metabolism, differentiation, and cell growth.
J Biol Chem, 276 (2001), pp. 37731-37734
[32.]
E.D. Rosen, C.H. Hsu, X.Z. Wang, S. Sakai, M.W. Freeman, F.J. González, et al.
C/EBP alpha induces adipogenesis through PPAR gamma: a unified pathway.
Genes Develop, 16 (2002), pp. 22-26
[33.]
J. Auwerx.
PPAR gamma, the ultimate thrifty gene.
Diabetologia, 42 (1999), pp. 1033-1049
[34.]
J.M. Ye, P.J. Doyle, M.A. Iglesias, D.G. Watson, G.J. Cooney, E.W. Kraegen.
Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation.
Diabetes, 50 (2001), pp. 411-417
[35.]
J. Moitra, M.M. Mason, M. Olive, D. Krylov, O. Gavrilova, B. Marcus- Samuels, et al.
Life without white fat: a transgenic mouse.
Genes Develop, 12 (1998), pp. 3168-3181
[36.]
G.S. Hotamisligil, B.M. Spiegelman.
Tumor-necrosis-factor-alpha: a key component of the obesity-diabetes link.
Diabetes, 43 (1994), pp. 1271-1278
[37.]
C.M. Steppan, S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, et al.
The hormone resistin links obesity to diabetes.
Nature, 409 (2001), pp. 307-312
[38.]
J. Berger, M. Tanen, A. Elbrecht, A. Hermanowski-Vosatka, D.E. Moller, S.D. Wright, et al.
Peroxisome proliferator-activated receptor gamma ligands inhibit adipocyte 11 beta-hydroxysteroid dehydrogenase type 1 expression and activity.
J Biol Chem, 276 (2001), pp. 12629-12635
[39.]
H. Masuzaki, J. Paterson, H. Shinyama, N.M. Morton, J.J. Mullins, J.R. Seckl, et al.
A transgenic model of visceral obesity and the metabolic syndrome.
Science, 294 (2001), pp. 2166-2170
[40.]
P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish.
A novel serum-protein similar to c1q, produced exclusively in adipocytes.
J Biol Chem, 270 (1995), pp. 26746-26749
[41.]
P.D.G. Miles, O.M. Romeo, K. Higo, A. Cohen, K. Rafaat, J.M. Olefsky.
TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone.
Diabetes, 46 (1997), pp. 1678-1683
[42.]
P. Peraldi, M. Xu, B.M. Spiegelman.
Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling.
J Clin Invest, 100 (1997), pp. 1863-1869
[43.]
N. Maeda, I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, et al.
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.
Nature Med, 8 (2002), pp. 731-737
[44.]
M. Matsuda, I. Shimomura, M. Sata, Y. Arita, M. Nishida, N. Maeda, et al.
Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis.
J Biol Chem, 277 (2002), pp. 37487-37491
[45.]
Y. Matsuzawa, T. Funahashi, S. Kihara, I. Shimomura.
Adiponectin and metabolic syndrome.
Arteriosclerosis Thromb Vasc Biol, 24 (2004), pp. 29-33
[46.]
N. Maeda, M. Takahashi, T. Funahashi, S. Kihara, H. Nishizawa, K. Kishida, et al.
PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.
Diabetes, 50 (2001), pp. 2094-2099
[47.]
U.B. Pajvani, M. Hawkins, T.P. Combs, M.W. Rajala, T. Doebber, J.P. Berger, et al.
Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity.
J Biol Chem, 279 (2004), pp. 12152-12162
[48.]
L. Patel, A.C. Buckels, I.J. Kinghorn, P.R. Murdock, J.D. Holbrook, C. Plumpton, et al.
Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators.
Biochem Biophys Res Commun, 300 (2003), pp. 472-476
[49.]
H.Y. Song, N. Shojima, H. Sakoda, T. Ogihara, M. Fujishiro, H. Katagiri, et al.
Resistin is regulated by C/EBPs, PPARs, and signaltransducing molecules.
Biochem Biophys Res Commun, 299 (2002), pp. 291-298
[50.]
D.B. Savage, C.P. Sewter, E.S. Klenk, D.G. Segal, A. Vidal-Puig, R.V. Considine, et al.
Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans.
Diabetes, 50 (2001), pp. 2199-2202
[51.]
B.S. Cha, T.P. Ciaraldi, L. Carter, S.E. Nikoulina, S. Mudaliar, R. Mukherjee, et al.
Peroxisome proliferator-activated receptor (PPAR) gamma and retinoid X receptor (RXR) agonists have complementary effects on glucose and lipid metabolism in human skeletal muscle.
Diabetologia, 44 (2001), pp. 444-452
[52.]
J.M. Way, W.W. Harrington, K.K. Brown, W.K. Gottschalk, S.S. Sundseth, T.A. Mansfield, et al.
Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues.
Endocrinology, 142 (2001), pp. 1269-1277
[53.]
S. Yonemitsu, H. Nishimura, M. Shintani, R. Inoue, Y. Yamamoto, H. Masuzaki, et al.
Troglitazone induces GLUT4 translocation in L6 myotubes.
Diabetes, 50 (2001), pp. 1093-1101
[54.]
D.M. Jia, M. Otsuki.
Troglitazone stimulates pancreatic growth in normal rats.
Pancreas, 24 (2002), pp. 303-312
[55.]
H.I. Kim, J.Y. Cha, S.Y. Kim, J.W. Kim, K.J. Roh, J.K. Seong, et al.
Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells.
Diabetes, 51 (2002), pp. 676-685
[56.]
S.L. Suter, J.J. Nolan, P. Wallace, B. Gumbiner, J.M. Olefsky.
Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects.
Diabetes Care, 15 (1992), pp. 193-203
[57.]
S.E. Inzucchi, D.G. Maggs, G.R. Spollett, S.L. Page, F.S. Rife, V. Walton, et al.
Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus.
N Engl J Med, 338 (1998), pp. 867-872
[58.]
K. Matsusue, M. Haluzik, G. Lambert, S.H. Yim, O. Gavrilova, J.M. Ward, et al.
Liver-specific disruption of PPAR gamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes.
J Clin Invest, 111 (2003), pp. 737-747
[59.]
A.W. Norris, L.H. Chen, S.J. Fisher, I. Szanto, M. Ristow, A.C. Jozsi, et al.
Muscle-specific PPAR gamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones.
J Clin Invest, 112 (2003), pp. 608-618
[60.]
O. Gavrilova, M. Haluzik, K. Matsusue, J.J. Cutson, L. Johnson, K.R. Dietz, et al.
Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass.
J Biol Chem, 278 (2003), pp. 34268-34276
[61.]
R.W. Stout.
Diabetes and atherosclerosis.
Biomed Pharmacother, 47 (1993), pp. 1-2
[62.]
H.N. Ginsberg.
Insulin resistance and cardiovascular disease.
J Clin Invest, 106 (2000), pp. 453-458
[63.]
B.V. Howard, W.J. Howard.
Dyslipidemia in non-insulin-dependent diabetes-mellitus.
Endocrine Rev, 15 (1994), pp. 263-274
[64.]
S.M. Haffner, R. D’Agostino, L. Mykkanen, R. Tracy, B. Howard, M. Rewers, et al.
Insulin sensitivity in subjects with type 2 diabetes: relationship to cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study.
Diabetes Care, 22 (1999), pp. 562-568
[65.]
I. Barroso, M. Gurnell, V.E.F. Crowley, M. Agostini, J.W. Schwabe, M.A. Soos, et al.
Dominant negative mutations in human PPAR gamma associated with severe insulin resistance, diabetes mellitus and hypertension.
Nature, 402 (1999), pp. 880-883
[66.]
A.K. Agarwal, A. Garg.
A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy.
J Clin Endocrinol Metabol, 87 (2002), pp. 408-411
[67.]
R.A. Hegele, H.N. Cao, C. Frankowski, S.T. Mathews, T. Leff.
PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy.
Diabetes, 51 (2002), pp. 3586-3590
[68.]
D.B. Savage, G.D. Tan, C.L. Acerini, S.A. Jebb, M. Agostini, M. Gurnell, et al.
Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma.
Diabetes, 52 (2003), pp. 910-917
[69.]
S. Aronoff, S. Rosenblatt, S. Braithwaite, J.W. Egan, A.L. Mathisen, R.L. Schneider.
Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study.
Diabetes Care, 23 (2000), pp. 1605-1611
[70.]
W.A. Scherbaum, B. Goke.
Metabolic efficacy and safety of oncedaily pioglitazone monotherapy in patients with type 2 diabetes: a double-blind, placebo-controlled study.
Hormone Metabol Res, 34 (2002), pp. 589-595
[71.]
S. Rosenblatt, B. Miskin, N.B. Glazer, M.J. Prince, K.E. Robertson.
The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus.
Coronary Artery Dis, 12 (2001), pp. 413-423
[72.]
D. Einhorn, M. Rendell, J. Rosenzweig, J.W. Egan, A.L. Mathisen, R.L. Schneider.
Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes melitus: a randomized, placebo-controlled study.
Clin Ther, 22 (2000), pp. 1395-1409
[73.]
M.S. Kipnes, A. Krosnick, M.S. Rendell, J.W. Egan, A.L. Mathisen, R.L. Schneider.
Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study.
Am J Med, 111 (2001), pp. 10-17
[74.]
J. Rosenstock, D. Einhorn, K. Hershon, N.B. Glazer, S. Yu.
Efficacy and safety of pioglitazone in type 2 diabetes: a randomised, placebo-controlled study in patients receiving stable insulin therapy.
Int J Clin Pract, 56 (2002), pp. 251-257
[75.]
H.E. Lebovitz, J.F. Dole, R. Patwardhan, E.B. Rappaport, M.I. Freed.
Rosiglitazone monotherapy is effective in patients with type 2 diabetes.
J Clin Endocrinol Metabol, 86 (2001), pp. 280-288
[76.]
V. Fonseca, J. Rosenstock, R. Patwardhan, A. Salzman.
Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial.
JAMA, 283 (2000), pp. 1695-1702
[77.]
F.J. Gómez-Pérez, G. Fanghanel-Salmon, J.A. Barbosa, J. Montes-Villarreal, R.A. Berry, G. Warsi, et al.
Efficacy and safety of rosiglitazone plus metformin in Mexicans with type 2 diabetes.
Diabetes-Metabol Res Rev, 18 (2002), pp. 127-134
[78.]
V. Vongthavaravat, B.L. Wajchenberg, J.N. Waitman, J.A. Quimpo, P.S. Menon, F. Ben Khalifa, et al.
An international study of the effects of rosiglitazone plus sulphonylurea in patients with type 2 diabetes.
Curr Med Res Op, 18 (2002), pp. 456-461
[79.]
P. Raskin, M. Rendell, M.C. Riddle, J.F. Dole, M.I. Freed, J. Rosenstock.
A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes.
Diabetes Care, 24 (2001), pp. 1226-1232
[80.]
T. Meriden.
Progress with thiazolidinediones in the management of type 2 diabetes mellitus.
Clin Ther, 26 (2004), pp. 177-190
[81.]
C.H. Lee, R.M. Evans.
Peroxisome proliferator-activated receptor-gamma in macrophage lipid homeostasis.
Trends Endocrinol Metabol, 13 (2002), pp. 331-335
[82.]
M. Ricote, J. Huang, L. Fajas, A. Li, J. Welch, J. Najib, et al.
Expression of the peroxisome proliferator-activated receptor gamma (PPAR gamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein.
Proc Nat Acad Sci USA, 95 (1998), pp. 7614-7619
[83.]
L. Nagy, P. Tontonoz, J.G.A. Álvarez, H.W. Chen, R.M. Evans.
Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma.
Cell, 93 (1998), pp. 229-240
[84.]
A.C. Li, K.K. Brown, M.J. Silvestre, T.M. Willson, W. Palinski, C.K. Glass.
Peroxisome proliferator-activate inhibit development of atherosclerosis in LDL receptor-deficient mice.
J Clin Invest, 106 (2000), pp. 523-531
[85.]
T. Claudel, M.D. Leibowitz, C. Fievet, A. Tailleux, B. Wagner, J.J. Repa, et al.
Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor.
Proc Nat Acad Sci USA, 98 (2001), pp. 2610-2615
[86.]
P. Delerive, F. Martin-Nizard, G. Chinetti, F. Trottein, J.C. Fruchart, J. Najib, et al.
Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.
Circ Res, 85 (1999), pp. 394-402
[87.]
A. Chawla, Y. Barak, L. Nagy, D. Liao, P. Tontonoz, R.M. Evans.
PPAR-gamma dependent and independent effects on macrophage- gene expression in lipid metabolism and inflammation.
Nature Med, 7 (2001), pp. 48-52
[88.]
G. Chinetti, S. Lestavel, A. Remaley, B. Neve, I.P. Torra, A. Minnich, et al.
PPAR alpha and PPAR gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABC-1 pathway.
Circulation, 102 (2000), pp. 311-321
[89.]
M. Ricote, A.C. Li, T.M. Willson, C.J. Kelly, C.K. Glass.
The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation.
Nature, 391 (1998), pp. 79-82
[90.]
K.J. Moore, E.D. Rosen, M.L. Fitzgerald, F. Randow, L.P. Andersson, D. Altshuler, et al.
The role of PPAR-gamma in macrophage differentiation and cholesterol uptake.
Nature Med, 7 (2001), pp. 41-47
[91.]
G. Chinetti, S. Lestavel, V. Bocher, A.T. Remaley, B. Neve, I.P. Torra, et al.
PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.
Nature Med, 7 (2001), pp. 53-58
[92.]
A.A. Parulkar, M.L. Pendergrass, R. Granda-Ayala, T.R. Lee, V.A. Fonseca.
Nonhypoglycemic effects of thiazolidinediones.
Ann Int Med, 134 (2001), pp. 61-71
[93.]
Y. Nakamura, Y. Ohya, U. Onaka, K. Fujii, I. Abe, M. Fujishima.
Inhibitory action of insulin-sensitizing agents on calcium channels in smooth muscle cells from resistance arteries of guinea-pig.
Br J Pharmacol, 123 (1998), pp. 675-682
[94.]
H. Satoh, K. Tsukamoto, Y. Hashimoto, N. Hashimoto, M. Togo, M. Hara, et al.
Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPAR gamma on vascular endothelial function.
Biochem Biophys Res Commun, 254 (1999), pp. 757-763
[95.]
K. Kato, H. Satoh, Y. Endo, D. Yamada, S. Midorikawa, W. Sato, et al.
Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPAR gamma in endothelial function.
Biochem Biophys Res Commun, 258 (1999), pp. 431-435
[96.]
H. Itoh, K. Doi, T. Tanaka, Y. Fukunaga, K. Hosoda, G. Inoue, et al.
Hypertension and insulin resistance: role of peroxisome proliferator-activated receptor gamma.
Clin Exp Pharmacol Physiol, 26 (1999), pp. 558-560
[97.]
M.B. Davidson.
Clinical Implications of Insulin-Resistance Syndromes.
Am J Med, 99 (1995), pp. 420-426
[98.]
A. Melidonis, A. Stefanidis, S. Tournis, S. Manoussakis, S. Handanis, M. Zairis, et al.
The role of strict metabolic control by insulin infusion on fibrinolytic profile during an acute coronary event in diabetic patients.
Clin Cardiol, 23 (2000), pp. 160-164
[99.]
D.A. Ehrmann, D.J. Schneider, B.E. Sobel, M.K. Cavaghan, J. Imperial, R.L. Rosenfield, et al.
Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis, and fibrinolysis in women with polycystic ovary syndrome.
J Clin Endocrinol Metabol, 82 (1997), pp. 2108-2116
[100.]
V.A. Fonseca, T. Reynolds, D. Hemphill, C. Randolph, J. Wall, T.R. Valiquet, et al.
Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus.
J Diabetes Complicat, 12 (1998), pp. 181-186
[101.]
M. Freed, D. Fuell, L. Menci, M. Heise, B. Goldstein.
Effect of combination therapy with rosiglitazone and glibenclamide on PAI-1 antigen, PAI-1 activity, and tPA in patients with type 2 diabetes.
Diabetologia, 43 (2000), pp. A267-A277
[102.]
P.H. Black.
The inflammatory response is an integral part of the stress response: implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X.
Brain Beh Immun, 17 (2003), pp. 350-364
[103.]
P. Dandona, A. Aljada, A. Chaudhuri, A. Bandyopadhyay.
The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes.
J Clin Endocrinol Metabol, 88 (2003), pp. 2422-2429
[104.]
J.W. Smith, T.L. Mcdonald.
Production of serum amyloid-a and Creactive protein by HepG2 cells stimulated with combinations of cytokines or monocyte conditioned media: the effects of prednisolone.
Clin Exp Immunol, 90 (1992), pp. 293-299
[105.]
S. Mora, R.S. Blumenthal, L.R. Yanek, T.F. Moy, L.C. Becker, D.M. Becker.
Elevated C-reactive protein in high-risk asymptomatic individuals is strongly associated with the metabolic syndrome.
J Am Coll Cardiol, 41 (2003), pp. A292A-A293A
[106.]
S.M. Haffner, A.S. Greenberg, W.M. Weston, H.Z. Chen, K. Williams, M.I. Freed.
Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus.
Circulation, 106 (2002), pp. 679-684
[107.]
J.S. Sidhu, D. Cowan, J.C. Kaski.
The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients.
J Am Coll Cardiol, 42 (2003), pp. 1757-1763
[108.]
C.Y. Jiang, A.T. Ting, B. Seed.
PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.
Nature, 391 (1998), pp. 82-86
[109.]
S.M. Jackson, F. Parhami, X.P. Xi, J.A. Berliner, W.A. Hsueh, R.E. Law, et al.
Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction.
Arteriosc Thromb Vasc Biol, 19 (1999), pp. 2094-2104
[110.]
V. Pasceri, H.D. Wu, J.T. Willerson, E.T.H. Yeh.
Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators.
Circulation, 101 (2000), pp. 235-238
[111.]
M. Li, G. Pascual, C.K. Glass.
Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene.
Mol Cell Biol, 20 (2000), pp. 4699-4707
[112.]
I. Inoue, S. Goto, T. Matsunaga, T. Nakajima, T. Awata, S. Hokari, et al.
The ligands/activators for peroxisome proliferator-activated receptor alpha (PPAR alpha) and PPAR gamma increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells.
Metabolism, 50 (2001), pp. 3-11
[113.]
S. Wakino, A.R. Collins, U. Kintscher, S. Kim, F. Yin, G. Noh, et al.
PPAR gamma ligands inhibit angiotensin II-induced EGR-1 expression in vivo and in vitro.
Circulation, 104 (2001), pp. 180-190
[114.]
P. Delerive, J.C. Fruchart, B. Staels.
Peroxisome proliferator-activated receptors in inflammation control.
J Endocrinol, 169 (2001), pp. 453-459
[115.]
J.S. Welch, M. Ricote, T.E. Akiyama, F.J. González, C.K. Glass.
PPAR gamma and PPAR delta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages.
Proc Nat Acad Sci USA, 100 (2003), pp. 6712-6717
[116.]
K.H. Han, O. Quehenberger.
Ligands for peroxisome proliferator-activated receptor inhibit monocyte CCR2 expression stimulated by plasma lipoproteins.
Trends Cardiovasc Med, 10 (2000), pp. 209-216
[117.]
T.A. McCaffrey, C.Z. Fu, B.H. Du, S. Eksinar, K.C. Kent, H. Bush, et al.
High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis.
J Clin Invest, 105 (2000), pp. 653-662
[118.]
R.S. Ahima, J.S. Flier.
Adipose tissue as an endocrine organ.
Trends Endocrinol Metabol, 11 (2000), pp. 327-332
[119.]
T.P. Combs, J.A. Wagner, J. Berger, T. Doebber, W.J. Wang, B.B. Zhang, et al.
Induction of adipocyte complement-related protein of 30 kilodaltons by PPAR gamma agonists: a potential mechanism of insulin sensitization.
Endocrinology, 143 (2002), pp. 998-1007
[120.]
R.W. Nesto, D. Bell, R.O. Bonow, V. Fonseca, S.M. Grundy, E.S. Horton, et al.
Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association.
Circulation, 108 (2003), pp. 2941-2948
[121.]
R.W. Nesto, D. Bell, R.O. Bonow, V. Fonseca, S.M. Grundy, E.S. Horton, et al.
Thiazolidinedione use, fluid retention, and congestive heart failure.
Diabetes Care, 27 (2004), pp. 256-263
[122.]
E.A.M. Gale.
Lessons from the glitazones: a story of drug development.
Lancet, 357 (2001), pp. 1870-1875
[123.]
F. Picard, J. Auwerx.
PPAR (gamma) and glucose homeostasis.
[124.]
B.R. Henke, S.G. Blanchard, M.F. Brackeen, K.K. Brown, J.E. Cobb, J.L. Collins, et al.
N-(2-Benzoylphenyl)-L-tyrosine PPAR gamma agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents.
J Med Chem, 41 (1998), pp. 5020-5036
Copyright © 2005. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.arteri.2022.03.005
No mostrar más