metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Antiangiogénesis y estatinas
Información de la revista
Vol. 17. Núm. S2.
Efectos pleiotrópicos de las estatinas
Páginas 15-22 (septiembre 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. S2.
Efectos pleiotrópicos de las estatinas
Páginas 15-22 (septiembre 2005)
Efectos pleiotrópicos de las estatinas
Acceso a texto completo
Antiangiogénesis y estatinas
Anti-angiogenesis and statins
Visitas
322
J. Martínez-González
Autor para correspondencia
jmartinezg@csic-iccc.santpau.es

Correspondencia: Dr. J. Martínez González. Centro de Investigación Cardiovascular (CSIC/ICCC). Hospital de la Santa Creu i Sant Pau. Sant Antoni Maria Claret, 167. 08025 Barcelona. España.
, C. Rodríguez
Centro de Investigación Cardiovascular. CSIC/ICCC. Hospital de la Santa Creu i Sant Pau. Barcelona. España
Este artículo ha recibido
Información del artículo

Los resultados de algunos estudios clínicos sugieren que los inhibidores de la HMG-CoA reductasa, o estatinas, ejercen efectos cardioprotectores independientemente de su efecto hipolipemiante. Uno de los efectos pleitrópicos de las estatinas más estudiados es su capacidad de modificar la función endotelial y de modular la angiogénesis. Las estatinas ejercen un efecto bifásico sobre la angiogénesis dependiente de la dosis: a bajas concentraciones promueven la angiogénesis (proangiogénicas), mientras que a concentraciones superiores la inhiben (antiangiogénicas). Aunque parte del potencial efecto antiangiogénico pueda derivarse de su actividad antiinflamatoria, las estatinas pueden inhibir mecanismos implicados en la angiogénesis. Los efectos antiangiogénicos son consecuencia de la reducción de la isoprenilación de proteínas clave (RhoA) que intervienen en vías de señalización que regulan la migración, la proliferación y la organización del citosqueleto celular. Actualmente se desconoce el impacto real del potencial antiangiogénico de las estatinas sobre la arteriosclerosis y otras enfermedades, como el cáncer, en las que la angiogénesis es un componente fisiopatológico importante. De hecho, los resultados de algunos estudios clínicos sugieren que estos fármacos podrían reducir la incidencia de cáncer. Sin embargo, se necesitan estudios diseñados específicamente para determinar si la actividad antiangiogénica de las estatinas es relevante en la arteriosclerosis y si puede influir en el crecimiento y la propagación de los tumores.

Palabras clave:
Angiogénesis
Estatinas
Arteriosclerosis
Cáncer

The results of some clinical studies suggest that HMG-CoA reductase inhibitors, or statins, have cardioprotective effects that are independent of their lipid lowering effects. One of the most widely studied pleiotropic effects of statins is their ability to modify endothelial function and to modulate angiogenesis. Statins exercise a biphasic effect on angiogenesis, depending on the dose: at low concentrations they promote angiogenesis (pro-angiogenic effect) while at higher concentrations they inhibit it (anti-angiogenic effect). Although some of the potential anti-angiogenic effects could be derived from their anti-inflammatory activity, statins can inhibit key angiogenic mechanisms. The anti-angiogenic effects are a consequence of the reduction of isoprenylation of key proteins (i.e. RhoA), which intervene in signaling pathways that regulate the migration, proliferation and organizations of the cellular cytoskeleton. Currently, the real impact of the anti-angiogenic potential of statins on arteriosclerosis and on other diseases, such as cancer, in which angiogenesis is an important physiopathological component is unknown. Indeed, the results of some clinical studies suggest that these drugs could reduce the incidence of cancer. However, studies specifically designed to determine whether the anti-angiogenic activity of statins is important in arteriosclerosis and whether it can influence the growth and propagation of tumors are required.

Key words:
Angiogenesis
Estatins
Arteriosclerosis
Cancer
El Texto completo está disponible en PDF
Bibliografía
[1.]
Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS).
Circulation, 97 (1998), pp. 1440-1445
[2.]
P. Carmeliet.
Angiogenesis in health and disease.
Natur Med, 9 (2003), pp. 653-660
[3.]
J. Martínez González, L. Badimon.
Inhibidores de la HMG-CoA reductasa, angiogénesis y cancer.
Clin Invest Arterioscl, 17 (2005), pp. 31-39
[4.]
L. Vincent, W. Chen, L. Hong, F. Mirshahi, Z. Mishal, T. Mirshahi-Khorassani, et al.
Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its antiangiogenic effect.
FEBS Lett, 495 (2001), pp. 159-166
[5.]
M. Weis, C. Heeschen, A.J. Glassford, J.P. Cooke.
Statins have biphasic effects on angiogenesis.
Circulation, 105 (2002), pp. 739-745
[6.]
M. Frick, J. Dulak, J. Cisowski, A. Jozkowicz, R. Zwick, H. Alber, et al.
Statins differentially regulate vascular endothelial growth factor synthesis in endothelial and vascular smooth muscle cells.
Atherosclerosis, 170 (2003), pp. 229-236
[7.]
H.J. Park, D. Kong, L. Iruela-Arispe, U. Begley, D. Tang, J.B. Galper.
3- hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA.
Circ Res, 91 (2002), pp. 143-150
[8.]
C. Urbich, E. Dernbach, A.M. Zeiher, S. Dimmeler.
Double-edged role of statins in angiogenesis signaling.
Circ Res, 90 (2002), pp. 737-744
[9.]
T. Okamoto, S. Yamagishi, Y. Inagaki, S. Amano, K. Koga, R. Abe, et al.
Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin.
FASEB J, 16 (2002), pp. 1928-1930
[10.]
C. Feng, C. Ye, X. Liu, H. Ma, M. Li.
Beta4 integrin is involved in statin- induced endothelial cell death.
Biochem Biophys Res Commun, 323 (2004), pp. 858-864
[11.]
L. Vincent, C. Soria, F. Mirshahi, P. Opolon, Z. Mishal, J.P. Vannier, et al.
Cerivastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme a reductase, inhibits endothelial cell proliferation induced by angiogenic factors in vitro and angiogenesis in in vivo models.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 623-629
[12.]
G.P. Van Nieuw Amerongen, P. Koolwijk, A. Versteilen, V.W. Van Hinsbergh.
Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro.
Arterioscler Thromb Vasc Biol, 23 (2003), pp. 211-217
[13.]
J.R. Jacobson, S.M. Dudek, K.G. Birukov, S.Q. Ye, D.N. Grigoryev, R.E. Girgis, et al.
Cytoskeletal activation and altered gene expression in endothelial barrier regulation by simvastatin.
Am J Respir Cell Mol Biol, 30 (2004), pp. 662-670
[14.]
S. Morikawa, W. Takabe, C. Mataki, Y. Wada, A. Izumi, Y. Saito, et al.
Global analysis of RNA expression profile in human vascular cells treated with statins.
J Atheroscler Thromb, 11 (2004), pp. 62-72
[15.]
U. Ikeda, M. Shimpo, R. Ohki, H. Inaba, M. Takahashi, K. Yamamoto, et al.
Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells.
Hypertension, 36 (2000), pp. 325-329
[16.]
S. McGinn, P. Poronnik, E.D. Gallery, C.A. Pollock.
The effects of high glucose and atorvastatin on endothelial cell matrix production.
Diabet Med, 21 (2004), pp. 1102-1107
[17.]
S.H. Wilson, J. Herrmann, L.O. Lerman, D.R. Holmes Jr, C. Napoli, E.L. Ritman, et al.
Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering.
Circulation, 105 (2002), pp. 415-418
[18.]
E. Bacharach, A. Itin, E. Keshet.
In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis.
Proc Natl Acad Sci USA, 89 (1992), pp. 10686-10690
[19.]
L. Mussoni, C. Banfi, L. Sironi, M. Arpaia, E. Tremoli.
Fluvastatin inhibits basal and stimulated plasminogen activator inhibitor 1, but induces tissue type plasminogen activator in cultured human endothelial cells.
Thromb Haemost, 84 (2000), pp. 59-64
[20.]
T. Bourcier, P. Libby.
HMG-CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 556-562
[21.]
D.A. Freedman, J. Folkman.
Maintenance of G1 checkpoint controls in telomerase-immortalized endothelial cells.
Cell Cycle, 3 (2004), pp. 811-816
[22.]
W. Dichtl, J. Dulak, M. Frick, H.F. Alber, S.P. Schwarzacher, M.P. Ares, et al.
HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol, 23 (2003), pp. 58-63
[23.]
J. Martínez-González, J. Rius, A. Castello, C. Cases-Langhoff, L. Badimon.
Neuron-derived orphan receptor-1 (NOR-1) modulates vascular smooth muscle cell proliferation.
Circ Res, 92 (2003), pp. 96-103
[24.]
J. Crespo, J. Martínez-González, J. Rius, L. Badimon.
Simvastatin inhibits NOR-1 expression induced by hyperlipemia by interfering with CREB activation.
Cardiovasc Res, 67 (2005), pp. 333-341
[25.]
T. Alon, I. Hemo, A. Itin, J. Pe’er, J. Stone, E. Keshet.
Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.
Nat Med, 1 (1995), pp. 1024-1028
[26.]
J.K. Williams, G.K. Sukhova, D.M. Herrington, P. Libby.
Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys.
J Am Coll Cardiol, 31 (1998), pp. 684-691
[27.]
H.F. Alber, J. Dulak, M. Frick, W. Dichtl, S.P. Schwarzacher, O. Pachinger, et al.
Atorvastatin decreases vascular endothelial growth factor in patients with coronary artery disease.
J Am Coll Cardiol, 39 (2002), pp. 1951-1955
[28.]
A.D. Blann, F.M. Belgore, J. Constans, C. Conri, G.Y. Lip.
Plasma vascular endothelial growth factor and its receptor Flt-1 in patients with hyperlipidemia and atherosclerosis and the effects of fluvastatin or fenofibrate.
Am J Cardiol, 87 (2001), pp. 1160-1213
[29.]
K.S. Moulton.
Plaque angiogenesis and atherosclerosis.
Curr Atheroscler Rep, 3 (2001), pp. 225-233
[30.]
J.O. Juan-Babot, J. Martínez-González, M. Berrozpe, L. Badimon.
Neovascularización en arterias coronarias humanas con distintos grados de lesión.
Rev Esp Cardiol, 56 (2003), pp. 978-986
[31.]
A.N. Tenaglia, K.G. Peters, M.H. Sketch Jr, B.H. Annex.
Neovascularization in atherectomy speciments from patiens with unstable angina: implications for pathogenesis of unstable angina.
Am Heart J, 135 (1998), pp. 10-14
[32.]
M.J. McCarthy, I.M. Loftus, M.M. Thompson, L. Jones, N.J. London, P.R. Bell, et al.
Vascular surgical society of Great Britain and Ireland: angiogenesis and the atherosclerotic carotid plaque: association between symptomatology and plaque morphology.
[33.]
K.S. Moulton, E. Heller, M.A. Konerding, E. Flynn, W. Palinski, J. Folkman.
Angiogenesis inhibitors endostatin or TNF-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice.
Circulation, 99 (1999), pp. 1726-1732
[34.]
K.S. Moulton, K. Vakili, D. Zurakowski, M. Soliman, C. Butterfield, E. Sylvin, et al.
Inhibition of plaque neovascularization reduces macrophague accumulation and progression of advanced atherosclerosis.
Proc Natl Acad Sci USA, 100 (2003), pp. 4736-4741
[35.]
M. Aikawa, E. Rabkin, S. Sugiyama, S.J. Voglia, Y. Fukumoto, Y. Furukawa, et al.
An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor In vivo and in vitro.
Circulation, 103 (2001), pp. 276-283
[36.]
M. Jakobisiak, J. Golab.
Potential antitumor effects of statins.
Int J Oncol, 23 (2003), pp. 1055-1069
[37.]
M.R. Graaf, D.J. Richel, C.J.F. Van Noorden, H.J. Guchelaar.
Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer.
Cancer Treat Rev, 30 (2004), pp. 609-641
[38.]
W. Feleszko, E.Z. Balkowiec, E. Sieberth, M. Marczak, A. Dabrowska, A. Giermasz, et al.
Lovastatin and tumor necrosis factor-alpha exhibit potentiated antitumor effects against Ha-ras-transformed murine tumor via inhibition of tumor-induced angiogenesis.
Int J Cancer, 81 (1999), pp. 560-567
[39.]
A. Horiguchi, M. Sumitomo, J. Asakuma, T. Asano, T. Asano, M. Hayakawa.
3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis.
Clin Cancer Res, 10 (2004), pp. 8648-8655
[40.]
M. Sata, H. Nishimatsu, J. Osuga, K. Tanaka, N. Ishizaka, S. Ishibashi, et al.
Statins augment collateral growth in response to ischemia but they do not promote cancer and atherosclerosis.
Hypertension, 43 (2004), pp. 1214-1220
[41.]
L.M. Bjerre, J. LeLorier.
Do statins cause cancer? A meta-analysis of large randomized clinical trials.
Am J Med, 110 (2001), pp. 716-723
[42.]
Heart Protection Study Collaborative Group.
MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial.
[43.]
T.E. Strandberg, K. Pyorala, T.J. Cook, L. Wilhelmsen, O. Faergeman, G. Thorgeirsson, et al.
Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S).
Copyright © 2005. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos