metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Lipoproteínas de alta densidad y regresión de la arteriosclerosis: desde la te...
Información de la revista
Vol. 22. Núm. S1.
Jornada sobre HDL
Páginas 26-30 (abril 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 22. Núm. S1.
Jornada sobre HDL
Páginas 26-30 (abril 2010)
Jornada sobre HDL
Acceso a texto completo
Lipoproteínas de alta densidad y regresión de la arteriosclerosis: desde la teoría hasta la imagen
High-density lipoprotein and arteriosclerosis regression: from theory to imaging studies
Visitas
3593
B. Ibáñez
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Hospital Clínico San Carlos, Madrid, España
Este artículo ha recibido
Información del artículo
Resumen

La aterotrombosis (aterosclerosis y sus complicaciones trombóticas) se caracteriza por el acúmulo de lípidos y células inflamatorias en la pared de vasos de mediano y gran calibre. Las lipoproteínas asociadas al colesterol juegan un papel central en la homeostasis de la placa de ateroma, siendo la lipoproteína de alta densidad (HDL) la responsable de la salida del colesterol y de su transporte al hígado para su ulterior excreción. El desarrollo de nuevas técnicas de imagen ha permitido documentar de forma longitudinal los cambios en el volumen de placa. Si bien no hay evidencia directa, datos indirectos confirman que la regresión del volumen de la placa puede asociarse a una disminución de episodios cardiovasculares. Por este motivo, la regresión de la placa/ausencia de progresión se utiliza como un objetivo subrogado con frecuencia creciente. De todas las terapias antiateroscleróticas testadas, el incremento de la HDL por diferentes abordajes es el que ha resultado más eficaz en regresar el volumen de placas de ateroma.

Palabras clave:
Aterotrombosis
Regresión de placa
HDL
Apo A-I
Resonancia magnética
Abstract

Atherothrombosis (atherosclerosis and its thrombotic complications) is characterized by the accumulation of lipids and inflammatory cells in the walls of intermediate- and largecaliber vessels. The lipoproteins associated with cholesterol play a central role in homeostasis of the atheroma plaque while high-density lipoproteins (HDL) play a critical role in cholesterol efflux and cholesterol transport to the liver for subsequent excretion. The development of new imaging techniques has allowed changes in plaque volume to be documented longitudinally. Although there is no direct evidence, indirect data confirm that regression of plaque volume can be associated with a reduction in cardiovascular events. For this reason, plaque regression/absence of progression is increasingly used as a surrogate objective. Of all the antiatherosclerotic therapies tested, the increase in HDL by distinct approaches is the most effective in reducing atheroma plaque volume.

Keywords:
Atherothrombosis
Plaque regression
HDL
ApoA-1
Magnetic resonance
El Texto completo está disponible en PDF
Bibliografía
[1.]
S.E. Nissen, E.M. Tuzcu, P. Schoenhagen, B.G. Brown, P. Ganz, R.A. Vogel, et al.
Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial.
JAMA, 291 (2004), pp. 1071-1080
[2.]
S.E. Nissen, S.J. Nicholls, I. Sipahi, P. Libby, J.S. Raichlen, C.M. Ballantyne, et al.
Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial.
[3.]
A.J. Taylor, T.C. Villines, E.J. Staneck, P.J. Devine, L. Griffen, M.A. Miller, et al.
Extended-Release Niacin or Ezetimibe and Carotid Intima-Media Thickness.
N Engl J Med, 361 (2009), pp. 2113-2122
[4.]
R. Corti, Z.A. Fayad, V. Fuster, S.G. Worthley, G. Helft, J. Chesebro, et al.
Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, non-invasive magnetic resonance imaging.
Circulation, 104 (2001), pp. 249-252
[5.]
B. Ibáñez, G. Vilahur, G. Cimmino, W.S. Speidl, A. Pinero, B.G. Choi, et al.
Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-I Milano (ETC- 216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis.
J Am Coll Cardiol, 51 (2008), pp. 1104-1109
[6.]
B. Ibáñez, G. Cimmino, J. Benezet-Mazuecos, C.G. Santos-Gallego, A. Pinero, S. Prat-González, et al.
Quantification of serial changes in plaque burden using multi-detector computed tomography in experimental atherosclerosis.
Atherosclerosis, 202 (2009), pp. 185-191
[7.]
J.J. Badimon, L. Badimon, V. Fuster.
Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit.
J Clin Invest, 85 (1990), pp. 1234-1241
[8.]
A.J. Taylor, L.E. Sullenberger, H.J. Lee, J.K. Lee, K.A. Grace.
Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins.
Circulation, 110 (2004), pp. 3512-3517
[9.]
J.M. Lee, M.D. Robson, L.M. Yu, C.C. Shirodaria, C. Cunnington, I. Kylintireas, et al.
Effects of highdose modified-release nicotinic Acid on atherosclerosis and vascular function a randomized, placebo-controlled, magnetic resonance imaging study.
J Am Coll Cardiol, 54 (2009), pp. 1787-1794
[10.]
S.E. Nissen, J.C. Tardif, S.J. Nicholls, J.H. Revkin, C.L. Shear, W.T. Duggan, et al.
Effect of torcetrapib on the progression of coronary atherosclerosis.
N Engl J Med, 356 (2007), pp. 1304-1316
[11.]
S.E. Nissen, T. Tsunoda, E.M. Tuzcu, P. Schoenhagen, C.J. Cooper, M. Yasin, et al.
Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.
JAMA, 290 (2003), pp. 2292-2300
[12.]
J.C. Tardif, J. Gregoire, P.L. L’Allier, R. Ibrahim, J. Lesperance, T.M. Heinonen, et al.
Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial.
[13.]
C.R. Sirtori, L. Calabresi, G. Franceschini, D. Baldassarre, M. Amato, J. Johansson, et al.
Cardiovascular status of carriers of the apolipoprotein A-I (Milano) mutant: the Limone sul Garda study.
Circulation, 103 (2001), pp. 1949-1954
[14.]
C. Parolini, M. Marchesi, P. Lorenzon, M. Castano, E. Balconi, L. Miragoli, et al.
Dose-related effects of repeated ETC-216 (recombinant apolipoprotein A-I Milano/1-palmitoyl-2-oleoyl phosphatidylcholine complexes) administrations on rabbit lipid-rich soft plaques in vivo assessment by intravascular ultrasound and magnetic resonance imaging.
J Am Coll Cardiol, 11 (2008), pp. 1098-1103
[15.]
B. Ibáñez, A. Pinero, M. Orejas, J. Badimon.
Novel imaging techniques for quantifying overall atherosclerotic burden.
Rev Esp Cardiol, 60 (2007), pp. 299-309
[16.]
S.J. Nicholls, E.M. Tuzcu, I. Sipahi, P. Schoenhagen, T. Crowe, S. Kapadia, et al.
Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano.
J Am Coll Cardiol, 47 (2006), pp. 992-997
[17.]
G. Cimmino, B. Ibáñez, G. Vilahur, W.S. Speidl, V. Fuster, L. Badimon, et al.
Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by apo A-I.
J Cell Mol Med, 13 (2008), pp. 3226-3235
Copyright © 2010. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos