covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Sarcopenia en ancianos
Información de la revista
Vol. 53. Núm. 5.
Páginas 335-344 (mayo 2006)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 53. Núm. 5.
Páginas 335-344 (mayo 2006)
Actualización en nutrición clínica
Acceso a texto completo
Sarcopenia en ancianos
Sarcopenia in the elderly
Visitas
15637
Rosa Burgos Peláez
Autor para correspondencia
rburgos@csub.scs.es

Correspondencia: Dra. R. Burgos Peláez. Unidad de Nutrición Clínica. Hospital Universitario de Bellvitge. Feixa Llarga, s/n. 08907 L’Hospitalet de Llobregat. Barcelona. España.
Unidad de Nutrición Clínica. Servicio de Endocrinología y Nutrición. Hospital Universitario de Bellvitge. L’Hospitalet de Llobregat. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La sarcopenia es la pérdida de masa muscular esquelética por envejecimiento y contribuye en gran medida a la discapacidad y la pérdida de independencia del anciano. En su etiopatogenia se incluyen diversos mecanismos tanto intrínsecos del propio músculo como cambios del sistema nervioso central, además de factores hormonales y de estilo de vida. Los cambios intrínsecos del músculo incluyen una reducción en la proporción de fibras musculares rápidas, tipo II, y daño del ADN mitocondrial. En la médula espinal, se produce pérdida de unidades motrices alfa. Diversas hormonas y citocinas afectan a la función y la masa muscular. La reducción de testosterona y estrógenos que acompaña a la vejez aceleran la pérdida de masa muscular. La hormona de crecimiento también se ha implicado en la pérdida de masa magra corporal. Aunque la sarcopenia no se revierte completamente con el ejercicio, la inactividad física acelera la pérdida de la masa muscular. El diagnóstico de sarcopenia está dificultado por la falta de disponibilidad de los métodos más fiables para medir la masa muscular. Se han ensayado diversas estrategias para su tratamiento: administración de testosterona, hormona de crecimiento, tratamiento nutricional y ejercicio físico. De todas las alternativas terapéuticas, sólo el ejercicio físico de resistencia ha demostrado eficacia en incrementar la masa muscular esquelética, combinado o no con suplementación nutricional. La sarcopenia está directamente relacionada con la fragilidad y tiene implicaciones etiopatogénicas en la obesidad, la resistencia a la insulina y la inflamación.

Palabras clave:
Sarcopenia
Envejecimiento
Atrofia muscular
Fragilidad

Sarcopenia is defined as an age-associated loss of skeletal muscle mass and is a major contributory factor in disability and loss of independence in the elderly. Several mechanisms, both intrinsic to muscle itself and changes in the central nervous system, are involved in the etiopathogenesis of this process. Hormonal factors and lifestyles are also involved. Changes intrinsic to muscle include a reduction in the proportion of rapid (type II) fibers and mitochondrial DNA injury. In the spinal cord, loss of motor units occurs. Several hormones and cytokines affect muscle function and mass. An age-related reduction of testosterone and estrogens accelerates loss of muscle mass. Growth hormone has also been implicated in loss of lean body mass. Although sarcopenia cannot be completely reversed by exercise, physical inactivity accelerates the loss of muscle mass. Diagnosis of sarcopenia is hampered by the lack of reliable methods for measuring muscle mass. Several strategies have been tried to treat sarcopenia: administration of testosterone and growth hormone, nutritional therapy and physical exercise. Of all these therapeutic alternatives, only resistance exercise has been demonstrated to be effective in increasing skeletal muscle mass, whether associated with nutritional supplementation or not. Sarcopenia is directly related to fragility and is implicated in the etiopathogenesis of obesity, insulin resistance, and inflammation.

Key words:
Sarcopenia
Aging
Muscular atrophy
Fragility
El Texto completo está disponible en PDF
Bibliografía
[1.]
T.J. Doherty.
Aging and sarcopenia.
J Appl Physiol, 95 (2003), pp. 1717-1727
[2.]
I. Janssen, D.S. Shepard, P.T. Katzmarzyk.
The healthcare costs of sarcopenia in the United States.
J Am Geriatr Soc, 52 (2004), pp. 80-85
[3.]
R.N. Baumgartner, K.M. Koehler, D. Gallagher, et al.
Epidemiology of sarcopenia among the elderly in New Mexico.
Am J Epidemiol, 147 (1998), pp. 755-763
[4.]
I. Janssen, S.B. Heymsfield, Z.M. Wang, et al.
Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr.
J Appl Physiol, 89 (2000), pp. 81-89
[5.]
M.C. Walsh, G.R. Hunter, M.B. Livingstone.
Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density.
Osteporos Int, 17 (2006), pp. 61-67
[6.]
K.S. Nair.
Aging muscle.
Am J Clin Nutr, 81 (2005), pp. 953-963
[7.]
W.R. Frontera, V.A. Hughes, R.A. Fielding, et al.
Aging of skeletal muscle: a 12-yr longitudinal study.
J Appl Physiol, 88 (2000), pp. 1321-1326
[8.]
E. Volpi, R. Nazemi, S. Fujita.
Muscle tissue changes with aging.
Curr Opin Clin Nutr Metab Care, 7 (2004), pp. 405-410
[9.]
H. Kamel.
Sarcopenia and aging.
Nutr Rev, 61 (2003), pp. 157-167
[10.]
C. Leeuwenburgh.
Role of apoptosis in sarcopenia.
J Gerontol Biol Sci Med Sci, 58 (2003), pp. 999-1001
[11.]
S.K. Mishra, V. Misra.
Muscle sarcopenia: an overview.
Acta Myol, 22 (2003), pp. 43-47
[12.]
M.A. Soto, A. Revuelta, P. Gili, et al.
Buscando las bases biológicas de la fragilidad: la sarcopenia.
Actual Neurol Neurocienc Envejec, 1 (2003), pp. 331-340
[13.]
A.A. Sayer, H.E. Syddall, H.J. Gilbody, et al.
Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study.
J Gerontol Biol Sci Med Sci, 59 (2004), pp. M930-M934
[14.]
T.J. Marcell.
Sarcopenia: causes, consequences and preventions.
J Gerontol Biol Sci Med Sci, 58 (2003), pp. 911-916
[15.]
C. Joseph, A.M. Kenny, P. Taxel, et al.
Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fractrure risk.
Mol Aspects Med, 26 (2005), pp. 181-201
[16.]
H. Payette, R. Roubenoff, P.F. Jacques, et al.
Insulin-like growth factor-1 and interleukin 6 predict sarcopenia in very old community-living men and women: the Framingham Heart Study.
J Am Geriatr Soc, 51 (2003), pp. 1237-1243
[17.]
A.B. Newman, J.S. Lee, M. Visser, et al.
Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study.
Am J Clin Nutr, 82 (2005), pp. 915-916
[18.]
X. Hebuterne, S. Bermon, S.M. Schneider.
Ageing and muscle: the effects of malnutrition, re-nutrition and physical exercise.
Curr Opin Clin Nutr Metab Care, 4 (2001), pp. 295-300
[19.]
V.A. Hughes, W.R. Frontera, R. Roubenoff, et al.
Longitudinal changes in body composition in older men and women: role of body weight change and physical activity.
Am J Clin Nutr, 76 (2002), pp. 473-481
[20.]
V.A. Hughes, R. Roubenoff, M. Word, et al.
Anthropometric assessment of 10-y changes in body composition in the elderly.
Am J Clin Nutr, 80 (2004), pp. 475-482
[21.]
R.D. Hansen, B.J. Allen.
Habitual physical activity, anabolic hormones, and potassium content of fat-free mass in postmenopausal women.
Am J Clin Nutr, 75 (2002), pp. 314-320
[22.]
S.E. Borst.
Interventions for sarcopenia and muscle weakness in older people.
Age Ageing, 33 (2004), pp. 548-555
[23.]
C. Wang, R.S. Swerdloff, A. Iranmanesh, et al.
Transdermal testosterone gel improves sexual function, mood, muscle strength and body composition parameters in hypogonadal men.
J Clin Endocrinol Metab, 85 (2000), pp. 2839-2853
[24.]
I.G. Brodsky, P. Balagopal, K.S. Nair.
Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men – a clinical research center study.
J Clin Endocrinol Metab, 81 (1996), pp. 3469-3475
[25.]
S. Bhasin, T.W. Storer, N. Berman, et al.
Testosterone replacement increases fat-free mass and muscle size in hypogonadal men.
J Clin Endocrinol Metab, 82 (1997), pp. 407-413
[26.]
S. Bhasin.
Testosterone supplementation for aging-associated sarcopenia.
J Gerontol Biol Sci Med Sci, 58 (2003), pp. 1002-1008
[27.]
A.M. Kenny, K.M. Prestwood, C.A. Gruman, et al.
Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels.
J Gerontol Biol Sci Med Sci, 56 (2001), pp. M266-M272
[28.]
P.J. Snyder, H. Peachey, P. Hannoush, et al.
Effects of testosterone treatment on body composition and muscle strength in men over 65 years of age.
J Clin Endocrinol Metab, 84 (1999), pp. 2647-2653
[29.]
R. Sih, J.E. Morley, F.E. Kaiser, et al.
Testosterone replacement in older hypogonadal men: a 12-month randomized, controlled trial.
J Clin Endocrinol Metab, 82 (1997), pp. 1661-1667
[30.]
J.E. Clague, F.C. Wu, M.A. Horan.
Difficulties in measuring the effect of testosterone replacement therapy on muscle function in older men.
Int J Androl, 22 (1999), pp. 261-265
[31.]
K. Brill, A. Weltman, A. Gentili, et al.
Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men.
J Clin Endocrinol Metab, 87 (2002), pp. 5649-5657
[32.]
L. Magliano, L.J. Woodhouse, S. Bhasin, et al.
Testosterone dose-dependently increases skeletal muscle mass in healthy men.
Med Sci Sports Exer, 36 (2004), pp. S238
[33.]
A.J. Morales, R.H. Haubrich, J.Y. Hwang, et al.
The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women.
Clin Endocrinol (Oxf), 49 (1998), pp. 421-432
[34.]
G. Percheron, J.Y. Hogrel, S. Denot-Ledunois, et al.
Effect of 1-year oral administration of dehydroepiandrosterone to 60- to 80-year-old individuals on muscle function and cross-sectional area: a double-blind placebo-controlled trial.
Arch Intern Med, 163 (2003), pp. 720-727
[35.]
W. Gao, P.J. Reiser, C.C. Coss, et al.
Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats.
Endocrinology, 146 (2005), pp. 4887-4897
[36.]
F. Salomon, R.C. Cuneo, R. Hesp, et al.
The effects of treatment with recombinant human growth hormone on body composition and metabolism in adults with growth hormone deficiency.
N Engl J Med, 321 (1989), pp. 1797-1803
[37.]
J.O. Jorgensen, N. Vahl, T.B. Hansen, et al.
Growth hormone versus placebo treatment for one year in growth hormone deficient adults: increase in exercise capacity and normalization on body composition.
Clin Endocrinol (Oxf), 45 (1996), pp. 681-688
[38.]
J. Svensson, K.S. Stibrant Sunnerhagen, G. Johannsson.
Five years of growth hormone replacement therapy in adults: age- and gender-related changes in isometric and isokinetic muscle strength.
J Clin Endocrinol Metab, 88 (2003), pp. 2061-2069
[39.]
D. Rudman, A.G. Feller, H.S. Nagraj, et al.
Effects of human growth hormone in men over 60 years old.
N Engl J Med, 323 (1990), pp. 1-6
[40.]
M.A. Papadakis, D. Grady, D. Black, et al.
Growth hormone replacement in healthy older men improves body composition but not functional ability.
Ann Intern Med, 124 (1996), pp. 708-716
[41.]
D.R. Taaffe, L. Pruitt, J. Reim, et al.
Effect of recombinant human growth hormone on the muscle strength response to resistance exercise in elderly men.
J Clin Endocrinol Metab, 79 (1994), pp. 1361-1366
[42.]
K.E. Yarasheski, J.J. Zachwieja, J.A. Campbell, et al.
Effect of growth hormone and resistance exercise on muscle growth and strength in older men.
Am J Physiol, 268 (1995), pp. E268-E276
[43.]
K. Brill, A. Weltman, A. Gentili, et al.
Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men.
J Clin Endocrinol Metab, 87 (2002), pp. 5649-5657
[44.]
M.R. Blackman, J.D. Sorkin, T. Munzer, et al.
Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial.
JAMA, 288 (2002), pp. 2282-2292
[45.]
J. Vittone, M.R. Blackman, J. Busby-Whitehead, et al.
Effects of single nightly injections of growth hormone-releasing hormone (GHRH 1-29) in healthy elderly men.
Metabolism, 46 (1997), pp. 89-96
[46.]
O. Khorram, G.A. Laughlin, S.S. Yen.
Endocrine and metabolic effects of long-term administration of (Nle27) growth hormone-releasing-hormone-(1-29)-NH2 in age-advanced men and women.
J Clin Endocrinol Metab, 82 (1997), pp. 1472-1479
[47.]
S. Boonen, C. Rosen, R. Bouillon, et al.
Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study.
J Clin Endocrinol Metab, 87 (2002), pp. 1593-1599
[48.]
L. Cohn, A.G. Feller, M.W. Draper, et al.
Carpal tunnel syndrome and gynecomastia during growth hormone treatment of elderly men with low circulating IGF-1 concentrations.
Clin Endocrinol (Oxf), 39 (1993), pp. 417-425
[49.]
K.E. Yarasheski, J.J. Zachwieja.
Growth hormone therapy for the elderly: the fountain of youth proves toxic.
JAMA, 270 (1993), pp. 1694
[50.]
N.K. Latham, D.A. Bennett, C.M. Stretton, et al.
Systematic review of progressive resistance strength training in older adults.
J Gerontol Biol Sci Med Sci, 59 (2004), pp. 48-61
[51.]
H. Klitgaard, M. Mantoni, S. Schiaffino, et al.
Function, morphology and protein expression of ageing skeletal muscle: a crosssectional study of elderly men with different training backgrounds.
Acta Physiol Scand, 140 (1990), pp. 41-54
[52.]
K.E. Yarasheski.
Exercise, aging and muscle protein metabolism.
J Gerontol Biol Sci Med Sci, 58 (2003), pp. 918-922
[53.]
M.A. Fiatarone, E.F. O’Neill, N.D. Ryan, et al.
Exercise training and nutritional supplementation for physical frailty in very elderly people.
N Engl J Med, 330 (1994), pp. 1769-1775
[54.]
W.R. Frontera, C.N. Meredith, K.P. O’Reilly, et al.
Strength conditioning in older men: skeletal muscle hypertrophy and improved function.
J Appl Physiol, 64 (1988), pp. 1038-1044
[55.]
M.A. Fiatarone, E.C. Marks, N.D. Ryan, et al.
High-intensity strength training in nonagenarians. Effects on skeletal muscle.
JAMA, 263 (1990), pp. 3029-3034
[56.]
J. Lexell, D.Y. Downham, Y. Larsson, et al.
Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles.
Scand J Med Sci Sports, 5 (1995), pp. 329-341
[57.]
M.M. Bamman, V.J. Hill, G.R. Adams, et al.
Gender differences in resistance-training-induced myofiber hypertrophy among older adults.
J Gerontol Biol Sci Med Sci, 58 (2003), pp. 108-116
[58.]
A. Brose, G. Parise, M.A. Tarnopolsky.
Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults.
J Gerontol Biol Sci Med Sci, 58 (2003), pp. 11-19
[59.]
S.L. Charette, L. McEvoy, G. Pyka, et al.
Muscle hypertrophy response to resistance training in older women.
J Appl Physiol, 70 (1991), pp. 1912-1916
[60.]
A. Ferri, G. Scaglioni, M. Pousson, et al.
Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in older age.
Acta Physiol Scand, 177 (2003), pp. 69-78
[61.]
W.R. Frontera, V.A. Hughes, L.S. Krivickas, et al.
Strength training in older women: early and late changes in whole muscle and single cells.
Muscle Nerve, 28 (2003), pp. 601-608
[62.]
S.M. Roth, F.M. Ivey, G.F. Martel, et al.
Muscle size responses to strength training in young and older men and women.
J Am Geriatr Soc, 49 (2001), pp. 1428-1433
[63.]
K.R. Vincent, R.W. Braith, R.A. Feldman, et al.
Resistance exercise and physical performance in adults aged 60 to 83.
J Am Geriatr Soc, 50 (2002), pp. 1100-1107
[64.]
D.M. Connelly, A.A. Vandervoort.
Effects of isokinetic strength training on concentric and eccentric torque development in the ankle dorsiflexors of older adults.
J Gerontol Biol Sci Med Sci, 55 (2000), pp. B465-B472
[65.]
E. Carmeli, A.Z. Reznick, R. Coleman, et al.
Muscle strength and mass of lower extremities in relation to functional abilities in elderly adults.
Gerontology, 46 (2000), pp. 249-257
[66.]
M.A. Tarnopolsky, S.A. Atkinson, J.D. MacDougall, et al.
Evaluation of protein requirements for trained strength athletes.
J Appl Physiol, 73 (1992), pp. 1986-1995
[67.]
H.C. Dreyer, E. Volpi.
Role of protein and amino acids in the pathophysiology and treatment of sarcopenia.
J Am Col Nutr, 24 (2005), pp. S140-S145
[68.]
E. Volpi, A.A. Ferrando, C.W. Yeckel, et al.
Exogenus amino acids stimulate net muscle protein synthesis in the elderly.
J Clin Invest, 101 (1998), pp. 2000-2007
[69.]
W.W. Campbell, T.A. Trappe, R.R. Wolfe, et al.
The recommended dietary allowance for protein may not be adequate for older people to mantain skeletal muscle.
J Gerontol Biol Sci Med Sci, 56 (2001), pp. M373-M380
[70.]
A.D. De los Reyes, D. Bagchi, H.G. Preuss.
Overview of resistance training, diet, hormone replacement and nutricional supplements on age-related sarcopenia. A mini-review.
Res Commun Mol Pathol Pharmacol, 113 (2003), pp. 159-170
[71.]
M.D. Vukovich, N.B. Stubbs, R.M. Bohlken.
Body composition in 70-year old adults responds to dietary b-hydroxy-b-methilbutarate similarly to that of young adults.
J Nutr, 131 (2001), pp. 2049-2052
[72.]
E. Volpi, H. Kobayashi, M. Sheffield-Moore, et al.
Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults.
Am J Clin Nutr, 78 (2003), pp. 250-258
[73.]
B. Esmarck, J.L. Andersen, S. Olsen, et al.
Timing of post exercise protein intake is important for muscle hypertrophy with resistance training in elderly humans.
J Physiol, 535 (2001), pp. 301-311
[74.]
S. Lauque, F. Arnau-Battandier, R. Mansourian, et al.
Proteinenergy oral supplementation in malnourished nursing-home residents: a controlled trial.
Age Ageing, 29 (2000), pp. 51-56
[75.]
M. Suzuki.
Glycemic carbohydrates consumed with amino acids or protein right after exercise enhance muscle formation.
Nutr Rev, 61 (2003), pp. S88-S94
[76.]
E. Volpi, B. Mittendorfer, B.B. Rasmussen, et al.
The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly.
J Clin Endocrinol Metab, 85 (2000), pp. 4481-4490
[77.]
G.M. Doherty, J.C. Jensen, H.R. Alexander, et al.
Pentoxifylline supression of tumor necrosis factor gene transcription.
Surgery, 110 (1991), pp. 192-198
[78.]
S.S. Yeh, M.W. Schuster.
Geriatric cachexia: the role of cytokines.
Am J Clin Nutr, 70 (1999), pp. 183-197
[79.]
G. Mantovani, A. Maccio, S. Esu, et al.
Medroxyprogesterone acetate reduces the in vitro production of cytokines and serotonin envolved in anorexia/cachexia and emesis by peripheral blood mononuclear cells of cancer patients.
Eur J Canc, 33 (1997), pp. 602-607
[80.]
S.S. Yeh, S.Y. Wu, T.P. Lee, et al.
Improvement in quality-of-life measures and stimulation of weight gain after treatment with megestrol acetate oral suspension in geriatric cachexia: results of a double-blind placebo-controlled study.
J Am Geriatr Soc, 48 (2000), pp. 485-492
[81.]
M.J. Tisdale, J.K. Dhesi.
Inhibition of weight loss by omega-3 fatty acids in an experimental cachexia model.
Cancer Res, 50 (1990), pp. 5022-5026
[82.]
J.M. Kinney.
Nutritional frailty, sarcopenia and falls in the elderly.
Curr Opin Clin Nutr Metab Care, 7 (2004), pp. 15-20
[83.]
L.P. Fried, C.M. Tangen, J. Walston, et al.
Frailty in older adults: evidence for a phenotype.
J Gerontol Biol Sci Med Sci, 56 (2001), pp. M146-M156
[84.]
C.W. Bales, C.S. Ritchie.
Sarcopenia, weight loss and nutritional frailty in the elderly.
[85.]
S. Chevalier, R. Gougeon, K. Nayar, et al.
Frailty amplifies the effects of aging on protein metabolism: role of protein intake.
Am J Clin Nutr, 78 (2003), pp. 422-429
[86.]
R. Roubenoff.
Sarcopenic obesity: the confluence of two epidemics.
Obes Res, 12 (2004), pp. 887-888
[87.]
M. Cesari, B. Kritchevsky, R.N. Baumgartner, et al.
Sarcopenia, obesity and inflammation – results from the Trial of Angiotensin Converting Enzime Inhibition and Novel Cardiovascular Risk Factors study.
Am J Clin Nutr, 82 (2005), pp. 428-434
[88.]
D.T. Villareal, M. Banks, C. Siener, et al.
Physical frailty and body composition in obese elderly men and women.
Obes Res, 12 (2004), pp. 913-920
[89.]
R. Roubenoff, H. Parise, H.A. Payette, et al.
Cytokines, insulinlike growth factor-1, sarcopenia and mortality in very old community-dwelling men and women: the Framingham Heart Study.
Am J Med, 115 (2003), pp. 429-435
[90.]
M. Visser, M. Pahor, D.R. Taaffe, et al.
Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC study.
J Gerontol Biol Sci Med Sci, 57 (2002), pp. M326-M332
[91.]
J.E. Morley.
Anorexia, sarcopenia and aging.
Nutrition, 17 (2001), pp. 660-663
Copyright © 2006. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos