covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Terapia celular en la diabetes mellitus
Información de la revista
Vol. 49. Núm. 8.
Páginas 260-268 (octubre 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 49. Núm. 8.
Páginas 260-268 (octubre 2002)
Acceso a texto completo
Terapia celular en la diabetes mellitus
Cellular Therapy In Diabetes Mellitus
Visitas
10941
J.A. Reig
Autor para correspondencia
jareig@umh.es

Correspondencia: Dr. J.A. Reig. Instituto de Bioingeniería. Facultad de Medicina. Departamento de Bioquímica y Biología Molecular. Universidad Miguel Hernández. Campus de San Juan. 03550 Alicante.
, R. Enseñat-Waser, E. Roche, B. Soria
Instituto de Bioingeniería. Universidad Miguel Hernández. Alicante
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Un control riguroso de la glucemia, principalmente en los pacientes con diabetes tipo 1, requeriría la regeneración funcional del páncreas dañado. Los estudios clínicos recientes sobre implante de islotes pancreáticos procedentes de donantes en pacientes diabéticos han alimentado las expectativas de un tratamiento generalizado basado en esta metodología; no obstante, existe una gran desproporción entre los posibles donantes y el número de pacientes con diabetes que podrían recibir este tratamiento. Esta falta de órganos y tejidos que podría permitir una terapia celular, no sólo para la diabetes sino para otras enfermedades que requieren igualmente un recambio celular, ha relanzado recientemente la investigación sobre las posibilidades terapéuticas de las denominadas células madre pluripotenciales. La presente revisión incluye algunos resultados previos de nuestro laboratorio sobre la obtención de células productoras de insulina a partir de células madre embrionarias de ratón y su utilización en ratones diabéticos.

Palabras clave:
Células madre
Terapia celular
Diabetes
Trasplante de islotes
Insulina

Optimal control of blood glucose, mainly in patients with type 1 diabetes, would require functional regeneration of the damaged pancreas. Recent clinical trials of islet transplantation in diabetic patients have increased expectations for a generalized treatment based on this methodological approach. Nevertheless, the demand for pancreases outweighs their availability. This scarcity of organs and tissues for cellular therapy, not only for type 1 diabetic patients but also for the treatment of other diseases in which cellular replacement is also required, has recently increased research into the therapeutic possibilities of pluripotent stem cells. The present review includes previous results from our laboratory on the harvesting of insulin-producing cells from mouse embryonic stem cells and their utilization in diabetic mice.

Key words:
Stem cells
Cellular therapy
Diabetes
Islet transplantation
Insulin
El Texto completo está disponible en PDF
Biblografía
[1.]
A. Humar, R. Kandaswamy, D. Granger, R.W. Gruessner, A.C. Gruessner, D.E. Sutherland.
Decreased surgical risks of pancreas transplantation in the modern era.
Ann Surg, 232 (2000), pp. 696-703
[2.]
M. Brendel, B. Hering, A. Schulz, R. Bretzel.
International Islet transplantation Registry Report.
pp. 1-20
[3.]
A.M.J. Shapiro, J.R.T. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, et al.
Islet transplantation in seven patients with type 1 diabetes mellitus using a corticoid-free immunosuppressive regime.
N Engl J Med, 343 (2000), pp. 230-238
[4.]
Y. Zeng, C. Ricordi, J. Lendoire, P.B. Carrol, R. Alejandro, D.R. Bereiter, et al.
The effect of prednisone on pancreatic islet autografts in dogs.
Surgery, 113 (1993), pp. 98-102
[5.]
E.A. Ryan, J.R.T. Lakey, R.V. Rajotte, G.S. Korbutt, T. Kin, S. Imes, et al.
Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol.
Diabetes, 50 (2001), pp. 710-719
[6.]
Immune Tolerance Network 2002 Disponible en: http://www.immunetolerance.org
[7.]
B. Soria.
Trasplante de islotes pancreáticos y de células diferenciadas a partir de células madre.
Av Diabetol, 17 (2001), pp. 121-128
[8.]
G. Berná, T. León-Quinto, E. Fuentes, E. Andreu, A. Nadal, E. Roche, et al.
Ingenieria celular y diabetes mellitus.
Rev Clin Esp, 201 (2001), pp. 548-556
[9.]
P. Aebischer, E. Buchser, J.M. Joseph, J. Falere, N. de Tribolet, M. Lysaght, et al.
Transplantation in humans of encapsulated xenogeneic cells without immunosuppression.
Transplantation, 58 (1994), pp. 1275-1277
[10.]
Y. Dai, T.D. Vaught, J. Boone, S-H Chen, C.J. Phelps, S. Ball, et al.
Targeted disruption of the alfa1,3-galactosyltransferase gene in cloned pigs.
Nature Biotech, 20 (2002), pp. 251
[11.]
G. O'Shea, A.M. Sun.
Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice.
Diabetes, 35 (1986), pp. 943-946
[12.]
Y. Sun, X. Ma, D. Zhou, I. Vacek, A.M. Sun.
Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression.
J Clin Invest, 98 (1996), pp. 1417-1422
[13.]
F.M. Watt, B.L. Hogan.
Out of Eden: Stem cells and their niches.
Science, 287 (2000), pp. 1427-1430
[14.]
M. Evans, M.H. Kaufman.
Establishment in culture of pluripotent cells from mouse embryos.
Nature, 292 (1981), pp. 154-156
[15.]
J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, T.J. Swiergiel, V.S. Marshall, et al.
Embryonic stem cell lines derived from human blastocysts.
Science, 282 (1998), pp. 1145-1147
[16.]
Y. Matsui, K. Zsebo, B.L. Hogan.
Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.
Cell, 70 (1992), pp. 841-847
[17.]
P.W. Andrews, I. Damjanov, D. Simon, G.S. Bauting, C. Carlin, N.C. Dracovli, et al.
Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro.
Lab Invest, 50 (1984), pp. 147-162
[18.]
A.G. Smith.
Embrionic stem cells.
pp. 205-230
[19.]
J.A. Lake, J. Rathjen, J. Remiszewski, P.D. Rathjen.
Reversible programming of pluripotent cell differentiation.
J Cell Science, 113 (2000), pp. 555-566
[20.]
V.A. Maltsev, J. Rohwedel, J. Hescheler, A.M. Wobus.
Embryonic stem cells differentiate in vitro into cardiomyocites representing sinusnodal, atrial and ventricular cell types.
Mech Dev, 44 (1993), pp. 41-50
[21.]
S.H. Lee, N. Lumelsky, L. Studer, J.M. Auerbach, R.D. McKay.
Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells.
Nat Biotech, 18 (2000), pp. 675-679
[22.]
J.S. Odorico, D.S. Kaufman, J.A. Thomson.
Multilineage differentiation from human embryonic stem cell lines.
Stem cells, 19 (2001), pp. 193-204
[23.]
C.S. Potten.
Stem cells.
[24.]
C. Booth, J.A. O'Shea, C.S. Potten.
Maintenance of functional stem cells in isolated and culture adult intestinal epithelium.
Exp Cell Res, 249 (1999), pp. 359-366
[25.]
L. Yin, M. Sun, Z. Ilic, H.L. Leffert, S. Sue.
Derivation, characterization and phenotipic variation of hepatic progenitor cell lines isolated from adult rats.
Hepatology, 35 (2002), pp. 315-324
[26.]
J. Becerra, J.A. Andrades, J.A. Santamaría, M. Cifuentes, E. Guerado.
Regeneración ósea, terapia celular e ingenieria tisular.
Med Clin (Barc), 116 (2001), pp. 23-34
[27.]
M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, S.D. Mosca, et al.
Multilineage potential of adult human mesenchymal stem cells.
Science, 284 (1999), pp. 143-147
[28.]
R.C. Chiu, A. Zibaitis, R.L. Kao.
Cellular cardiomyoplasty: miocardial regeneration with satellite cell implantation.
Ann Thorac Surg, 60 (1995), pp. 12-18
[29.]
G. Almeida-Porada, C. Porada, E.D. Zanjani.
Adult stem cell plasticity and methods of detection.
Rev Clin Exp Hematol, 5 (2001), pp. 26-41
[30.]
E. Lagasse, H. Connors, M. Al Dhalimy, M. Reitsma, M. Dohse, L. Osborne, et al.
Purified hematopoiteic stem cells can differentiate into hepatocytes in vivo.
Nat Med, 6 (2000), pp. 1229-1234
[31.]
E. Mezey, K.L. Chandross, G. Harta, R.A. Maki, S.R. Mckercher.
Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.
Science, 290 (2000), pp. 1779-1782
[32.]
C.R. Bjornson, R.L. Rietze, B.A. Reynolds, M.C. Magli, A.L. Vescovi.
Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo.
Science, 283 (1999), pp. 534-537
[33.]
Q-L Ying, J. Nichols, E.P. Evans, A.G. Simth.
Changing potency by spontaneous fusion.
Nature, 416 (2002), pp. 545-548
[34.]
B. Soria.
In vitro differentiation of pancreativ beta-cells.
Differentiation, 68 (2001), pp. 205-219
[35.]
M. Sander, M.S. German.
The beta cell transcrption factors and development of the pancreas.
J Mol Med, 75 (1997), pp. 327-340
[36.]
M. Schuldiner, O. Yanuka, J. Itskovitz-Eldor, D.A. Melton, N. Benvenistry.
Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.
Proc Nat Acad Sci USA, 97 (2000), pp. 11307-11312
[37.]
N. Lumelski, O. Blondel, P. Laeng, I. Velasco, R. McKay.
Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
Science, 292 (2001), pp. 1389-1394
[38.]
J.G. Cornelius, V. Tchrnev, K.J. Kao, A.B. Peck.
In vitro-generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas.
Horm Metab Res, 29 (1997), pp. 271-277
[39.]
S. Bonner-Weir, M. Taneja, G.C. Weir, G.C. Weir, K. Tatarkiewicz, K.H. Song, et al.
In vitro cultivation of islets from expanded ductal tissue.
Proc Nat Acad Sci USA, 97 (2000), pp. 7999-8004
[40.]
M.G. Klug, M.H. Soonpaa, G.Y. Koh, L.J. Field.
Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts.
J Clin Invest, 98 (1996), pp. 216-224
[41.]
B. Soria, E. Roche, G. Berná, L. León-Quinto, J.A. Reig, F. Martin.
Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice.
Diabetes, 49 (2000), pp. 157-162
[42.]
S. Assady, G. Maor, M. Amit, J. Itskovitz-Eldor, K.L. Skorecki, M. Tzukerman.
Insulin production by human embryonic stem cells.
Diabetes, 50 (2001), pp. 1691-1697
[43.]
A.D. Salama, G. Remuzzi, W.H. Harmon, M.H. Sayegh.
Challenges to achieving clinical transplantation tolerance.
J Clin Invest, 108 (2001), pp. 943-948
[44.]
P.d.e. Vos, A.F. Hannel, K. Tatarkiewict.
Considerations for successful transplantation of encapsulated pancreatic islets.
Diabetologia, 45 (2002), pp. 159-173
[45.]
K.H. Campbell, J. McWhir, W.A. Ritchie, I. Wilmut.
Sheep cloned by nuclear transfer from a cultured cell line.
Nature, 380 (1996), pp. 64-66
[46.]
A. Colman, A. Kind.
Therapeutic cloning: concepts and practicalities.
Trends Biotech, 18 (2000), pp. 192-196
[47.]
N. Tremain, J. Korkko, D. Ibberson, G.C. Kopen, C. DiGirolamo, D.G. Phinney, et al.
MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages.
Stem Cells, 19 (2001), pp. 408-418
[48.]
B. Soria, E. Andreu, G. Berná, E. Fuentes, A. Gil, T. León-Quinto, et al.
Engineering pancreatic islets.
Eur J Physiol, 440 (2000), pp. 1-18
[49.]
P. Serup, O.D. Madsen, T. Mandrup-Poulsen.
Islet and stem cell transplantation for treating diabetes.
BMJ, 322 (2001), pp. 29-32
Copyright © 2002. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos