covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición El factor de crecimiento epidérmico cuarenta años después de su descubrimient...
Información de la revista
Vol. 50. Núm. 8.
Páginas 334-344 (agosto 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 50. Núm. 8.
Páginas 334-344 (agosto 2003)
Acceso a texto completo
El factor de crecimiento epidérmico cuarenta años después de su descubrimiento: de la bioquímica a la clínica
Epidermal growth factor forty years after its discovery: from biochemistry to clinical applications
Visitas
9697
P.A. Martínez-carpio*
Departamento de Biología Celular y Fisiología. Facultad de Medicina. Universidad Autónoma de Barcelona. Hospital Universitario Germans Trias i Pujol. Badalona. Barcelona. España
Este artículo ha recibido
Información del artículo

Los factores de crecimiento celular representan una potente línea de investigación tanto en el dominio bioquímico como en el endocrinológico, y algunos ya son imprescindibles en el diagnóstico, pronóstico y tratamiento de ciertas enfermedades. El factor de crecimiento epidérmico (EGF) destaca entre los más estudiados. Cuarenta años después de su descubrimiento, sus principales aportaciones continúan en el campo oncológico, pero destacan numerosos trabajos en muchas otras especialidades médicas. Esta revisión se centra en los aspectos bioquímicos, moleculares y celulares del EGF, resume las aplicaciones clínicas más relevantes y orienta el camino de las investigaciones futuras.

Palabras clave:
Factores de crecimiento
EGF

The study of growth factors is an important line of investigation in the biomedical and endocrinological fields. Some growth factors are crucial in the diagnosis, prognosis and therapy of certain diseases. Epidermal growth factor (EGF) is among the most studied of these factors. Forty years after its discovery, it is especially important in oncology although studies have been published in numerous medical specialties. This review focuses on the biomedical, molecular and cellular aspects of ECF, summarizes its most important clinical applications, and suggests future investigations.

Key words:
Growth factors EGF
El Texto completo está disponible en PDF
Bibliografía
[1.]
S. Cohen.
Isolation of a submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal.
J Biol Chem, 237 (1962), pp. 1555-1562
[2.]
P.A. Martinez-Carpio.
Secrecion constitutiva y regulada del factor de crecimiento epidermico (EGF) y del factor transformante del crecimiento-β1 (TGF-β1) en cultivos de la linea celular MDA-MB-231 [tesis doctoral].
[3.]
J.E. Brissenden, A. Ullrich, U. Francke.
Human chromosomal mapping of genes for insulin-like growth factors I and II and epidermal growth factor.
Nature, 310 (1984), pp. 781-784
[4.]
L.B. Rall, J. Scott, G.L. Bell, R.J. Crawford, J.D. Penschow, H.D. Niall, et al.
Mouse pre-pro-epidermal growth factor synthesis by the kidney and other tissues.
Nature, 313 (1985), pp. 228-231
[5.]
Y. Hirata, G.W. Moore, C. Bertagna, D.N. Orth.
Plasma concentrations of immunoreactive human epidermal growth factor (urogastrone) in man.
J Clin Endocrinol Metab, 50 (1980), pp. 440-444
[6.]
J. Massague, A. Pandiella.
Membrane-anchored growth factors.
Ann Rev Biochem, 62 (1993), pp. 515-541
[7.]
C.G. Davis.
The many faces of epidermal growth factor repeats.
New Biologist, 2 (1990), pp. 410-419
[8.]
D.A. Fisher, J. Lakshmanan.
Metabolism and effects of epidermal growth factor and related growth factors in mammals.
Endocrine Rev, 11 (1990), pp. 418-442
[9.]
A. Pandiella, J. Massague.
Cleavage of the membrane precursor for transforming growth factor-α is a regulated process.
Proc Natl Acad Sci USA, 88 (1991), pp. 1726-1730
[10.]
T.S. Bringman, P.B. Lindquist, R. Derynck.
Different transforming growth factor-α species are derived from a glycosylated and palmitoylated transmembrane precursor.
Cell, 48 (1987), pp. 429-440
[11.]
A. Pandiella, J. Massague.
Multiple signals activate cleavage of the membrane transforming growth factor-α precursor.
J Biol Chem, 266 (1991), pp. 5769-5773
[12.]
M.W. Basenberg, A. Pandiella, J. Massague.
Activated release of membrane-anchored TGF-α in the absence of cytosol.
J Cell Biol, 122 (1993), pp. 95-101
[13.]
P.S. Linsey, W.R. Hargreaves, D.R. Twardzik, G.J. Todaro.
Detection of larger polypeptides structurally and functionally related to type I transforming growth factor.
Proc Natl Acad Sci USA, 82 (1985), pp. 356-360
[14.]
J. Scott, M. Urdea, M. Quiroga, R. Sanchez-Pescador, N. Fong, M. Selby, et al.
Structure of mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins.
Science, 221 (1983), pp. 238-240
[15.]
S.A. Prigent, N.R. Lemoine.
Type I (EGF-related) family of growth factor receptors and their ligands.
Prog Growth Factor Res, 4 (1992), pp. 1-24
[16.]
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson.
Biologia molecular de la celula. 3.a ed.
[17.]
W.S. Chen, C.S. Lazar, K.A. Lund, J.B. Welsh, C. Chang, G.M. Walton, et al.
Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation.
Cell, 59 (1989), pp. 33-43
[18.]
T. Rajkumar, W.J. Gullick.
The type I growth factor receptors in human breast cancer.
Breast Cancer Res Treat, 29 (1994), pp. 3-9
[19.]
G. Carpenter, S. Cohen.
125I-labelled human epidermal growth factor (h-EGF): binding, internalization and degradation in human fibroblast.
J Cell Biol, 71 (1976), pp. 159-171
[20.]
N. Savion, I. Vlodavsky, D. Gospodarowicz.
Role of the degradation process in the mitogenic effect of epidermal growth factor.
Proc Nat Acad Sci USA, 77 (1980), pp. 1466-1470
[21.]
G. Carpenter.
Epidermal growth factor: biology and receptor mechanism.
J Cell Sci, 3 (1985), pp. 1-9
[22.]
C.M. Stoscheck, A.M. Soderquist, G. Carpenter.
Byosynthesis of the epidermal growth factor receptor in cultured human cells.
Endocrinology, 116 (1985), pp. 528-535
[23.]
B. Margolis, S.G. Rhee, S. Felder, M. Mervic, R. Lyall, A. Levitzki, et al.
EGF induces phosphorilation of phospholipase C-II: a potential mechanism for EGF receptor signalling.
Cell, 57 (1989), pp. 1101-1107
[24.]
S.D. Yang, C.K. Chou, S. Huang, J.S. Song, H.C. Chen.
Epidermal growth factor induces activation of protein kinase FA and ATP Mg-dependent protein phosphatase in A431 cells.
J Biol Chem, 264 (1989), pp. 5407-5411
[25.]
E.M. Rakowicz-Szulczyska, D. Otwiaska, U. Rodeck, H. Koprowski.
Epidermal growth factor (EGF) and monoclonal antibody to cell surface EGF receptor bind to the same chromatin receptor.
Arch Biochem Biophys, 268 (1989), pp. 456-464
[26.]
K. Osborne, B. Hamilton, G. Titus, R.B. Livingstone.
Epidermal growth factor stimulation on human breast cancer cells in culture.
Cancer Res, 40 (1980), pp. 2361-2366
[27.]
D.K. Armstrong, S.H. Kaufmann, Y.L. Ottaviano, Y. Furuya, J.A. Buckley, J.T. Isaacs, et al.
Epidermal growth factor-mediated apoptosis of MDA-MB-468 human breast cancer cells.
Cancer Res, 54 (1994), pp. 5280-5283
[28.]
O. Kaplan, J.W. Jaroszewski, P.J. Faustino, G. Zugmaier, B.W. Ennis, M. Lippman, et al.
Toxicity and effects of epidermal growth factor on glucose metabolism of MDA-468 human breast cancer cells.
J Biol Chem, 265 (1990), pp. 13641-13649
[29.]
C. Mur, P.A. Martinez-Carpio, M.E. Fernandez-Montoli, J.M. Ramon, P. Rosel, M.A. Navarro.
Growth of MDA-MB-231 cell line: different effects of TGF-β1, EGF and estradiol depending on the length of exposure.
Cell Biol Int, 22 (1998), pp. 679-684
[30.]
P.A. Martinez-Carpio, C. Mur, P. Rosel, M.A. Navarro.
Secretion and dual regulation between epidermal growth factor and transforming growth factor-β1 in MDA-MB-231 cell line in 42-hour-long cultures.
Cancer Lett, 147 (1999), pp. 25-29
[31.]
P.A. Martinez-Carpio, C. Mur, P. Rosel, M.A. Navarro.
Constitutive and regulated secretion of Epidermal Growth Factor and Transforming Growth Factor-β1 in MDA-MB-231 cell line in 11-day cultures.
Cell Signal, 11 (1999), pp. 753-757
[32.]
R.B. Dickson, S.E. Bates, M.E. McManaway, M.E. Lippman.
Characterization of estrogen responsive transforming activity in human breast cancer cell lines.
Cancer Res, 46 (1986), pp. 1707-1713
[33.]
D. Zajchowski, V. Band, Nelly Pauzie, A. Tager, M. Stampfer, R. Sager.
Expression of growth factors and oncogenes in normal and tumor-derived human mammary epithelial cells.
Cancer Res, 48 (1988), pp. 7041-7047
[34.]
J. Piotrowski, J. Majka, S. Sano, P. Nowak, V.L. Murty, A. Slomiany, et al.
Enhancement in gastric mucosal EGF and PDGF receptor expression with ulcer healing by sulglycotide.
Gen Pharmacol, 26 (1995), pp. 749-753
[35.]
D.A. Fisher, J. Lakshmanan.
Metabolism and effects of epidermal growth factor and related growth factors in mammals.
Endocrine Rev, 11 (1990), pp. 418-442
[36.]
V.K.M. Han, E.S. Hunter, R.M. Pratt, J.C. Zendegui, D.C. Lee.
Expression of rat transforming growth factor alpha mRNA during development occurs predominantly in the maternal decidua.
Mol Cell Biol, 7 (1987), pp. 2335-2343
[37.]
P.J. Miettinen, J.R. Chin, L. Shum, H.C. Slavkin, C.F. Shuler, R. Derynck, et al.
EGF receptor function is necessary for normal craniofacial development and palate closure.
Nature Genetics, 22 (1999), pp. 69-73
[38.]
J. Li, X. Fu, X. Sun, T. Sun, Z. Sheng.
The interaction between epidermal growth factor and matrix metalloproteinases induces the development of sweat glands in human fetal skin.
J Surg Res, 106 (2002), pp. 258
[39.]
D.A. Fisher, E.C. Salido, L. Barajas.
Epidermal growth factor and kidney.
Annu Rev Physiol, 51 (1989), pp. 67-80
[40.]
H.D. Humes, D.A. Cieslinsky, T.M. Colimbra, J.M. Messana, C. galvao.
Epidermal growth factor enhances renal tubular cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure.
J Clin Invest, 84 (1989), pp. 1757-1761
[41.]
J. Norman, Y.W. Tsau, A. Bacay, L. Fine.
Epidermal growth factor accelerates functional recovery from ischaemic acute tubular necrosis in the rat: role of the epidermal growth factor receptor.
J Clin Invest, 84 (1989), pp. 1757-1761
[42.]
T.M. Coimbra, D.A. Cielinski, H.D. Humes.
Epidermal growth factor accelerates renal repair in mercuric chrolide nephrotoxicity.
Am J Physiol, 259 (1990), pp. 438-443
[43.]
A. Guglietta, P.B. Sullivan.
Clinical applications of epidermal growth factor.
Eur J Gastroenterol Hepatol, 7 (1995), pp. 945-950
[44.]
X. Wu, I.A. Qureshi, H. Liu, J. Yin, X. Quian, X. Ruijie.
Epidermal growth factor in acute promyelocytic leukemia treated with retinoic acid.
Int J Hematol, 62 (1995), pp. 83-89
[45.]
B. McAllister, F. Leeb-Lundberg, J. Melloning, M. Olson.
The functional interaction of EGF and PDGF with bradykinin in the proliferation of human gingival fibroblasts.
J Periodontol, 66 (1995), pp. 429
[46.]
G.L. Brown, L.J. Curtsinger, M. White, R.O. Michell, J. Pietsdc, R. Nordquist, et al.
Acceleration of tensile strength of incisions treated with EGF and TGF-B.
Ann Surg, 208 (1988), pp. 788-794
[47.]
J.W. Thornton, C.A. Hess, V. Cassingham, R.H. Bartler.
Epidermal growth factor in the healing of second degree burns: a controlled animal study.
Burns Incl Therm Inj, 8 (1982), pp. 156-160
[48.]
J.D. Franklin, B. Lynch.
Effects of topical applications of epidermal growth factor on wound healing. Experimental study in rabbit ears.
Reconstr Surg, 339 (1979), pp. 213-214
[49.]
K. Okumura, Y. Kiyohara, F. Komada, S. Iwakawa, M. Hirai, T. Fuwa.
Improvement in wound healing by epidermal Growth Factor (EGF) ointment. Effect of nafamostat, gababexate, or gelatin on stabilization and efficacy of EGF.
Pharm Res, 7 (1990), pp. 1289-1293
[50.]
V. Falanga, W.H. Eaglstein, B. Bucalo, M.H. Katz, B. Harris, P. Carson.
Topical use of recombinant epidermal growth factor (h-EGF) in venous ulcers.
J Dermatol Surg Oncol, 18 (1992), pp. 604-606
[51.]
V. Falanga.
Overview of chronic wounds and recent advances.
Dermatol Ther, 9 (1999), pp. 7-17
[52.]
I. Escotto, J.M. Rodriguez Trejo, L. Padilla, N. Rodriguez Ramirez.
Factores de crecimiento en el tratamiento de ulceras en pacientes diabeticos. Mitos y realidades.
Rev Mex Angiologia, 29 (2001), pp. 75-82
[53.]
R.C. Harris, R.L. Hoover, H.R. Jacobson, K.F. Badr.
Evidence for glomerular actives of epidermal growth factor in the rat.
J Clin Invest, 82 (1988), pp. 1028-1039
[54.]
P.J. Marie, M. Hott, J. Perheentupa.
Effects of EGF on bone formation and resorption in vivo.
Am J Physiol, 258 (1990), pp. 275-281
[55.]
R.J. Coffey, N.J. Sipes, C.C. Bascom, R. Graves-Deal, C.Y. Pennington, B.E. Weissman, et al.
Growth modulation of mouse keratinocytes by transforming growth factors.
Cancer Res, 48 (1988), pp. 1596-1602
[56.]
M.S. Tsao, X.Y. Zhang, C. Liu, J.W. Grisham.
Regulation by epidermal growth factor of the expression of transforming growth factor-β1 mRNA in cultured rat liver epithelial cells.
Exp Cell Res, 195 (1991), pp. 214-217
[57.]
D.L. Tait, P.C. MacDonald, M.L. Casey.
Parathyroid hormone-related protein expression in gynecic squamous carcinoma cells.
Cancer, 73 (1994), pp. 1515-1521
[58.]
T. Holting, O.Y. Duh, O.H. Clark, C. Herfarth.
Wachstum und invasion beim differenzierten schilddrusencarcinom.
Chirurg, 65 (1994), pp. 1100-1106
[59.]
J.B. Cordero, M. Cozzolino, Y. Lu, M. Vidal, E. Slatopolsky, P.D. Stahl, et al.
1,25-dihydroxy vitamin D downregulates cell membrane and nuclear-growth promoting signals by the epidermal growth factor receptor.
J Biol Chem, 277 (2002), pp. 965-971
[60.]
P.A. Martinez-Carpio, M.A. Navarro.
Factores de crecimiento celular, dano celular, proteina-quinasas dependientes de ciclinas y sus inhibidores: su relevancia en la patologia molecular del cancer humano.
Med Clin (Barc), 120 (2003), pp. 265-271
[61.]
Y. Saikawa, T. Kubota, Y. Otani, M. Kitajima, I.M. Modlin.
Cyclin D1 antisense oligonucleotide inhibits cell growth stimulated by epidermal growth factor and induces apoptosis of gastric cancer cells.
Jpn J Cancer Res, 92 (2001), pp. 1102-1109
[62.]
M.S. Sheikh, Z.M. Shao, J.C. Chen, X.S. Li, A. Hussain, J.A. Fontana.
Expression of estrogen receptors in estrogen receptor-negative human breast carcinoma cells: modulation of epidermal growth factor-receptor and transforming growth factor α gene expression.
J Cell Biochem, 54 (1994), pp. 289-298
[63.]
R. Kopp, M. Ruge, E. Rothbauer, C. Cramer, H.J. Kraemling, B. Wiebeck, et al.
Impact of EGF radioreceptor analysis on longterm survival of gastric cancer patients.
Anticancer Res, 22 (2002), pp. 1161-1167
[64.]
M.A. Navarro, R. Mesia, O. Diez-Gibert, A. Rueda, B. Ojeda, M.C. Alonso.
Epidermal growth factor in plasma and saliva of patients with active breast cancer and breast cancer patients in follow-up compared with healthy women.
Breast Cancer Res Treat, 42 (1997), pp. 83-86
[65.]
J.G. Klijn, P.M.J. Berns, P.I. Schmitz, J.A. Foekens.
The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients.
Endocrine Rev, 1 (1992), pp. 13-17
[66.]
O. Diez-Gibert, M.E. Fernandez-Montoli, V. Nacher, M.A. Navarro.
Estimation of the epidermal growth factor receptor by the hydroxyapatite method in human breast cancer.
Eur J Clin Chem Clin Biochem, 33 (1995), pp. 563-568
[67.]
A.C.C. Ruifrok, W.H. McBride.
Growth factors: biological and clinical aspects.
Int J Radiation Oncology Biol Phys, 43 (1999), pp. 877-881
[68.]
R.K. Schmidt-Ullrich, R.B. Mikkelsen, P. Dent, D.G. Todd, K. Valerie, B.D. Kavanagh, et al.
Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation.
Oncogene, 15 (1997), pp. 1191-1197
[69.]
C.P.N. Dinney, C. Parker, Z. Dong, D. Fan, B.Y. Eve, C. Bucana, et al.
Therapy of human transitional cell carcinoma of the bladder by oral administration of the epidermal growth factor receptor protein tyrosinekinase inhibitor, 4,5-dianilinophthalimide.
Clin Cancer Res, 3 (1997), pp. 161-168
[70.]
H. Modjtahedi, C. Dean.
The receptor for EGF and its ligands: expression, prognostic value and target for therapy in cancer.
Int J Oncol, 4 (1994), pp. 277-296
[71.]
H. Modjtahedi, T. Komurasaki, H. Toyoda, C. Dean.
Anti-EGFR monoclonal antibodies which act as EGF TGFA, HB-EGF and BTC antagonists block the binding of epiregulin to the EGFR expressing tumors.
Int J Cancer, 75 (1998), pp. 310-316
[72.]
G. Stragliotto, F. Vega, P. Stasiecki.
Multiple infusions of antiepidermal growth factor receptor monoclonal antibody (EMD 55900) in patients with recurrent malignant gliomas.
Eur J Cancer, 32 (1996), pp. 636-646
[73.]
J. Mendelsohn.
Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy.
Clin Cancer Res, 3 (1997), pp. 2703-2707
[74.]
L.T. Lee, Y.T. Huang, J.J. Hwang, P.P. Lee, F.C. Ke, M.P. Nair, et al.
Blockade of the epidermal growth factor receptor tyrosine kinasa activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells.
Anticancer Res, 22 (2002), pp. 1615-1627
[75.]
S. Brunelleschi, L. Penego, M.M. Santoro, G. Gaudino.
Receptor tyrosine kinases as target for anticancer therapy.
Curr Pharm Des, 8 (2002), pp. 1959-1972
[76.]
J. Baselga.
Targeting the epidermal growth factor receptor: a clinical reality.
J Clin Oncol, 19 (2001), pp. 41-44
[77.]
Y. Yarden, M.X. Sliwkowsky.
Untangling the Erb B signalling network.
Nat Rev Mol Cell Biol, 2 (2001), pp. 127-137
Copyright © 2003. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos